Expression of cysteinylLT₁ receptor in human testicular cancer and growth reduction by its antagonist through apoptosis

MASAHIDE MATSUYAMA¹, KIYOAKI FUNAO¹, YUTAKA KAWAHITO², HAJIME SANO³, JAMEL CHARGUI⁴, JEAN-LOUIS TOURAINE⁴, TATSUYA NAKATANI¹ and RIKIO YOSHIMURA¹

 ¹Department of Urology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585; ²Department of Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawara-machi, Kamigyou-ku, Kyoto 602-0841;
³Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan; ⁴Department of Transplantation and Clinical Immunology, Claude Bernard University of Lyon and Lyon Hospitals, Pavillion P, Hôpital Edouard Herriot, Lyon Cedex 3, 69437, France

Received October 6, 2008; Accepted December 1, 2008

DOI: 10.3892/mmr_00000078

Abstract. The metabolism of arachidonic acid by either cyclooxygenase or lipoxygenase is believed to play an important role in carcinogenesis. Leukotriene (LT) D₄ is a proinflammatory mediator derived from arachidonic acid through various enzymatic steps, and 5-lipoxygenase is an important factor in generating LTD₄. We investigated LTD₄ receptor (cysteinylLT₁ receptor; CysLT₁R) expression in testicular cancer (TC), as well as the effects of the CysLT₁R antagonist on cell proliferation in a TC cell line. CysLT₁R expression in tissue from TC patients and normal testes (NTs) was detected using immunohistochemistry and RT-PCR. The effects of the CysLT₁R antagonist on TC cell growth were examined using the MTT assay. Flow cytometry was used to determine whether or not the CysLT₁R antagonist induces apoptosis. Immunohistochemistry indicated that CysLT₁R expression was strong in all types of TC tissues, but very weak in NT tissues. The TC cell line expressed CysLT₁R mRNA as detected by RT-PCR. MTT and flow cytometry revealed that the CysLT₁R antagonist caused marked inhibition of TC cells through early apoptosis. In conclusion, CysLT₁R was induced in TC. The results suggest that the CysLT₁R antagonist may mediate potent antiproliferative effects against TC cells. Thus, CysLT₁R may become a new therapeutic target for the treatment of TC.

L-man. matsuyama@mcu.osaka-cu.ac.jp

Introduction

Testicular cancer (TC) is relatively rare, but angiogenetic factors are considered to play an important role in invasion in both TC cells and other organs. In recent years, the expression of angiogenic factors in solid human tumors has been widely reported (1). Growth factors secreted by tumor cells, such as fibroblast growth factor and transforming growth factor, have been demonstrated to increase neovascularization *in vivo* and *in vitro* (2).

The metabolism of arachidonic acid (AA) by either the cyclooxygenase (COX) or lipoxygenase (LOX) pathway generates eicosanoids, These have been implicated in the pathogenesis of a variety of human diseases, including cancer, and are significantly involved in tumor promotion, progression and metastasis. Studying these pathways in specimens from patients with TC, we demonstrated that COX-2 and 5-LOX were overexpressed in TC tissues (3,4).

Leukotriene (LT) belongs to an important group of proinflammatory mediators and is synthesized by AA via the 5-LOX pathway. The activity of 5-LOX leads to the formation of unstable LTA₄, which can be converted into either LTB₄ or cysteinyl (Cys)LTs (LTC₄, LTD₄ and LTE₄). LTD4 is the most important component of CysLTs (CysLT₁, CysLT₂), and CysLT₁ receptor (CysLT₁R) is specific for LTD₄ (5). CysLTs are important mediators of human bronchial asthma, and many CysLT receptor antagonists are clinically used in its treatment. A few reports have addressed the relationship between CysLT₁R and colon cancer (6,7). To date, no report has addressed the relationship between CysLT₁R and human TC. Our team has already demonstrated that 5-LOX is overexpressed in human urological cancer (4,8-10).

