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Abstract. The purpose of the present study was to explore the 
potential molecular signaling pathway mediated by the statin 
rosuvastatin in cultured human coronary artery endothelial 
cells (HCAECs) induced by CoCl2. CoCl2 was used to induce 
the apoptosis of HCAECs. Myocardial infarction rats were 
established and received statin or PBS treatment. Reverse tran-
scription‑quantitative PCR, western blotting, ELISA, TUNEL 
assay and immunohistochemistry were used to analyze the 
role of statin treatment. The results showed that rosuvastatin 
treatment decreased apoptosis of HCAECs induced by CoCl2 
by increasing anti‑apoptosis Bcl‑xl and Bcl‑2 expression, and 
decreasing pro‑apoptosis Bax, Bad, caspase‑3 and caspase‑9 
expression. The myocardial ischemia rat model demonstrated 
that rosuvastatin treatment decreased the mitochondrial reac-
tive oxygen species, inflammation, mitochondrial damage, 
lipid catabolism, heart failure and the myocardial infarction 
areas, but improved the cardiac function indicators, right and 
left ventricular ejection fraction and increased expression levels 
of Janus kinase (JAK) and signal transducer and activator of 
transcription (STAT)3 in myocardial tissue. In conclusion, 
the results of the current study revealed that the statin rosu-
vastatin presents cardioprotective effects by activation of the 
JAK2/STAT3 signaling pathway. 

Introduction

Complication of coronary heart disease (CAD) is a type of 
coronary artery atherosclerosis disease caused by myocardial 
ischemia (1,2). CAD is also associated with inflammation and 

thrombosis, which leads to luminal stenosis or occlusion (3). 
Myocardial infarction is one type of CAD, caused by obstruc-
tion of the coronary artery lumen, which is induced by rupture 
of coronary artery atheromatous plaque and formation of 
thrombus (4,5). Morbidity and the mortality rate of myocar-
dial infarction are increasing worldwide (2,6). A review of 
the current clinical evidence suggests that cardiovascular 
interventions can help myocardial infarction patients and 
reduce the high mortality rate (7). The body protects the heart 
against myocardial ischemia and reperfusion injury by modu-
lating myocardial apoptosis and levels of inflammation (8,9). 
Previous studies have also demonstrated that early apoptotic 
myocardial vascular aggravates the progression of myocardial 
infarction (10,11).

Statins are hydroxymethyl glutaric acyl coenzyme A 
(HMG CoA) reductase inhibitors that can competitively inhibit 
the endogenous HMG CoA and block cell hydroxy valeric 
acid metabolic pathways, which further reduce cholesterol 
synthesis in the cell (12). A previous study found that statins 
cause secondary prevention in elderly patients following acute 
myocardial infarction (13). Chronic pre‑treatment of statins is 
associated with the reduction of the no‑reflow phenomenon in 
the patients with reperfused acute myocardial infarction (14). 
Statins demonstrate an early antiplatelet effect in patients 
with acute myocardial infarction, which results in a reduc-
tion in collagen‑induced platelet aggregation (15). The effect 
of statins on long‑term survival in patients hospitalized with 
acute myocardial infarction was investigated in 1,706 heart 
failure patients (16). These studies suggested that statins may 
be beneficial for the treatment of myocardial infarction. 

Statins protect against arrhythmogenic calcium alternans 
in the post‑myocardial infarction diabetic heart (17). Statins 
induce sirtuin 1 protein and have a cardioprotective role 
following premature myocardial infarction by impairment of 
endothelial nitric oxide synthase expression (18). In addition, 
rosuvastatin treatment was found to improve the efficacy of 
stem cell transplantation in infarcted hearts by activation 
of the Janus kinase (JAK) 2‑signal transducer and activator 
of transcription (STAT)3 signaling pathway (19). Simvastatin 
treatment was found to ameliorate apoptosis of cardiomyocytes 
by reducing the expression of Bax and non‑cleaved caspase‑3 
and increasing STAT3 (20). In addition, atorvastatin was found 
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to confer anti‑inflammatory and anti‑apoptotic effects under 
acute myocardial infarction settings which is hypothesized to 
ultimately contribute to cardiac function improvement (21). 
Therefore, concerns have been raised concerning statins due 
to their potential adverse impacts on myocardial infarction.

