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Antiangiogenic therapy in diabetic nephropathy:
A double-edged sword (Review)
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Abstract. Diabetes and the associated complications are
becoming a serious global threat and an increasing burden
to human health and the healthcare systems. Diabetic
nephropathy (DN) is the primary cause of end-stage kidney
disease. Abnormal angiogenesis is well established to be
implicated in the morphology and pathophysiology of
DN. Factors that promote or inhibit angiogenesis serve an
important role in DN. In the present review, the current
issues associated with the vascular disease in DN are high-
lighted, and the challenges in the development of treatments
are discussed.
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1. Introduction

Diabetic nephropathy (DN) is clinically defined as micro-
albuminuria with or without other microvascular lesions or
angiopathies, followed by a gradual increase in the extent of
proteinuria and a decrease in the glomerular filtration rate, in a
patient with long-term diabetes (1). DN is the primary cause of
chronic kidney disease (CKD) that results in progressive renal
hypofunction, with ~50% of patients progressing to end-stage
renal disease (ESRD) in the USA (2,3). Studies on DN indicate
that 20-30% patients with type I and II diabetes will progress
to CKD and may eventually progress to ESRD (4,5).

The structural damage to the glomerular filtration barrier,
as well as proteinuria are the primary features of DN, in
addition to ultra-structural alterations, glomerular basement
membrane thickening, mesangial matrix expansion, nodular
glomerulosclerosis, arteriolar hyalinosis, podocyte foot process
fusion and detachment (6). The occurrence of these injuries
is due to the imbalance between the destructive factors (such
as advanced glycation end products, free radicals, immune
agents, andpro-inflammatory and pro-fibrotic molecules) and
protective factors (such as anti-inflammatory agents, anti-ROS
molecules and anti-fibrotic molecules) in the kidney (7-11).

Although glomerular mesangial cells and podocytes are
considered to be the primary mediators of DN, the micro-
vascular system damage caused by diabetes also serves a
key role in the pathogenesis. Similar to diabetic retinopathy,
biopsy in patients with type 1 diabetes showed increased
glomerular capillary density and an increased number of
glomerular efferent arterioles caused by glomerular neovas-
cularization (12,13). In addition, the glomerular expression of
vascular growth factors, including angiogenin and vascular
endothelial growth factor (VEGF) increases (12,14,15), which
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may cause DN by promoting vascular leakage and decreasing
transendothelial electrical resistance (14,16).

At present, the treatment of DN is primarily aimed at
controlling blood glucose levels and lowering blood pressure
using specific types of blood pressure drugs that block the
renin-angiotensin-aldosterone system (RAAS). RAAS inhibi-
tors have been shown to exhibit renal protection in patients
with DN, but it is not always certain whether their efficacy
is sufficient. Similarly, in large clinical trials, strict blood
glucose control has led to inconsistent benefits for patients
with kidney disease. Therefore, once obvious DN occurs, in
addition to the use of RAAS inhibitors to control blood pres-
sure and blood glucose, specific therapies for the underlying
mechanisms are also required to prevent DN developing into
ESRD.

In several animal experiments, angiogenesis has been
shown to be a potential target for the early treatment of DN.
VEGF is the primary mediator of abnormal diabetic glomerular
angiogenesis. Although the beneficial effects of anti-VEGF
antibodies have been confirmed in diabetic animal experiments,
recent basic and clinical evidence has suggested that blocking
VEGF signaling can lead to proteinuria and renal thrombotic
microangiopathy (17), indicating the importance of the normal
levels of VEGF in the kidney. Therefore, anti-angiogenic
treatment of DN should eliminate the excessive angiogenic
response of the glomeruli without accelerating endothelial
damage. Some endogenous anti-angiogenic factors, such as
tumorstatin and endostatin, inhibit the excessive activation of
endothelial cells, but do not specifically block the signal trans-
duction of VEGF. In addition, the novel endothelial-derived
anti-angiogenic factor vasohibin-1 (VASH1) improves stress
tolerance and the survival of endothelial cells, and inhibits
excessive angiogenesis. These anti-angiogenic factors have
been shown to inhibit proteinuria and glomerular changes in
diabetic mouse models (18). Therefore, anti-angiogenic treat-
ments with promising drug candidates may improve the renal
prognosis of patients with early DN.