Based on these findings, the present study aimed to examine the expression of $CysLT_1R$ in human TC tissues in order to evaluate the inhibitory effect of the $CysLT_1R$ antagonist on human TC cells, and to determine whether the $CysLT_1R$ antagonist induces apoptosis in these cells.

Correspondence to: Dr Masahide Matsuyama, Department of Urology, Osaka City University Hospital, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan E-mail: matsuyama@med.osaka-cu.ac.jp

Key words: cysteinylLT₁R, cysteinylLT₁R antagonist, testicular cancer, apoptosis

Materials and methods

Tumor specimens. Tissue specimens were obtained from 30 patients with TC and 10 patients with normal testes (NT) who underwent total orchiectomy for prostate cancer. Tumor histopathology was determined by pathologists. Tumor tissues, non-tumor tissues, vascular endothelium and interstitial tissues from the subjects were preserved in 10% formalin, embedded in paraffin and serially sectioned onto microscope slides at a thickness of $4 \mu m$.

Immunohistochemistry and patient samples. TC and NT slides were deparaffinized, then immunohistochemical staining was performed with the VectaStain Avidin-Biotin Peroxidase Complex Kit (Vector Laboratories, Burlingame, CA, USA) as previously described (11). Primary antibodies against goat CysLT₁R (Abcam, Cambridge, UK) were diluted 1:50 with 1% bovine serum albumin in phosphate-buffered saline (PBS) and allowed to react with the sample for 1 h at room temperature. Similar staining with non-immune goat serum was performed as a negative control.

Reagents and materials. RPMI-1640 was purchased from Nissui Pharmaceutical Co. (Tokyo, Japan). Fetal bovine serum (FBS) and a penicillin-streptomycin mixture were from Biowhittaker (Walkersville, MD, USA). Trypsin/EDTA was from Gibco-BRL (Rockville, MD, USA). Montelukast is a selective and orally active CysLT₁R antagonist (LKT Laboratories Inc., MN, USA) with demonstrated effectiveness for treating allergic asthma and allergic rhinitis in adults and in children as young as 12 months of age (allergic asthma) and 6 months of age (allergic rhinitis) (12).

Cell cultures. The human TC cell line NEC-8 was obtained from the Health Science Research Resources Bank (HSRRB, Osaka, Japan). Cells were grown in a culture flask (Nunc, Roskilde, Denmark) in RPMI-1640 supplemented with 10% FBS, 100 U/ml of penicillin and 100 μ g/ml of streptomycin in a humidified 5% CO₂ atmosphere at 37°C. Media were changed every 3 days and, upon reaching subconfluence, cells were separated via trypsinization using trypsin/EDTA.

Cell proliferation studies. Approximately 1.0x10⁴ cells placed on 8x8-mm diameter multichamber slides (Nunc, Copenhagen, Denmark) were treated with the CysLT₁R antagonist dissolved in ethanol at a final concentration of <0.05%. Cell viability was measured on day 1 by a microplate reader using a modified 3-[4,5-dimethylthiazol-2-thiazolyl]-2,5-diphenyltetrazolium bromide (MTT) assay (WST-1 assay; Dojindo, Kumamoto, Japan) and presented as the percentage of control-culture conditions.

*RT-PCR of CysLT*₁*R*. Total RNA was isolated from NEC-8 cells using the RNAqueous[®] Kit (Ambion, Japan) and checked for the presence of the CysLT₁R gene using primers (sense 5'-CTGCTCGCTTCGCTACTTGGA-3', antisense 5'-CGG CACCTGTCCTACGAGTTG-3' (Takara RNA PCRTM Kit, Takara Bio, Japan). The first step of PCR was carried out for 2 min at 94°C. Subsequent steps involved 35 cycles as follows: 30 sec at 94°C, 45 sec at 60°C and 60 sec at 72°C. The

presence of the CysLT₁R gene (650 bp) was visualized on a 0.7% agarose gel.