A previous study showed that CoCl2 induces hypoxic 
injury and mimics the hypoxia condition‑induced injury in 
cardiomyocytes (22). In addition, apoptosis of coronary artery 
endothelial cells is a pro‑atherogenic adhesion molecule 
central to initiation of atherosclerosis and progression towards 
plaque instability (23). Thus, the present study analyzed the 
anti‑apoptotic effect of the statin rosuvastatin on human coro-
nary artery endothelial cells (HCAECs). The present study 
used CoCl2 to mimic hypoxia condition‑induced cardiomyo-
cyte injury. The therapeutic effects of the statin rosuvastatin 
in myocardial infarction were examined and it was found 
that statin treatment significantly inhibited apoptosis of the 
HCAECs induced by CoCl2. It was also noted that rosuvastatin 
can protect the myocardium against myocardial infarction by 
regulation of the JAK2/STAT3 pathway. 

Materials and methods

HCAEC culture. HCAECs were obtained from PromoCell 
GmbH and cultured in MEM medium (Sigma‑Aldrich; Merck 
KGaA) containing 10% fetal bovine serum (Sigma‑Aldrich; 
Merck KGaA). CoCl2 (20 mM, Sigma‑Aldrich; Merck KGaA) 
was used to induce hypoxic stimulation. The cells were grown in 
a humidified atmosphere containing 5% CO2 at 37˚C. HCAECs 
were treated with the statin rosuvastatin (0, 1, 2 and 3 mg/ml, 
Sigma‑Aldrich; Merck KGaA) and/or JAK2 inhibitor AG490 
(2 mg/ml, Sigma‑Aldrich; Merck KGaA) for further analysis.

Reverse transcription‑quantitative (RT‑q) PCR. Total RNA was 
extracted from human coronary artery endothelial cells (1x107) 
using RNAeasy Mini kit (Qiagen Sciences, Inc.). RNA was 
purified using the PureLink™ Pro 96 total RNA Purification 
Kit (Thermo Fisher Scientific, Inc.) and quantified using a 
Nanodrop 2000c UV‑Vis Spectrophotometer (Thermo Fisher 
Scientific, Inc.) according to the manufacturer's instructions. 
Expression levels of Bcl‑xl, Bcl‑2, Bax and Bad in HCAEC 
were measured by RT‑qPCR with β‑actin as an endogenous 
control (24) (Invitrogen, Thermo Fisher Scientific, Inc.). The 
following thermocycling conditions were used for qPCR: 
Initial denaturation at 95˚C for 300 sec; 45 cycles of 95˚C for 
30 sec, 57˚C for 30 sec and 72˚C for 30 sec. All the forward 
and reverse primers were synthesized by Invitrogen (Thermo 
Fisher Scientific, Inc.) (Table I). Relative mRNA expression 
changes were calculated by the 2‑ΔΔCq method (25). The results 
are expressed as n‑fold change compared with β‑actin.

Cell viability assay. Viability of endothelial cells was analyzed 
using the Cell Counting Kit‑8 (CCK‑8; Sigma‑Aldrich; Merck 
KGaA). Briefly, HCAEC at 1x105 cells/ml density were seeded 
into 6‑well plates, 0.2% H2O2 was added with or without 
rosuvastatin (0, 1.0, 2.0 and 3.0 mg/ml) and then cultured for 
24, 48 and 72 h at 37˚C. A total of 10 µl CCK‑8 solution was 
added to the cells and then the cells were cultured for 30 min 
at 37˚C. Cell viability was measured at 450 nm absorbance 
using a Microplate Reader (Bio‑Rad Laboratories, Inc.).