In the present review, the formation and possible causes
of abnormal angiogenesis in DN are summarized, and inte-
grated related treatment options are discussed, with the aim
of highlighting potential novel avenues for future research and
clinical treatment.

2. Abnormal angiogenesis in DN

Angiogenesis refers to the physiological and pathological
process of neovascularization based on already present vessels.
It is associated with embryogenesis, wound healing, tumor
growth and metastasis, atherosclerosis and human inflamma-
tory diseases (19). Abnormal angiogenesis is always associated
with the morphology and pathophysiology of DN. Initially, it
was reported that the formation of new blood vessels in the
glomeruli of patients with type I and II diabetes represented
abnormal angiogenesis (12,20,21), and abnormal blood vessels
were discovered in the glomerular tuft area, the glomerular
vascular pole and Bowman's capsule (21,22). A large number
of proangiogenic and anti-angiogenic factors are involved in
the regulation of angiogenesis, including VEGF, angiopoi-
etins, fibroblast growth factors (FGFs), transforming growth
factor-1 § (TGF-1p) and ephrin, amongst others.

Proangiogenic factors

VEGFs. Asispresented in Table I, VEGF or VEGF-A is acritical
inducer of angiogenesis, and its expression in the glomerulus
is involved in the pathogenesis of DN. It has been suggested
that the oxygen-regulated protein 150 kDa (ORP150) may
be involved in the development of proteinuria by regulating
VEGEF secretion in DN, as ORP150 expression is upregulated
in patients with DN (23). Blockade of VEGF signaling with the
pan-VEGF receptor tyrosine kinase inhibitor, SU5416, amelio-
rated diabetic (type II) albuminuria in a mouse model (24).
Administration of neutralizing anti-VEGF antibodies in type I
and II diabetic animals decreased proteinuria and glomerular
hypertrophy (16,25,26). Treatment with resveratrol, a poly-
phenol with anti-angiogenic activity, decreased the increase
in glomerular diameter, mesangium accumulation, glomerular
basement membrane thickness and renal fibrosis in a DN rat
model, by decreasing the expression of pro-angiogenic factors,
such as VEGF (27). Chemerin is a fat cell factor that partici-
pates in regulating inflammation. A previous study reported
that the expression of chemerin and VEGF was associated
with inflammatory factors and renal function in a DN rat
model (28). Intravitreal injections of VEGF inhibitors can lead
to a chronic decline in renal function (29). Additionally, the
activation of protease-activated receptor 2 (PAR2) can gener-
ally exacerbate diabetic kidney disease, but PAR2 can protect
against VEGF inhibitor-induced kidney damage (30).

The VEGF-A gene produces five closely associated
subtypes via alternative splicing, and the most abundantly
expressed species is VEGF-A 45, which encodes a glycoprotein
with 20% homology to the A and B chains of platelet-derived
growth factor (PDGF) (31). Renal VEGF-A gene expression
is increased at the early stages and remains high at the later
stages of diabetes in rats (32). There have been controversial
results regarding the expression of VEGF-A in glomeruli of
DN. Immunohistochemical analysis of renal biopsy showed
that VEGF-A expression in the glomeruli was increased in the
early stages of DN (33). However, the expression of VEGF-A
mRNA in the glomeruli of patients with DN was decreased
by oligonucleotide microarray analysis (34). The increase
of VEGF-A expression in the serum of patients with type II
diabetes is associated with blood glucose control, high levels
of the sensitive C-reactive protein and proteinuria, suggesting
that VEGF-A is a biomarker of diabetic inflammation and
nephropathy (35). Serum VEGF-A levels are significantly corre-
lated with hypoxia inducible factor-1 (HIF-1) and insulin-like
growth factor-1 (IGF-1), which is hypothesized to be associated
with the pathogenesis of DN (36). Podocyte specific VEGF-A
heterozygous deficient mice showed proteinuria and glomer-
ular endothelial damage similar to preeclampsia, whereas
podocyte-specific VEGF-A 45 overexpressing mice showed
significant striking collapsing glomerulopathy (37). VEGF-A
decreases the levels of inhibitory complement factor H in the
kidney, and this known genetic alteration is a feature of heredi-
tary thrombotic microangiopathy, suggesting that VEGF-A is
involved in the local regulation of the complement system (38).
Under the control of a-1 antitrypsin promoter, transgenic
rabbits expressing VEGF-A 4 in the kidney and liver also
showed progressive proteinuria and renal dysfunction, early
glomerular capillary hyperplasia and podocyte hypertrophy,
late glomerular sclerosis and glomerular villus collapse (39).
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Eremina et al (40) found that when the VEGF-A gene was
conditionally deleted from the podocytes of adult mice, an
increase in proteinuria, thrombus and capillary ring occlusion
in capillaries and endothelial cell swelling were observed,
which is similar to renal thrombotic microangiopathy (40).
On the other hand, overexpression of VEGF-A in podocytes of
adult transgenic mice leads to proteinuria, glomerular enlarge-
ment, glomerular basement membrane thickening, mesangial
expansion and podocyte disappearance (41). In addition, over-
expression of mutant VEGF-A, which selectively stimulates
VEGFR-2, leads to mesangial matrix expansion and endothe-
lial cell proliferation (42). In a case-controlled study, it was
shown that serum VEGF-A was more preferable than that in
plasma as a marker reflecting diabetic control in patients with
type II diabetes, since a large portion of VEGF-A is derived
from platelets (35). Kidney injury was partially prevented
using DIAVIT, a natural Vaccinium myrtillus (blueberry) and
Hippophae Rhamnoides (sea buckthorn) extract, due to the
alteration of VEGF-A splicing in type II DN, particularly with
delphinidin (43).

