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Abstract. Muscular atrophy, which results in loss of muscle 
mass and strength, is a significant concern for patients with 
various diseases. it is crucial to comprehend the molecular 
mechanisms underlying this condition to devise targeted treat‑
ments. Micrornas (mirnas) have emerged as key regulators 
of gene expression, serving vital roles in numerous cellular 
processes, including the maintenance of muscle stability. an 
intricate network of miRNAs finely regulates gene expression, 
influencing pathways related to muscle protein production, 
and muscle breakdown and regeneration. dysregulation of 
specific mirnas has been linked to the development of 
muscular atrophy, affecting important signaling pathways 
including the protein kinase B/mTor and ubiquitin‑protea‑
some systems. The present review summarizes recent work 
on mirna patterns associated with muscular atrophy under 
various physiological and pathological conditions, elucidating 
its intricate regulatory networks. in conclusion, the present 
review lays a foundation for the development of novel treat‑
ment options for individuals affected by muscular atrophy, and 
explores other regulatory pathways, such as autophagy and 
inflammatory signaling, to ensure a comprehensive overview 
of the multifarious nature of muscular atrophy. The objective 
of the present review was to elucidate the complex molecular 
pathways involved in muscular atrophy, and to facilitate the 
development of innovative and specific therapeutic strategies 
for the prevention or reversal of muscular atrophy in diverse 
clinical scenarios.
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1. Introduction

Muscular atrophy refers to the progressive loss of skeletal 
muscle mass (SMM) and strength and is a disease that has 
profound effects on the general health and quality of life of 
patients (1,2). Muscular atrophy is associated with various 
factors, including aging, immobility, long‑term illness, poor 
nutrition and genetic diseases (3,4). Muscular atrophy involves 
several intricate molecular mechanisms, an understanding 
of which is of importance when developing effective treat‑
ment strategies. Micrornas (mirnas/mirs) are small 
rna molecules, usually 19‑23 nucleotides in size, which 
post‑transcriptionally regulate gene expression. mirnas 
regulate signaling associated with protein synthesis within 
cells, thereby controlling a variety of cellular processes, 
including muscle development and maintenance (5,6). in the 
context of muscular atrophy, mirnas can either promote or 
alleviate muscle loss (7); thus, the genes and pathways involved 
in muscular atrophy can be targeted to either enhance or 
reduce muscle wasting. Skeletal muscular atrophy presents as 
changes, including muscle fiber contraction, as well as the loss 
of muscle cytoplasm, organelles and all cellular proteins (8). 
Biomarkers are measurable indicators of biological or 
pathological processes, and are valuable tools for monitoring, 
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diagnosing and predicting treatment responses for diseases (9). 
Physiological and pathological changes accompanying skeletal 
muscular atrophy can be biomarkers. atrophy occurs when the 
rate of proteolysis exceeds the rate of protein synthesis. This 
atrophy of skeletal muscle is closely related to high‑fat and 
high‑sugar consumption, which are commonly associated with 
Western diets, as well as aging and long‑term illnesses, such 
as diabetes, obesity, heart failure, alzheimer's disease and 
cachexia (10). understanding why muscular atrophy occurs 
under various conditions is essential for its prevention and 
treatment.

2. Sarcopenia and muscular atrophy: Definitions, 
diagnoses and effects

Sarcopenia is the most representative disease associated 
with symptoms of muscular atrophy. in 2010, the european 
Working Group on Sarcopenia in older People (eWGSoP) 
developed three diagnostic criteria for sarcopenia: changes in 
muscle mass, muscle strength and physical performance (11). 
a diagnosis of sarcopenia requires both low muscle mass 
(lMM), and either low muscle strength (lMS) or low physical 
performance (LPP) (12). LMM is identified by a SMM index 
of <8.90 kg/m2; LMS is identified by a hand‑grip strength of 
<30 kg in men and <20 kg in women; LPP is identified by a gait 
speed of ≤0.8 m/sec (13). According to the EWGSOP, sarco‑
penia can be categorized into three subgroups: Pre‑sarcopenia, 
sarcopenia and severe sarcopenia, based on lMM status and 
the presence or absence of functional impairment (lMS and 
lPP) (11).