Western blot analysis. HCAEC were homogenized in lysate 
buffer containing protease‑inhibitor and were centrifuged at 
6,000 x g at 4˚C for 10 min. The supernatant was used for anal-
ysis of the purpose protein. Total protein was quantified using a 
bicinchoninic acid assay kit (Thermo Fisher Scientific, Inc.). A 
total of 40 µg protein/lane was separated via 15% SDS‑PAGE 
and transferred onto nitrocellulose membranes, which were 
blocked with 5% BSA (Sigma‑Aldrich; Merck KGaA) at 4˚C 
overnight. The primary antibodies used in the immunoblot-
ting assays were: Bad (1:1,200, cat. no. ab32445, Abcam), Bax 
(1:1,200, cat. no. ab32503, Abcam), matrix metalloproteinase 
(MMP) 9 (1:1,200, cat. no. ab388981, Abcam), tumor necrosis 
factor (TNF) α (1:1,200, cat. no.  ab6671, Abcam), NF‑κB 
(1:1,200, cat. no. ab220803, Abcam), interleukin (IL) 1β (1:1,200, 
cat.  no.  ab9722, Abcam), IL‑10 (1:1,200, cat.  no.  ab9969, 
Abcam), peroxisome proliferator‑activated receptor γ coacti-
vator (PGC) 1α (1:1,200, cat. no.  ab54481, Abcam), brain 
natriuretic peptide (BNP; 1:1,200, cat. no. ab19645, Abcam), 
α myosin heavy chain (MHC; 1:1,200, cat.  no.  ab134189, 
Abcam), Bcl‑xl (1:1,200, cat.  no.  ab32370, Abcam), 
Bcl‑2 (1:1,200, cat.  no.  ab32124, Abcam), JAK2 (1:1,200, 
cat. no. ab108596, Abcam), phosphorylated (p‑)JAK2 (1:1,200, 
cat. no. ab32101, Abcam), STAT3 (1:1,200, cat. no. ab68153, 
Abcam), p‑STAT3 (1:1,200, cat. no. ab126459, Abcam) and 
β‑actin (1:2,000, cat. no. ab8226, Abcam) for 12 h at 4˚C. The 
blots were then incubated with HRP‑conjugated secondary 
antibody (1:5,000, cat. no. ab205718, Abcam) for 2 h at 37˚C 
The bands of proteins were observed with an enhanced chemi-
luminescence substrate kit (cat. no. P0018F, Beyotime Institute 
of Biotechnology). Quantitative expression of proteins was 
quantified by ImageJ software (v4.6.2, National Institutes of 
Health).

TUNEL assay. To analyze the apoptosis of HCAECs in 
experimental rats following statin treatment (10 mg/kg/day, 
Sigma‑Aldrich; Merck KGaA) or the same dose of PBS, a 
TUNEL assay (Biotool Service GmbH) was used to detect 
TUNEL‑positive cells. The procedures were performed as in a 
previous study (26). Finally, hippocampal neuron cell images 
were captured with a ZEISS LSM 510 confocal microscope 
at 488 nm.

Animals studies. Male SD rats (6‑8‑week, body weight, 
200‑220 g, n=40) were purchased from the Chinese Academy 
of Sciences Institute of Biophysics. All rats were housed 
at 23‑25˚C with 50‑60% humidity, 12‑h light/dark cycles, 
and food and water ad libitum. Animal breeding and experi-
ments were carried out under IACUC approved protocols at 
Provincial Hospital Affiliated to Shandong University. A 
myocardial infarction rat model was established by ligating 
the left anterior descending (LAD) coronary artery for 
30 min followed by reperfusion for 4 h  (27). Briefly, rats 
were anesthetized using pentobarbitone sodium (50 mg/kg). 
After disinfecting the surgical area, the left chest was opened 
to expose the heart. Rats were subjected to permanent LAD 
ligation using 6.0 prolene, approximately 2 mm in width and 
depth, in order to induce myocardial ischemia. Successful 
occlusion of the LAD was confirmed by observing the appear-
ance of a paler color below the ligation area and ST‑segment 
elevation on ECG (PowerLab System, AD Instruments Ltd.) 
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were used to confirm a successful occlusion of the LAD 
coronary artery. Myocardial infarction rats were divided into 
two groups (n=20 in each group) and received rosuvastatin 
(1 mg/kg, Sigma‑Aldrich; Merck KGaA) or the same PBS dose 
in a total of 60‑day treatment once a day. At the end of experi-
mental period, rats were euthanized by cervical dislocation 
under pentobarbital (50 mg/kg i.p.) anesthesia.