Flow cytometry

Annexin V and propidium iodide staining. The effect of the CysLT₁R antagonist on NEC-8 cells was determined by dual staining with Annexin V-FITC and propidium iodide (PI) using the Annexin V-FITC Apoptosis Detection Kit I (Biosiences Pharmingen). Annexin V-FITC and PI were added to the cellular suspension as per the manufacturer's instructions, and sample fluorescence of 1.0×10^4 cells was analyzed by flow cytometry, conducted with FACScan (Becton Dickinson, Germany). Cells which were Annexin V-FITC-positive and PI-negative were identified as early apoptotic. Cells which were Annexin V-FITC-positive and PI-positive were identified as late apoptotic or necrotic.

Identification of DNA fragmentation. The assay was performed by the TdT-mediated dUTP Nick End Labelling (TUNEL) method using the Apo-DirectTM kit (Becton Dickinson). Following the experiments, NEC-8 cells in suspension (1x10⁶/ml) were fixed with 1% PBS, washed in PBS, and suspended in 70% (v/v) ice-cold ethanol, then stored in ethanol at -20°C until use. The positive and negative controls and the sample were stained with FITC-dUTP by incubation in terminal deoxynucleotidyl transferase buffer according to the manufacturer's instructions, and the sample fluorescence of 1.0x10⁴ cells was analyzed by flow cytometry (Becton Dickinson). Results are presented as the percentage of TUNELpositive cells.

Results

*CysLT*₁*R* expression in testis tissue. Very weak CysLT₁*R* expression was observed in the NT case (Fig. 1F). In contrast, significantly strong CysLT₁*R* expression was observed in cancer tissues, including the nuclei and cytoplasm, in all TC types (Fig. 1A, seminoma; B, embryonal carcinoma; C, yolk sac tumors; D, choriocarcinoma; and E, teratoma). Immunostaining with PBS was negative in all subjects (data not shown).

*CysLT*₁*R* antagonist-induced growth inhibition in *TC* cells as determined by the *MTT* assay. Treatment with the CysLT₁R antagonist induced a reduction in cell viability with the half-maximal concentration of growth inhibition of NEC-8 cells in the range of 12.5-100 μ M (Fig. 2). The CysLT₁R antagonist halted the growth of NEC-8 cells.

*CysLT*₁*R* expression in *TC* cells. Using specific primers for CysLT₁R and GAPDH amplification predicted fragments of 650 and 400 bp. NEC-8 cells expressed CysLT₁R mRNA bands (Fig. 3, lane 2). CysLT₁R mRNA bands with 100 μ M CysLT₁R antagonist in NEC-8 cells were down-regulated (Fig. 3, lane 4).

 $CysLT_1R$ antagonist-induced apoptosis indicated by flow cytometry. NEC-8 without $CysLT_1R$ antagonist treatment is shown in Fig. 4. Ninety percent of NEC-8 cells treated with

Figure 1. Representative $CysLT_1R$ expression in testis tissues. Very weak $CysLT_1R$ expression was noted in normal testis tissue (F). In contrast, significantly strong $CysLT_1R$ expression was observed in cancer tissues, including the nuclei and cytoplasm, in all testicular cancer types (A, seminoma; B, embryonal carcinoma; C, yolk sac tumors; D, choriocarcinoma; E, teratoma).

Figure 2. Concentration-dependent effects of the CysLT₁R antagonist on human TC cells. The CysLT₁R antagonist induced a reduction in cell viability with half-maximal concentration of growth inhibition of NEC-8 cells in the range of 12.5-100 μ M. The CysLT₁R antagonist halted the growth of NEC-8 cells.

Figure 3. RT-PCR analysis of CysLT₁R in human TC cells. Using specific primers for CysLT₁R and GAPDH amplification predicted fragments of 650 and 400 bp. NEC-8 cells expressed CysLT₁R mRNA bands. CysLT₁R mRNA bands with 100 μ M CysLT₁R antagonist in NEC-8 were down-regulated. Lane 1, marker; 2, NEC-8; 3, GAPDH; 4, NEC-8 with 100 μ M CysLT₁R antagonist; and 5, GAPDH with 100 μ M CysLT₁R antagonist."