VEGEF is a heparin-binding growth factor specific
for vascular endothelial cells to promote angiogenesis
in vivo (44). VEGF-A increases vascular permeability and
monocyte chemotaxis (45,46). VEGF-A binds to tyrosine
kinase receptor VEGFR-1 (Flt-1) and VEGFR-2 (KDR/Flk-1),
activating them (47). The angiogenic signal primarily comes
from VEGF-A binding to VEGFR-2, whereas VEGFR-1 can
be used as a negative regulator of VEGF-A, at least under
certain conditions, such as embryogenesis (1). In addition, the
activation of VEGFR-2 inhibits the apoptosis of endothelial
cells via a PI3K Akt pathway (48). The synergistic effect of
hyperglycemia and increased VEGF-A levels in diabetic
glomerulopathy can be explained by the unique hypothesis of
‘VEGF-endothelial nitric oxide (NO) uncoupling’ (49,50).

VEGF-B is expressed predominantly in renal medullary
tubular cells, but not in glomeruli, and its receptor, VEGFR-1,
is expressed in endothelial cells (51). Inhibition of VEGF-B
can prevent the histological changes and renal dysfunction
in diabetic mice, and particularly blocks the lipotoxicity of
podocytes and improves insulin resistance (52).

Angiopoietins (Angs). Angs are a family of vascular growth
factors that regulate vascular remodeling, maturation and
stability. The Angs family includes Angl, Ang2 and Ang4
(human homologous gene of mouse Ang3), and they interact
with tyrosine kinase receptors (Tiel and Tie2). Ang-Tie
signaling is involved in different processes of vascular devel-
opment and remodeling in different diseases. Angiotensin
converting enzyme (ACE) also regulates vascular reactivity
by regulating the production of nitric oxide (NO) (53,54).

In streptozotocin (STZ)-induced type 1 diabetic mice, the
alteration of the milieu of vascular growth factors include a
decrease in Angl levels, increase in VEGF-A levels, decrease
in soluble VEGFRI expression, and increase in phosphoryla-
tion of VEGFR2 (55). This alteration is accompanied by
significant proteinuria, renal hypertrophy, hyperfiltration,
ultrastructural changes of glomeruli and abnormal angiogen-
esis (55). Podocyte-specific inducible repletion of Angl can
decrease proteinuria by 70% and prevent the proliferation of
glomerular endothelial cells induced by diabetes (55). Ang2

levels are increased significantly in STZ-injected rat models
and in diabetic patients (56).

Cartilage oligomeric matrix protein (COMP)-Angl, a
synthetic soluble, stable, and potent Angl variant, can phos-
phorylate the Tie2 receptor and Akt, and promote angiogenesis
in vitro and in vivo (57). Lee et al (58) found that delivery of
COMP-Angl in a type 2 diabetes model decreased mesangial
dilation, basement membrane thickening and proteinuria, and
significantly improved hyperglycemia (58). Angl redelivery
increased serl177 phosphorylation of endothelium nitric oxide
synthase to maintain NO levels, and thus, the integrity of
capillaries and endothelial cells (59,60). The overexpression
of podocyte-specific Angl contributes to the stability of capil-
laries, in parallel to the decreased proliferation of glomerular
endothelial cells in DN (55,61).