Blood biochemical parameters. Blood samples (0.5  ml) 
in vena caudalis were collected from experimental rats at 
the end of experiments and immediately transferred to the 
Central Laboratory. Serum was obtained using centrifugation 
(12,000 x g, 10 min, 4˚C) and used to determine concentra-
tions of serum low‑density lipoprotein cholesterol (LDL‑c), 
hypersensitive C‑reactive protein (hsCRP; reference value: 
0‑5 mg/l), leucocytes (WBC), neutrophil counts (%) and mean 
platelet volume (MPV). Left ventricular ejection fraction 
(LVEF) and left ventricular fractional shortening (LVFS) were 
measured as described previously (28).

Measurement of the myocardial infarct size. At the end of treat-
ment, the hearts from the two groups were immediately placed in 
a ‑80˚C freezer for 10 min and cut into 2‑3 mm thick slices along 
the sagittal plane of the heart. Myocardial tissues were stained 
in 2,3,5‑triphenyl‑2H‑tetrazolium chloride (TTC) solution 
(37˚C, 1% TTC, pH 7.4) for 30 min. Subsequently, myocardial 
tissues were incubated with 10% formaldehyde solution for fixa-
tion for 24 h at 4˚C. The infarct area in the myocardial tissues 
was analyzed with ImageJ (v4.6.2, National Institutes of Health) 
and images were captured with a digital camera.

Determination of mitochondrial reactive oxygen species 
(ROS) generation. Mitochondrial ROS production rate was 
detected using fluorometric methods (29). In brief, 2.9 ml 
of mitochondrial ROS assay medium and 3 ml of 5 mmol/l 
2',7'‑dichlorofluorescin diacetate were incubated at 37˚C for 
15 min and the fluorescence intensity of the reaction system 
with mitochondria was measured using the fluorescence 
intensity of the reaction system without mitochondria. The 
ROS generation rate was calculated by subtracting the basal 
fluorescence intensity from the sample florescence intensity.

Immunological staining. The effects of rosuvastatin treatment 
on neuronal loss were evaluated using immunohistochemical 

staining of myocardial tissue from experimental rats. Staining 
was performed on myocardial tissues in animals following 
treatment by statin or PBS only. Immunohistochemical proce-
dures were previously reported in detail (30). Free‑floating 
sections were rinsed and placed in the solution with the rabbit 
anti‑rat primary antibody of Bad (1:1,200, cat. no. ab32445, 
Abcam), Bax (1:1,200, cat.  no.  ab32503, Abcam), JAK2 
(1:1,200, cat.  no.  ab108596, Abcam) and STAT3 (1:1,200, 
cat. no. ab68153, Abcam). After rinsing, sections were incu-
bated in the presence of horseradish peroxidase‑conjugated 
anti‑rabbit IgG antibodies (1:5,000; cat. no. ab6721; Abcam) 
for 24  h at  4˚C. The results were visualized by using a 
chemiluminescence detection system (Cytiva). 

Statistical analysis. All data are expressed as mean ± standard 
deviation of triplicate dependent experiments and analyzed by 
using Student's t‑tests or one‑way ANOVA followed by Tukey's 
HSD test. All data were analyzed using SPSS Statistics 19.0 
(IBM Corp.) and GraphPad Prism version  5.0 (GraphPad 
Software, Inc.) with Microsoft Excel (version 2010; Microsoft 
Corporation). P<0.05 was considered to indicate a statistically 
significant difference.