in 2018, a new consensus was reached in terms of both the 
definition and diagnosis of sarcopenia. The EWGSOP2 criteria 
were defined based on sarcopenia research conducted after 
2010. The operational definitions of pre‑sarcopenia, sarco‑
penia and severe sarcopenia are generally defined by LMS, 
lMM and lPP, respectively (14). Several sarcopenia tests and 
cut‑offs have been suggested. lMS can be tested by measuring 
grip strength and the ability to stand from a seated position (15). 
appendicular SMM (aSM) is measured to evaluate muscle 
mass and quality, and lPP is assessed by measuring walking 
speed, determining the Short Physical Performance Battery 
(SPPB) score, and conducting timed up‑and‑go and 400‑m 
walk tests. Pre‑sarcopenia is diagnosed when rising from a 
chair takes >15 sec in five trials, or grip strength is <27 kg for 
men or <16 kg for women (14). Sarcopenia is diagnosed when 
the aSM is <20 kg for men or <15 kg for women, or when the 
aSM/height2 is <7.0 kg/m2 for men or <5.5 kg/m2 for women. 
Severe sarcopenia is diagnosed when the walking speed is 
≤0.8 m/sec, the SPPB score is ≤8 points, the timed up‑and‑go 
test requires ≥20 sec, and the 400‑m walk test is either not 
completed or requires ≥6 min for completion (16). Muscle 
mass can be estimated via dual‑energy X‑ray absorption or 
bioelectrical impedance analysis, and the results can be modi‑
fied based on height or body mass index (17). Muscle quality 
can be evaluated via computed tomography or magnetic reso‑
nance imaging; both provide comprehensive data on the SMM, 
aSM, third lumbar muscle cross‑sectional area and middle 
thigh cross‑sectional area (14,18). in addition, eWGSoP2 
recommends the use of the self‑reporting Sarc‑F question‑
naire, which is a screening test for sarcopenia consisting of 

five questions; SARC‑F predicts LMS with low‑to‑moderate 
sensitivity but very high specificity and can therefore detect 
even the most severe cases (14).

Sarcopenia is linked to reduced mobility (19), lower muscle 
function (20) and poor metabolic health (21). additionally, 
sarcopenia decreases the ease of movement and resting energy 
expenditure, and increases fat mass, non‑exercise physical 
activity (22) and obesity. Metabolic health is closely associated 
with all of these factors. accumulating evidence has suggested 
that the size and number of muscle fibers decrease more 
rapidly >50 years of age. Prior to that age, muscle loss is small 
(<10%); however, between the ages of 50 and 80 years, there is 
a notable loss of 30‑40% of muscle mass (22,23). notably, this 
process is gradual and can be mitigated by regular exercise. 
Muscle loss can directly trigger fat storage because energy that 
was previously stored in atrophying muscles becomes stored as 
fat, and indirectly, due to lower total energy expenditure (24). 
The selective atrophy of stronger and faster‑contracting type ii 
muscle fibers further compounds the decline in function with 
age, resulting in a reduction of muscle power (Fig. 1).