FGFs. It was suggested that FGF-1 has beneficial anti-inflam-
matory and renal protective activity in vivo. Recombinant
FGF1 significantly inhibited renal inflammation, glomerular
and tubular injury, and renal insufficiency in type I and II
diabetic mice (62). FGF1 can correct the hyperglycemia in
type II, but not in type I diabetic mice (62,63).

The administration of FGF21 canpreventrenal lipid accumu-
lation, oxidative stress, inflammation and fibrosis in mice after
treatment with excessive fatty acids or STZ (64). The circular
RNA, CIRC_0080425, significantly increased the expres-
sion of FGF11, through competitive binding with miR-24-3p,
indirectly promoting DN (65). FGF21 negatively regulates the
EMT process mediated by TGF-$-MDM2/Smad2/3 signaling
by activating Akt/MDM?2/p53 signaling pathway, so as to
prevent renal fibrosis in DN (66). Conversely, in DN, serum
FGF21 levels are associated with the severity of proteinuria
and the rapid loss of glomerular filtration rate, which may
be a biomarker of poor prognosis (67). Serum FGF21 levels
are closely associated with the occurrence of nephropathy in
type II diabetic patients, and is an independent predictor of
functional renal loss (68). FGF21 is expressed in glomerular
mesangial cells and in renal tubular epithelial cells of diabetic
mice (69), and blocking the expression of FGF21 can aggravate
fibrogenesis in mesangial cells induced by high glucose (70).

Diabetes-associated factors may affect plasma FGF23
levels, which are associated with the progression of CKD (71).
High FGF23 levels seem to contribute to increased cardiovas-
cular and mortality risks in type II diabetes patients, and this
risk is significantly increased in DN (72).

Therefore, FGF/FGFR signaling in DN is more likely
to induce fibrosis. Their role in angiogenesis is not direct,
but instead mediated via regulation of members of the RTK
family, such as Eph receptors and PDGFRs (73).

TGF-1f. In animal experiments, TGF-1 neutralizing anti-
bodies and TGF-1 signal transduction inhibitor can effectively
alleviate DN renal fibrosis (74). However, a clinical study of
TGF-1 neutralizing antibodies failed to prove a sufficient
effect on renal function in DN (74).

Angiogenesis inhibitors

Cell secretory proteins. (i) Pigment epithelium-derived factor
(PEDF). PEDF was first purified from the human retinal
pigment epithelial cells (75) and was further identified as a
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member of the serine protease inhibitor (Serpin) family (76).
Dawson et al (77) found that PEDF inhibited the proliferation
of endothelial cells in a dose-dependent manner. Therefore,
PEDF is regarded as the most potent endogenous angiogenesis
inhibitor. Comparing the content of PEDF in the aqueous
humor of patients with proliferative diabetic retinopathy
(PDR) and non-PDRshowed that the levels of PEDF in the
former significantlydecreased, which suggested that PEDF
was the primary inhibitor of abnormal angiogenesis in human
ocular tissues (78). Overexpression of PEDF in transgenic
mice can effectively inhibit retinal neovascularization (79).
PEDF expression is decreased in DN (80,81), and admin-
istration of recombinant PEDF protein successfully inhibits
retinal neovascularization in a rat model of diabetes (82).
The potential mechanism of PEDF may be associated with
blocking of the Wnt signaling pathway (83), as inhibition of the
Wnt/B-catenin signaling pathway can alleviate retinal vascular
leakage and inhibit angiogenesis in diabetic rats (84). PEDF
may also block p38 MAPK-GSK3-f-catenin signaling (85,86)
and significantly decreased ATP production in agreement with
direct binding to cell-surface ATP synthase to exert the anti-
angiogenic activity (87). PEDF is able to block VEGF-induced
angiogenesis via a y-secretase-dependent pathway and by
preventing dissociation of endothelial tight junction and
adherens junction (88).