Results

Statin rosuvastatin increases survival of HCAECs treated by 
CoCl2. The effect of rosuvastatin on the survival of HCAEC 
apoptosis induced by CoCl2 was analyzed in the present study. 
As shown in Fig. 1A and B, CoCl2 decreased the viability 
of the sHCAEC in a dose‑ and time‑dependent manner. 
Viability of the HCAECs was increased in the statin‑treated 
(CoCl2 + statin) group compared with CoCl2‑treated group 
(Fig. 1C). Data demonstrated that 2 mg/ml of statin presented 
the optimal efficacy in increasing the viability of the HCAECs. 
As depicted in Fig. 1D, 2 mg/ml of statin increased viability 
of the HCAECs in a time‑dependent manner. These results 
indicate that statin is beneficial for myocardial infarction by 
reversing the CoCl2‑reduced viability of HCAECs.

Statin rosuvastatin inhibits apoptosis of HCAECs induced 
by CoCl2. Apoptosis of HCAECs plays an important role in 
the progression of myocardial infarction. The present study 
showed that rosuvastatin inhibited apoptosis of HCAECs 
induced by CoCl2 (Fig.  2A). Results demonstrated that 

Table I. Primers for reverse transcription‑quantitative PCR.

	 Sequence
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Gene name	R everse	 Forward

Bax	 5'‑CTTCTCACTGTCGACTACCGC‑3'	 5'‑GCGTCTCCTGTGCATTCG‑3'
Bad	 5'‑GCAAGGACAAGATTCGATACT‑3'	 5'‑GCCAGACTACATGGAAATCTA‑3'
Bcl‑2	 5'‑CATGCTGGGGCCGTACAG‑3'	 5'‑TTGTCCGACCTTTGGCAACT‑3'
Bcl‑xl	 5'‑ATTTGCGTGTGGAGTATTTGG‑3'	 5'‑GCTGTTCCGTCCCAGTAGATTA‑3'
Caspase‑3 	 5'‑AGCAATAAATGAATGGGCTGAG‑3'	 5'‑GTATGGAGAAATGGGCTGTAGG‑3'
Caspase‑9	 5'‑CATTTCATGGTGGAGGTGAAG‑3'	 5'‑GGGAACTGCAGGTGGCTG‑3'
β‑actin	 5'‑CGGAGTCAACGGATTTGGTC‑3'	 5'‑AGCCTTCTCCATGGTCGTGA‑3'
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rosuvastatin treatment increased anti‑apoptosis Bcl‑xl and 
Bcl‑2 protein and mRNA expression (Fig. 2B and C), while 
pro‑apoptosis Bax and Bad mRNA and protein expression 
was decreased by statin treatment (Fig. 2D and E). Statin 
treatment also decreased the apoptotic markers caspase‑3 
and caspase‑9 mRNA and protein in HCAECs compared 
with the control (Fig. 2F and G). These results indicated that 
statin treatment inhibits the apoptosis of HCAECs induced 
by CoCl2.

Statin rosuvastatin suppresses apoptosis of HCAECs through 
regulation of the JAK2/STAT3 pathway. The potential mecha-
nism mediated by rosuvastatin was investigated in HCAECs 
induced by CoCl2. Statin treatment significantly increased 
JAK2, p‑JAK2, STAT3 and p‑STAT3 expression in the 
HCAECs (Fig. 3A). Results showed that the JAK2 selective 
inhibitor AG490 decreased and abolished statin‑promoted 
JAK2 and STAT3 expression in the HCAECs. In addition, 
statin‑inhibited apoptosis of HCAECs was abolished by 
JAK2 inhibitor AG490 (Fig. 3B). Apoptosis‑regulated protein 
expression levels were also reversed by JAK2 inhibitor AG490 
in statin‑regulated HCAECs (Fig. 3C and D). Results also 
showed that JAK2 inhibitor AG490 abolished statin‑regulated 

Bcl‑2, Bcl‑xl, Bad and Bax levels in the HCAECs induced by 
CoCl2 (Fig. 3E). These results indicate that statin can signifi-
cantly suppress apoptosis of HCAECs through regulation of 
the JAK2/STAT3 pathway.