3. miRNAs regulated during disease‑induced muscle loss

disease‑induced muscular atrophy is regulated by various 
mirnas (Fig. 2). For example, increases in muscular levels 
of mir‑23a/27a induced by the addition of adeno‑associated 
virus‑mir‑23a‑27a‑24‑2 can alleviate skeletal muscular 
atrophy caused by diabetes through downregulation of the 
myostatin cascade and upregulation of the insulin‑like growth 
factor‑1 (iGF‑1)/phosphoinositide 3‑kinases/akt signaling 
pathway (25). in addition, plasma mir‑1‑3p levels have been 
reported to be higher in patients with sarcopenia and conges‑
tive heart failure compared with those in patients without 
sarcopenia; plasma mir‑1‑3p levels in these patients were 
shown to be strongly correlated with both hand‑grip strength 
and the SMM index, and a significant correlation was also 
observed between mir‑1‑3p expression and activation of the 
PKB/mTor signaling pathway (26). Thus, mir‑1‑3p may 
act as a robust, specific and sensitive biomarker for sarco‑
penia accompanying congestive heart failure. another study 
showed that mir‑142a‑5p triggers mitochondrial dysfunction, 
mitophagy and apoptosis by targeting mitofusin 1, suggesting 
that it may be a crucial controller of neurogenic skeletal 
muscular atrophy (27). chronic kidney disease stress has been 
linked to both skeletal muscular atrophy and uremic cardio‑
myopathy, which are associated with reduced mir‑26a levels. 

Figure 1. Severity and symptoms of sarcopenia. Sarcopenia is divided into 
pre‑sarcopenia, sarcopenia and severe sarcopenia. Severe sarcopenia is char‑
acterized by a decrease in muscle mass, strength and performance.
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The injection of exosomes enriched in mir‑26a into the skel‑
etal musculature of murine models of chronic kidney disease 
has been reported to result in decreased muscular atrophy and 
ameliorated cardiomyopathy symptoms, indicating that the 
augmentation of mir‑26a expression effectively attenuates 
insulin resistance. additionally, Forkhead box protein o1 
(Foxo1) has been recognized as a direct target of mir‑26a; 
its modification is associated with changes in insulin/IGF‑1 
signaling axis protein levels. PKB activation by mir‑26a 
has also been shown to enhance the insulin/iGF‑1 signaling 
pathway, whereas the suppression of Foxo1 and glycogen 
synthase kinase 3β by mir‑26a reduces insulin resistance (28). 
in addition, genetic diseases are major pathological factors 
in muscular atrophy. mir‑1 is the most abundant mirna 
in muscle tissue and is involved in the regulation of muscle 
formation and muscle differentiation. mir‑206 is another 
muscle‑specific miRNA that is involved in muscle regenera‑
tion and repair (29). upregulation of mir‑1 has been observed 
in duchenne muscular dystrophy (30). Facioscapulohumeral 
muscular dystrophy (FSHd) is a myopathy caused by impaired 
repression of the double homeobox 4 (duX4) gene in skeletal 
muscle. mir‑675 can be used as a potential treatment for FSHd 
by suppressing the mrna and protein levels of duX4 (31). 
Furthermore, upregulated mir‑338‑3p in amyotrophic lateral 
sclerosis may contribute to motor neuron degeneration (32).

4. miRNA‑induced regulation of muscle differentiation

Muscle cell differentiation serves a crucial role in muscular 
atrophy. after exercise or damage, skeletal muscle can 
effectively regenerate through the actions of versatile satel‑
lite cells (33). upon activation, satellite cells transition from 
a state of dormancy to engage in proliferation and differen‑
tiation, ultimately transforming into myoblasts, which further 
differentiate and merge to form multinucleated myotubes (34). 
This intricate myogenic process is carefully regulated by 
a complex network of genes. at the core of this network 
are basic helix‑loop‑helix transcription factors known as 
myogenic regulatory factors (MrFs), which include myogenic 
factor 5, myoblast determination protein 1, myogenin and 
MrF4 (35,36). mirnas, which do not code for proteins, are 
vital components of this network, targeting specific mRNAs 
to finely adjust gene expression (37‑40). Various mirnas 
regulate muscle differentiation by targeting genes involved in 
muscle cell differentiation (Fig. 3).