(ii) Kallikrein-binding protein (KBP/kallistatin).
Kallikrein-binding protein (KBP), also termed SERPINA3K,
was identified in human plasma as a Serpin (89). KBP is
primarily synthesized and secreted by the liver, and it can bind
to kallikrein in human tissues, inhibiting its function (90).
KBP exerts pleiotropic effects on relaxation of blood vessels,
and inhibits angiogenesis and antioxidative stress (90,91).
Increased levels of circulating KBP are found in diabetic
patients with microvascular complications (91), which is
likely due to KBP binding with LRP6, thus inhibiting the
proliferation of endothelial cells by antagonizing the classical
Wht signaling pathway (92). In an oxygen-induced retinopathy
(OIR) model, KBP overexpression attenuated hypoxia-induced
retinal angiogenesis and vascular permeability (93).

(iii) Thrombospondin (TSP)-1. The TSPs are a family of
calcium-binding glycoproteins that are secreted by the
majority of cell types and participate in transient or longer-term
interactions with other extracellular matrix components,
termed matricellular proteins. TSP-1 is primarily secreted by
platelets, endothelial cells and tumor cells, and is present in
the plasma and extracellular matrix. TSP-1 is regarded as a
regulator of angiogenesis via interactions with avf3 integrin,
MMP9Y, VEGF, FGF-2, MMP-2 and TIMP-2 (94). At the
retinal level, TSP-1 supports retinal pigment epithelium cell
structure and inhibits vascular endothelial cell adhesion (95).
An in vivo study performed on Akita/+ male mice deficient
in TSP-1 aggravated the pathological angiogenesis of diabetic
retinopathy (96).

TSP-1 has specific cell surface receptors, including CD36
and CD47 (97). TSP-1/CD36 binding was shown to activate
apoptosis by inducing p38 and Jun N-terminal kinase, and
subsequently the cell-surface expression of Fas-L. Ligation
of Fas by Fas-L stimulated a caspase cascade and ultimately

apoptotic cell death (98). TSP-1/CD47 is an important factor
mediating M WCNT-induced microvascular dysfunction, which
disrupts *NO signaling and enhances leukocyte-endothelial
interactions (99).

(iv) Soluble FMS-like tyrosine kinase-1 (sFLT-1). SFLT-1 is
a soluble form of VEGFR-1, which can bind with VEGF-A,
VEGF-B and is a powerful VEGF antagonist (100).
Overexpression of sFLT-1 in podocytes of mice improves
diabetic glomerulopathy and proteinuria (100). Overexpression
of adeno-associated virus transduced sFlt-1 in db/db mice
can decreasealbuminuria and improve podocyte injury (101).
Adenovirus-mediated sFlt-1-induced proteinuria and glomer-
ular endothelial proliferation similar to VEGF-A deficiency
in mice (102).

(v) VASH-1.Vasohibin is an endothelium-derived negative feed-
back regulator of angiogenesis, which can be induced by VEGF
in endothelial cells (103). Certain basic amino acid residues in
the C-terminus of VASH-1 are important for heparin binding
and its anti-angiogenic activities (104). The secretion and
anti-angiogenic activity of VASH-1 requires the co-expression
of small vasohibin-binding protein (105). The mechanism may
be associated with the degradation of HIF-1a, which is medi-
ated by prolyl hydroxylase (106). VASH-1 increases the stress
tolerance of endothelial cells and promotes their survival (107).
VASH-1 gene knockout can induce senescence of endothelial
cells, which are prone to death due to cell stress (108), whereas
overexpression of VASH-1 made endothelial cells resistant to
premature aging and stress-induced cell death, and increased
the expression of superoxide dismutase 2 and sirtuin 1 (108).
The number of VASH-1-positive cells was positively associ-
ated with VEGFR-2 positive area and crescent formation (109).
VASH-1 overexpression can significantly improve glomerular
hypertrophy, glomerular filtration, proteinuria and glomerular
endothelial area expansion in diabetic mice (18). Recombinant
human VASH-1 also blocked high glucose-induced VEGFR-2
phosphorylation in a dose-dependent manner (18). Type I
diabetes induced by STZ, increased proteinuria, glomerular
hypertrophy, mesangial matrix accumulation and decreased
diaphragmatic density in VASH-1 heterozygous mice (110).
The positive area of glomerular CD31 and the expression of
VEGF-A in kidney of VASH-1 heterozygous deficient mice
was higher compared with diabetic wild-type mice (110).
Endogenous VASH-1 may prevent angiogenesis of diabetic
glomeruli and inflammation, as the anti-inflammatory effect
of endogenous VASH-1 has also been confirmed in a unilateral
ureteral obstruction model (111).