Impact of statin treatment on inflammatory markers and 
cellular parameters in myocardial infarction rats. The effects 
of rosuvastatin treatment on inflammatory markers and cellular 
parameters were further analyzed in myocardial infarction 
rats. Results showed that statin treatment reduced hsCRP, 
white blood cell (WBC) and LDL‑c levels, but increased 
neutrophils, MPV, LVEF and LVFS compared with the control 
(Fig. 4A‑E). These results indicated that statin could decrease 
inflammatory markers in myocardial infarction rats.

Expression of inflammatory, mitochondrial damaged and 
cardiac hypertrophic failure in myocardial infarction rats. As 
shown in Fig. 5A, protein levels of MMP‑9, TNF‑α, NF‑κB 
and IL‑1β were decreased by rosuvastatin compared with the 
control. Anti‑inflammatory cytokine IL‑10 was increased 
by treatment with rosuvastatin (Fig.  5B). An indicator of 
mitochondrial damage and mitochondrial integrity, cytosolic 
cytochrome c, was decreased by statin (Fig. 5C). A major 

Figure 1. Statin rosuvastatin increases the viability of HCAECs induced by CoCl2. (A) CoCl2 decreased viability of HCAECs in a dose‑dependent manner 
(0, 10, 20 and 30 mM) compared with the non‑treated group. (B) CoCl2 decreased viability of HCAECs in a time‑dependent manner (24, 48 and 72 h) 
compared with the non‑treated group. (C) Rosuvastatin increased the viability of HCAECs in dose‑dependent manner (0, 1.0, 2.0 and 3.0 mg/ml) compared 
with the non‑treated group. (D) Statin increased viability of HCAECs in a time‑dependent manner (24, 48 and 72 h) compared with non‑treated group. *P<0.05, 
**P<0.01; ns, not significant; HCAECs, human coronary artery endothelial cells.
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upstream regulator of lipid catabolism PGC‑1α, indicator of 
heart failure BNP and α‑MHC were increased by statin in the 
myocardial infarction rats (Fig. 5D). These data indicated that 

statin treatment presented benefits in improvement of inflam-
mation, mitochondrial damage and cardiac hypertrophic 
failure.

Figure 2. Statin rosuvastatin inhibits apoptosis of HCAECs induced by CoCl2. (A) Statin inhibited apoptosis of HCAECs induced by CoCl2 (magnification, 
x50). (B and C) Statin treatment increased anti‑apoptosis Bcl‑xl and Bcl‑2 mRNA (B) and protein (C) expression in the HCAECs. (D and E) Statin treat-
ment decreased Bax and Bad mRNA (D) and protein (E) in the HCAECs. (F and G) Statin treatment decreased apoptotic markers caspase‑3 and caspase‑9 
mRNA (F) and protein (G) in the HCAECs. **P<0.01, compared to the Control group. HCAECs, human coronary artery endothelial cells.
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Figure 3. Statin rosuvastatin suppresses the apoptosis of HCAECs through regulation of the JAK2/STAT3 pathway. (A) JAK2 selective inhibitor AG490 
decreased and abolished statin‑regulated JAK2, p‑JAK2, STAT3 and p‑STAT3 expression in the HCAECs. (B) JAK2 selective inhibitor AG490 decreased 
and abolished statin‑inhibited apoptosis of HCAECs (magnification, x50). (C) Effects of JAK2 selective inhibitor AG490 on statin‑regulated Bcl‑xl and 
Bcl‑2 protein expression in the HCAECs. (D) Effects of JAK2 selective inhibitor AG490 on statin‑regulated Bax and Bad protein expression in the HCAECs. 
(E) Effects of JAK2 selective inhibitor AG490 on statin‑regulated Bcl‑xl and Bcl‑2 gene expression in the HCAECs. (F) Effects of JAK2 selective inhibitor 
AG490 on statin‑regulated Bax and Bad gene expression in HCAECs. **P<0.01; ns, not significant; HCAEC, human coronary artery endothelial cells; 
JAK, Janus kinase; p‑, phosphorylated; STAT, signal transducer and activator of transcription.
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In vivo efficacy of statin for myocardial infarction. In vivo 
efficacy of the statin rosuvastatin was investigated in a myocar-
dial infarction rat model. It was observed that statin treatment 
markedly decreased the mitochondrial ROS and the myocar-
dial infarction areas (Fig. 6A and B). Results also indicated that 
rosuvastatin treatment significantly decreased thrombogenesis 
in the experiment rats after the 60‑day treatment (Fig. 6C). 