Skeletal muscle differentiation involves various mirnas, 
including mir‑24, mir‑3074, mir‑743a, mir‑1a/206, 
mir‑486, mir‑23a, mir‑27, mir‑19 and mir‑17. in neonatal 
mice, mir‑24‑3p leads to increased numbers of actively 
dividing PaX7‑positive muscle stem cells, which is attribut‑
able to decreased inhibition of muscle differentiation and 

Figure 2. mirnas regulate muscular atrophy in various types of diseases accompanied by muscular atrophy. mir, microrna; iGF1, insulin‑like growth 
factor‑1; Pi3K, phosphoinositide 3‑kinase; akt, protein kinase B; cHF, congestive heart failure; MFn, mitofusin; Foxo1, Forkhead box protein o1; GSK‑3β, 
glycogen synthase kinase 3β; dMd, duchenne muscular dystrophy; duX4, double homeobox 4; FSHd, facioscapulohumeral muscular dystrophy; alS, 
amyotrophic lateral sclerosis.
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regeneration by Hmga1 and id3 (41). a conserved mirna 
termed mir‑3074‑3p is involved in the regulation of cav1 
expression in both c2c12 cells and human skeletal muscle 
myoblasts, which ultimately enhances myogenesis (42). The 
modulation of mir‑743a‑5p activity is key to the regulation of 
myoblast differentiation, and is achieved by targeting Mob1b, 
another key player in skeletal muscle development and regen‑
eration. notably, elevated levels of mir‑743a actively promote 
the differentiation of c2c12 myoblasts (43). mir‑1a‑3p, 
mir‑206‑3p, mir‑24‑3p and mir‑486‑5p act as regulators of 
myoblast differentiation that repress MrTF‑a synthesis via 
the MrTF‑a 3'‑untranslated region (uTr). upregulation of 
these mirnas during myogenesis inhibits the translation of 
MrTF‑a, allowing progression to late stages of differentiation. 
The inhibitory effect of MrTF‑a on muscle differentiation 
is reduced upon the binding of mir‑1a‑3p, mir‑24‑3p and 
mir‑486‑5p to the MrTF‑a 3'‑uTr (44). mir‑23a‑5p 
enhances the proliferation of c2c12 myoblasts while simul‑
taneously inhibiting their differentiation, thereby influencing 
muscle fiber composition (45). Myogenic differentiation is 
facilitated by the downregulation of PaX3 protein levels 
under the control of mir‑27b, which targets the 3'‑uTr of 
Pax3 mrna. This process ensures the strong, rapid initiation 
of differentiation (46). miR‑17 influences cell proliferation to 
some extent by directly affecting ccnd2 and Jak1 and reduces 
cell motility and cell fusion by targeting rhoc. notably, treat‑
ment of c2c12 myoblast cells with mir‑19 has been shown to 
counteract the harmful effects of mir‑17 and to aid myotube 
development (47).

5. miRNA‑induced regulation of the ubiquitin proteasome 
system of skeletal muscle

Muscular atrophy, or the wasting of muscle tissue, is primarily 
caused by abnormal protein degradation (48). The ubiq‑
uitin‑proteasome pathway serves a crucial role in this process, 
through the identification and breakdown of poly‑ubiquitinated 
proteins (49). The key players in protein ubiquitination are e3 
ligases, with muscle RING finger 1 (MuRF1) and Atrogin‑1 
being specific to muscle tissue (50). In patients with muscular 
atrophy, both MurF1 and atrogin‑1 are overexpressed; inhibi‑
tion of the activity of these proteins effectively prevents muscle 

loss and mitigates the effects of muscular atrophy (51,52). 
FoXo1, atrogin1, and MurF1 regulate muscular atrophy 
by promoting the breakdown of muscle proteins through the 
ubiquitin‑proteasome pathway. Several mirnas regulate 
muscular atrophy by targeting Foxo1, MurF1, and atrogin‑1, 
which induce muscle protein degradation. (Fig. 4).

a previous study indicated that suppression of 
mir‑142a‑3p decreases the expression levels of atrogin‑1, 
MurF1 and nedd4, potentially hindering activation of the 
ubiquitin‑proteasome system and other pathways associated 
with muscular atrophy (53). in skeletal muscle, mir‑23a/27a 
reduces atrophy by lowering the levels of the e3 ubiquitin 
ligases TriM63/MurF1 and FBXo32/atrogin‑1, which 
contribute to muscle wasting (54). When mir‑182 is intro‑
duced into c2c12 myotubes treated with dexamethasone, it 
interacts specifically with the 3'‑UTR of FoxO3, decreasing 
the expression of various genes controlled by Foxo3, such as 
atrogin‑1 (7). additionally, mir‑672‑5p treatment reduces 
ovariectomy‑induced increased expression by targeting 
atrogin‑1 and MurF1 (55).