(vi) Matrix metalloproteinases (MMPs). MMP-T expression is
increased in the renal biopsy tissues of patients with diabetic
nephropathy, and its levels are closely associated with the
abundance of -Catenin (112).

Hydrolytic fragments of precursor proteins

(i) Endostatin. Endostatin, a putative anti-angiogenic factor, is a
20-kDa proteolytic fragment of collagen XVIII (113). In vitro, it
can inhibit the proliferation, migration and catheter formation
of endothelial cells induced by VEGF (114). The interaction
between endostatin and a5p1 integrin resulted in the inhibition
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of FAK and the subsequent inhibition of MAPK (115). Endostatin
inhibits glomerular VEGF-A primarily produced by podocytes
in diabetic mice (116). In type I diabetic mice, endostatin signifi-
cantly inhibited proteinuria and histological changes (116). The
levels of circulating endostatin in patients with type II diabetic
nephropathy is high, which suggests that endostatin may possess
clinical value as a risk marker of diabetic nephropathy (117).
Additionally, endostatin can decrease glomerular hypertrophy,
hyperfiltration and proteinuria in STZ induced diabetic
mice (116). Endostatin also significantly inhibits mesangial
matrix expansion, extracellular matrix accumulation, endothelial
cell proliferation and monocyte/macrophage infiltration (116).
Anti-angiogenic endostatin polypeptide improves early renal
lesions in a model of type I diabetic nephropathy (116). Circulating
endostatin levels can predict progression and mortality of kidney
disease, independently of established renal disease markers in
type II diabetic patients (117).

(ii) Tumstatin. Tumstatin is derived from the type I'V collagen
a3 chain, which can inhibit pathological angiogenesis by
inhibiting endothelial cell proliferation (118), by binding to the
aVP3 integrin of endothelial cells (119). Tumstatin acts as a
specific inhibitor of endothelial cell protein synthesis through
inhibition of the activation of FAK, protein kinase B (PKB/Akt),
PI3-kinase and mammalian target of rapamycin (120). Tumor
suppressor peptides significantly inhibited proteinuria
and glomerular histological changes in diabetic mice, and
increased the number of glomerular capillaries (121). Injection
of tumstatin decreased glomerular hypertrophy, hyperfiltration
and proteinuria in STZ-induced diabetic mice (121). It also
inhibited the increase in the levels of VEGF-A and VEGFR-2
in kidneys induced by diabetes (121). Due to the high expres-
sion of aV3 integrin in podocytes (122), the primary target of
tumstatin may not be endothelial cells, but instead podocytes.

(iii) Angiostatin/Kringlel-4. Angiostatin is a protective
fragment of plasminogen, which can inhibit tumor angiogen-
esis (123). Adenovirus mediated angiostatin can significantly
improve proteinuria and glomerular hypertrophy in type I
diabetic rats (124). In a model of CKD induced by a subtotal
nephrectomy, angiostatin treatment decreased the number of
peritubular capillaries and urinary nitric oxide levels (125).
In vitro, angiostatin decreased the upregulated expression of
VEGF and TGF-f in human mesangial cells induced by high
glucose, and increased the levels of pigment epithelium-derived
factor, an endogenous DN inhibitor (124).

(iv) Kringle5 (K5). K5 is the fifth domain of human plas-
minogen associated with angiostatin (K1-4). Its molecular
weight is only 16 kDa and it is the most active anti-angiogenic
fragment in human plasminogen (126). In an OIR and
STZ-induced rat model, K5 inhibited retinal neovascular-
ization (127). Additionally, K5-induced endothelial cell
apoptosis was shown to be mediated by a positive feedback
loop involving VDAC1-AKT-GSK3p-VDACI (128), which
resulted in inhibition of angiogenesis.

Others. Netrin-1 and UNC5B were shown to be upregulated
in STZ-induced rats, and UNC5B upregulation contributed
partly to enhancing angiogenesis in DN (129). PDES inhibitors

exert protective effects by improving perivascular inflamma-
tion through modulating miR-22 and BMP7 in a DN mouse
model (130). The Slit2/Robol signaling pathway is involved in
angiogenesis of glomerular endothelial cells in a diabetic-like
environment (131). Neurite outgrowth inhibitor-B serves an
important role in vascular remodeling, which protects the
vasculature system in a model of DN (132).