The results revealed that Bax and Bad production was also 
decreased by statin treatment compared with the control 
(Fig. 6D). Treatment with the statin significantly improved the 
cardiac function indicators left ventricular end‑diastolic poste-
rior wall thickness and left ventricular end‑diastolic diameter 
(Fig.  6E) and significantly increased expression levels of 
JAK and STAT3 in myocardial tissue (Fig. 6F). These results 

Figure 4. Effects of statin rosuvastatin on inflammatory markers and cellular parameters in a myocardial infarction rat model. Effects of statin on (A) blood 
hsCRP concentration, (B) number of WBCs, (C) LDL‑c, (D) neutrophils, (E) MPV, (F) LVEF and (G) LVFS in myocardial infarction rat model. *P<0.05, 
**P<0.01. hsCRP, hypersensitive C‑reactive protein; WBC, leucocytes; LDL‑c, low‑density lipoprotein cholesterol; MPV, mean platelet volume; LVEF, left 
ventricular ejection fraction; LVFS, left ventricular fractional shortening.
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indicate that statin treatment was beneficial for the treatment 
of myocardial infarction.

Discussion

Prospective review and randomized clinical trials have 
investigated factors associated with increased coronary heart 
disease risk (31). Expression of apoptosis factors following 
coronary heart disease are increased in patients in the 
clinic  (32). Data in a systematic review and meta‑analysis 
indicate the therapeutic effects of perioperative statins on 
death, myocardial infarction, atrial fibrillation and length of 
stay (33). The present study first investigated the beneficial 
effects of statin rosuvastatin for coronary artery endothelial 
cells induced by CoCl2 both in vitro and in vivo. Statin treat-
ment decreased serum level of hsCRP, WBCs, LDL‑c, but 
increased serum level of neutrophils, MPV, LVEF and LVFS 
compared with control treatment in a myocardial infarction 
rat model. Statin significantly improved viability of HCAECs 
induced by CoCl2 and improved inflammation, mitochondrial 
damage and cardiac hypertrophic failure. Statin suppressed 
apoptosis of HCAECs by increasing JAK2/STAT3 signaling 
pathway‑related proteins.

A previous study evaluated the kinetics of cardiomyo-
cyte apoptosis in patients undergoing primary percutaneous 
coronary intervention and thrombolytic therapy (34). Statin 
administration was found to mitigate cellular inflammatory 
response following ST‑elevation myocardial infarction in 
a total of 404 patients (35). The present study reported that 
statin treatment presented anti‑apoptotic effects on HCAECs 
induced by CoCl2. In addition, Bax deficiency was previously 
found to reduce infarct size and improve long‑term function 
following myocardial infarction (36). Activation of the Bad 
apoptotic pathway and the PI3K/Akt survival pathway has 
been observed following myocardial infarction  (37). The 
present study showed that rosuvastatin administration signifi-
cantly decreased Bax and Bad expression levels in HCAECs. 

Furthermore, Bcl‑2 upregulation contributed to anti‑apoptosis 
of cardiomyocytes in rats with myocardial infarction 
injury (38). Effects of statin on the anti‑apoptosis of HCAECs 
and the increasing expression of Bcl‑2 were identified in rats 
with myocardial infarction injury. 