6. miRNA‑induced regulation of cachexia

cachexia is a medical condition associated with the unin‑
tended loss of muscle and fat tissue in individuals with cancer 
or chronic inflammatory diseases; this disease significantly 
compromises patient outcomes and increases mortality. 
However, few established interventions or treatments are avail‑
able for cachexia (56). The pathogenesis of cancer cachexia is 
marked by an imbalance between protein and energy levels, 
caused by various factors, including decreased metabolism and 
diminished appetite (57‑61). Various mirnas are involved in 
cachexia‑induced muscular atrophy (Fig. 5).

The degradation of muscle protein in patients with 
cachexia is usually facilitated by the ubiquitin‑proteasome 
system and is initiated via e3 ligase activation (62). The 
inhibition of Foxo transcriptional activity has been reported 
to curb muscle fiber atrophy in patients with cachexia (63). 
mir‑486 inhibits e3 ubiquitin ligase activity by reducing 
Foxo1 protein expression and increasing Foxo1 phos‑
phorylation (64). However, mir‑21 binds to and triggers 
the action of Toll‑like receptor 7, resulting in muscle cell 
apoptosis via the c‑Jun n‑terminal kinase pathway, ulti‑
mately resulting in atrophy (65). Muscle catabolism in 
patients with lung cancer is attributable to the activation of 
the leukemia inhibitory factor (liF) via the downregulation 
of mir‑29c expression. liF has been shown to promote 
muscle wasting via the mitogen‑activated protein kinase 
and JaK/signal transducers and activators of transcription 
pathways (66). Tumor‑released exosomal mirnas, such as 
mir‑195a‑5p and mir‑125b‑1‑3p, target Bcl‑2 and induce 
muscle wasting by reversing Bcl‑2‑mediated inhibition of 
cell death in patients with colon cancer and cachexia (67). 
elevated serum mir‑203 levels in patients with colorectal 
cancer have also been reported to act as independent risk 
factor for sarcopenia; mir‑203 induces apoptosis through 
the downregulation of survivin in human skeletal muscle 
cells (68). notably, mir‑181a‑3p in oral squamous cell 
carcinoma exosomes regulates the endoplasmic reticulum 
stress pathway, triggering muscular atrophy and muscle 

Figure 3. mirnas that affect muscle cell differentiation. MuSc, muscle stem 
cell; mir/mirna, microrna.
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cell apoptosis (69). Several studies have reported that the 
mir‑181a family targets the 3'‑uTr of Grp78, reducing its 

expression and increasing the susceptibility of cancer cells 
and muscle cells to apoptosis (70‑73).

7. Roles of regulatory miRNAs in neurogenic muscular 
atrophy

The denervation of skeletal muscle causes severe muscular 
atrophy preceded by several cellular changes that increase 
the permeability of the plasma membrane, decrease resting 
membrane potential and accelerate protein breakdown (74). 
The nerves of skeletal muscles have crucial roles in main‑
taining physiological muscle tone and function (75‑77). 
Denervation is followed by significant muscular atrophy and 
weakness, accompanied by various cellular alterations (78‑80) 
that disrupt the ionic balance (81‑83) and accelerate protein 
catabolism (84‑86). neurogenic muscular atrophy may regu‑
late mirna levels, whereas the downregulation of mirnas 
may alleviate neurogenic muscular atrophy (Fig. 6).