Angiogenesis vs. vasculogenesis. Angiogenesis is the process
by which fewer blood vessels branch and bud to form off shoot
vessels. Vasculogenesis is the process in which endothelial
cells differentiate from endothelial progenitor cells to connect
and form a tube, ultimately resulting in the formation of new
blood vessels.

3. Clinical and anti-angiogenic treatment

The early diagnosis of DN (stage I DN) includes thickening of
the glomerular basement membrane and renal tubular basement
membrane, whereas after glomerular thickening, the mesangial
cell dilation is considered stage II DN (133). The expansion of
the mesangium further leads to glomerular leakage combined
with the accumulation of fibronectin and type IV collagen,
which also leads to nodular sclerosis (stage IIT DN) (133).
Increased potassium secretion and angiogenesis signals are
early renal responses in human DN (134).

Renin angiotensin enzyme inhibitors (such as ACEI or
ARB) should be administered as soon as possible, as both of
these can decrease systemic and intraglomerular blood pres-
sure by inhibiting the action of ACEII on angiotensin II type 1
receptor (AT1) receptor (1). ACEI lowers the production of
angiotensin II (135), whereas the AT1 antagonists block the
AT receptor (136). It has been reported that proteinuria and
hypertension are common complications (137). In nodular
diabetic glomerulopathy, there are vascular mesangial
channels, which serve as indicators of the changes in neovas-
cularization and blood flow in these glomeruli (138). Nilotinib
hydrochloride is a highly potent tyrosine kinase inhibitor that
can inhibit the progress of DN via the regulation of a variety
of mechanisms (139).

It has been shown that promoting anti-angiogenesis
(particularly via anti-VEGF mechanisms) may be a promising
strategy for management of the early stages of DN, based on
several animal experiments (1). However, there are currently
no anti-VEGF-A based treatments for patients with DN. In
some studies, patients with DN who received intravitreal injec-
tion of VEGF-A inhibitors have shown contrasting results; that
is renal damage associated with glomerular microangiopathy,
including thickening of the capillary wall and glomerular
basement membrane (140), or rapidly worsening proteinuria
and decreased kidney function (141). Therefore, therapies
involving anti-VEGF-A in DN should first aim to maintain
physiological levels of VEGF-A. Otherwise, excessive inhibi-
tion of VEGF-A may cause harmful side effects. Recently,
a study on patients with early DN showed that intravitreal
injection of bevacizumab resulted in worsening proteinuria
and renal function, and this was improved using ranibizumab,
which had a lower potency (13).

The vasohibin family may participate in mesangial expan-
sion by mediating VEGFR?2 signaling. Current studies indicate
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that the vasohibin family may be a promising therapeutic
target to reduce excessive angiogenesis and renal fibrosis in
DN, however, further research is required to understand their
relevance and clinical significance.

4. Other diabetic microvascular complications and
treatments

Other diabetic microvascular complications include diabetic
retinopathy, erectile dysfunction, macular oedema (DMO)
and diabetic foot. Diabetic patients with retinal microvas-
cular lesions, pericytes necrosis, endothelial barrier function
damage and blood components from the blood vessels in
the tissue, result in retinal lesions and dysfunction. This
may be due to the fact that high glucose can induce the
apoptosis of pericytes in diabetic retina, damaging the blood
retinal barrier and activating vascular endothelial cells,
thus promoting vascular budding and angiogenesis. Almost
all cells in the retina can secrete VEGF under the stimula-
tion of ischemia and hypoxia. A large amount of clinical
data has shown that VEGF levels in the vitreous cavity of
patients with PDR is significantly increased (142). Treatments
include panretinal photocoagulation, intravitreal injection
of bevacizumab, aflibercept or ranibizumab, and surgery.
Resveratrol may improve diabetic retinopathy by regulating
the expression of PEDF and TSP-1 (143). PDES inhibitors
(such as sildenafil and tadalafil) are currently used in the
treatment of diabetic erectile dysfunction. PDGF can promote
cell migration and smooth muscle proliferation and accelerate
wound healing (144). In addition, recombinant VEGF (145),
EGF (146), FGF (147), TGF-$ (148) and IGF-1 (149) can be
used treatment of diabetic foot. DMO is a common complica-
tion of diabetic retinopathy, and antiangiogenic therapy with
anti-VEGF can decreaseoedema, improve vision and prevent
further visual loss (150).
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