A previous study indicated that the role of JAK2 plays an 
important role in premature myocardial infarction, in support 
of the revised World Health Organization diagnostic criteria for 
essential thrombocythemia (39). The cardiac‑specific ablation 
of the STAT3 gene in the subacute phase of myocardial infarc-
tion exacerbates cardiac remodeling (40). Notably, activation of 
the JAK2/STAT3 pathway protects myocardium against isch-
emia/reperfusion injury (41). The present study reported that 
rosuvastatin significantly suppressed apoptosis of HCAECs 
through regulation of the JAK2/STAT3 pathway. A previous 
study noted that myocardial caspase‑3 activation promotes 
calpain‑induced septic apoptosis (42). Another study indicated 
that decreasing cleaved‑caspase‑9 expression inhibits myocar-
dial cell apoptosis during myocardial ischemia‑reperfusion 
injury in rats (43). In the present study, it was observed that 
statin treatment decreased caspase‑3 and caspase‑9 expression 
in HCAECs induced by CoCl2. However, HCAECs should be 
isolated from the myocardial infarction rat model for detection 
in future studies. The present study also suggested that statin 
treatment contributes to improvements in myocardial infarc-
tion via decreasing mitochondrial ROS and the myocardial 
infarction areas. Statin treatment significantly decreased 
thrombogenesis in the experimental rats following the 60‑day 
treatment, decreased Bax and Bad production and increased 
the expression levels of JAK and STAT3 in myocardial tissue. 

The novelty of the present study was that its data demon-
strated that the statin rosuvastatin inhibited the apoptosis 
of HCAECs through regulation of JAK2/STAT3. However, 
there were several limitations in the present study. First, the 
data of cells without CoCl2 treatment were not collected in 
the in vitro experiments. Second, data in a sham group was 
not investigated in in vivo experiments. Third, the present 

Figure 5. Expression levels of inflammatory factors, mitochondrial damage and cardiac hypertrophic failure in a myocardial infarction rat model. (A) Effects of 
statin rosuvastatin on the protein levels of MMP‑9, TNF‑α, NF‑κB and IL‑1β in heart tissue. (B) Effects of statin on anti‑inflammatory cytokine IL‑10 in heart 
tissue. (C) Effects of statin on cytosolic Cytochrome c expression in heart tissue. (D) Effects of statin on PGC‑1α, BNP and α‑MHC expression in heart tissue. 
**P<0.01. MMP, matrix metalloproteinase; TNF, tumor necrosis factor; NF‑κΒ, nuclear factor κΒ; IL, interleukin; PGC, peroxisome proliferator‑activated 
receptor γ coactivator; BNP, brain natriuretic peptide; α‑MHC, α myosin heavy chain.
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study only analyzed the associations between statin and 
the JAK2/STAT3 signaling pathway in HCAECs. Fourth, 
HCAECs were not isolated from the myocardial infarction 
rats. Therefore, more experiments should investigate the effect 

of statins on HCAECs isolated from myocardial infarction rats 
in future studies. In addition, the effect of statins on cardiac 
tissue cannot directly demonstrate the anti‑apoptotic effect of 
statins on HCAECs.

Figure 6. In vivo efficacy of statin rosuvastatin on myocardial infarction. (A) Statin treatment markedly decreased the mitochondrial ROS in a myocardial 
infarction rat model. (B) Statin treatment decreased myocardial infarction area in the experimental rats. (magnification, x50). (C) Statin treatment decreased 
thrombogenesis in the experimental rats after the 60‑day treatment. (D) Statin treatment decreased Bax and Bad production in the experimental rats after 
the 60‑day treatment. (E) Statin improved the cardiac function indicators LVPWd and LVEDD. (F) Statin increased expression level of JAK and STAT3 
in myocardial tissue. Scale bar, 50 µm. *P<0.05, **P<0.01. ROS, reactive oxygen species; LVPWd, left ventricular end‑diastolic posterior wall thickness; 
LVEDD, left ventricular end‑diastolic diameter; JAK, Janus kinase; STAT, signal transducer and activator of transcription.



WANG et al:  ROSUVASTATIN INHIBITS APOPTOSIS OF HCAECs 2061

In conclusion, the present study indicated that the cardio-
protective effects of statin are associated with the upregulation 
of JAK2/STAT3, which further decreased the apoptosis of 
HCAECs. It was found that rosuvastatin significantly improved 
mitochondrial ROS and the myocardial infarction areas in 
experiment rats following the 60‑day treatment. However, 
further studies of the JAK2/STAT3 signaling pathway should 
be further investigated in the progression of myocardial 
infarction.
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