miR‑142a‑3p has been reported to exhibit the most signifi‑
cant differential expression among mirnas in mouse skeletal 
muscle after denervation (87). This mirna is considered to be 
a key modulator of cell fate in the hematopoietic system (88). 
The knockdown of mir‑142a‑3p alleviates decreases in body 
weight, muscle strength and muscle fiber cross‑sectional area 
caused by nerve injury, and increases the number of mesen‑
chymal stem cells, as well as the expression levels of genes 
related to proliferation and differentiation that are susceptible 
to Mef2a‑mediated inhibition. additionally, nerve regeneration 
in areas of nerve damage has been detected (53). in another 
study, denervation was shown to trigger a significant increase 
in mir‑206 levels, and a decrease in the expression levels 
of mir‑1, mir‑133a and mir‑133b in muscle fiber‑derived 

Figure 4. miRNAs that regulate the ubiquitin‑proteasome system in muscle. miR/miRNA, microRNA; FoxO3, Forkhead box O3; MuRF1, muscle RING‑finger 
protein‑1.

Figure 5. mirnas that regulate muscular atrophy caused by cancer cachexia. 
mir/mirna, microrna; liF, leukemia inhibitory factor.
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exosomes (79). Furthermore, mir‑206 overexpression attenu‑
ates denervation‑induced skeletal muscular atrophy via the 
inhibition of TGF‑β1 and Hdac4 signaling, and the promotion 
of satellite cell differentiation (89). criSPr/cas9‑mediated 
editing of mir‑29b prevents denervation‑induced muscular 
atrophy via PKB‑Foxo3a‑mTor signaling pathway activation 
and inhibits angiotensin ii‑induced myocyte apoptosis in mice, 
increasing their exercise capacity (90). notably, an exploration 
of the impact of denervation on muscle tissue mirna expres‑
sion showed that denervation triggers significant changes 
in the miRNA expression profile; specifically, miR‑21 and 
mir‑206 levels were revealed to be markedly increased after 3, 
7 and 14 days. Srivastava et al (91) reported that mir‑125b‑5p 
is elevated under similar conditions and could potentially act 
as a therapeutic target in patients with denervated muscular 
atrophy. Both miR‑34c‑5p and miR‑142a‑3p were significantly 
upregulated in denervated skeletal muscle (92). abiusi et al (93) 
showed that three mirnas (mir‑181a‑5p, mir‑324‑5p and 
mir‑451a) were overexpressed in skeletal muscle and serum 
samples from patients with spinal muscular atrophy.

8. Future perspectives

Recent research on muscle miRNAs has significantly advanced 
our understanding of the intricate regulatory mechanisms 
governing muscle development, maintenance and disease. 
explorations of the roles played by mirnas in muscle biology 
have yielded valuable insights into the post‑transcriptional 
control of gene expression, highlighting the pivotal roles played 
by these small rna molecules in orchestrating various cellular 
processes. Despite significant progress, a number of challenges 

and knowledge gaps remain; notably, the specific mechanisms 
by which mirnas exert their effects on target genes in muscle 
cells remain unclear. Further research is therefore considered 
necessary. additionally, the context‑dependent functions of 
mirnas and their interactions with other non‑coding rnas 
remain crucial areas of investigation. The integration of 
omics technologies, such as genomics, transcriptomics and 
proteomics, will likely enhance our comprehension of the 
regulatory networks underlying muscle biology. The future of 
research on mirna‑mediated regulation of muscular atrophy 
offers notable possibilities but poses significant challenges. It 
is essential to improve mirna‑based therapeutic strategies for 
clinical application. To effectively translate research findings 
into treatments for muscle‑wasting conditions, it is essential to 
explore the efficacy, safety and specificity of miRNA mimics 
or inhibitors in preclinical models and clinical trials. The 
development of personalized medicine approaches is also very 
promising. an understanding of how various mirna levels 
vary among individuals, and tailoring of interventions based 
on these differences, will improve treatment efficacy and 
minimize potential side effects. Furthermore, mirnas may 
be useful as valuable biomarkers for the early detection and 
monitoring of muscular atrophy. The establishment of mirna 
signatures associated with different stages of muscular atrophy 
may aid timely intervention and improve patient outcomes.
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