Figure 4. Effects of CysLT₁R antagonist on apoptosis by flow cytometry, and CysLT₁R antagonist-induced DNA fragmentation in human TC cells. A total of 90% of NEC-8 cells with 100 μ M CysLT₁R antagonist exhibited early apoptosis (A). Diagrams of FITC-Annexin V/PI flow cytometry in a representative experiment are presented. CysLT₁R antagonist (100 μ M) induced DNA fragmentation in NEC-8 cells (B). Histograms of typical flow cytometry analysis in a representative experiment are presented.

100 μ M CysLT₁R antagonist exhibited early apoptosis, but not late apoptosis (Fig. 4A). The CysLT₁R antagonist (100 μ M) induced DNA fragmentation in NEC-8 cells (Fig. 4B).

Discussion

Leukotrienes (LTs) are biologically active fatty acids derived from the oxidative metabolism of arachidonic acid (AA) (13,14) via the 5-LOX pathway. The activity of 5-LOX leads to the formation of unstable LTA₄, which can be converted into either LTB₄ or CysLTs (LTC₄, LTD₄ and LTE₄). CysLTs are components of a slow-reacting substance of anaphylaxis. LTD₄ plays the most important role in CysLTs (CysLT₁, CysLT₂), and CysLT₄ is specific for LTD₄. LTs are potent biochemical mediators, released from mast cells, eosinophils and basophils, that work to contract airway smooth muscle, increase vascular permeability and mucus secretions, and attract and activate inflammatory cells in the airways of patients with asthma (15). The action of LTs can be blocked through either of two specific mechanisms, i) the inhibition of LT production, and ii) the antagonism of LT binding to cellular receptors.

On the other hand, the 5-LOX inhibitor inhibits LT formation (particulary LTB_4 , LTC_4 , LTD_4 and LTE_4). Our previous studies reported that 5-LOX was overexpressed in urological cancers and that the 5-LOX inhibitor may attenuate the growth of human urological cancers and induce apoptosis through the AA pathway (4,8-10,16). Based on these findings, we examined whether or not CysLT₁R is expressed in human

testicular cancer (TC) tissues, and whether or not it would, as an antagonist, prevent TC cell growth.

The present study revealed CysLT₁R to be strongly expressed in TC tissue. We also found, by RT-PCR, that CysLT₁R was expressed in the TC NEC-8 cell line. RT-PCR determined CysLT₁R expression to be down-regulated by 100 μ M CysLT₁R antagonist.

Additionally, co-incubation of NEC-8 with CysLT₁R antagonist was demonstrated to stop the growth of NEC-8 cells and to potently inhibit cell growth in a dose-dependent manner, determined by the MTT assay. These results indicate that CysLT₁R is essential for the cell growth of NEC-8 cells. The mechanism by which the CysLT₁R antagonist supressed growth in NEC-8 cells required clarification. To address this issue, we examined whether or not apoptosis was involved in growth suppression in these cancer cells. The CysLT₁R antagonist (100 μ M) strongly induced early apoptosis in NEC-8 cells, as shown by flow cytometry. Our results indicate that apoptosis may be involved in mechanisms related to the CysLT₁R antagonist, thus preventing cell growth in NEC-8 cells. These findings therefore provide initial confirmation that, through apoptosis, the CysLT₁R antagonist inhibits TC cell growth.

Regarding CysLT₁R and colon cancer, Ohd *et al* reported that CysLT₁R was overexpressed in human colorectal cancer and was significantly correlated with COX-2 and 5-LOX. The expression of CysLT₁R was higher in high-grade and earlystage carcinoma, suggesting typical differences in colon cancer (6). Furthermore, survival time was slightly shorter in patients with high-intensity CysLT₁R staining than in those with lowintensity staining (7). We also reported that CysLT₁R was overexpressed in human prostate cancer and renal cell carcinoma, and that its expression was higher in high-grade compared to low-grade cancer. Furthermore, the CysLT₁R antagonist inhibited prostate cancer and renal cell carcinoma cell growth through apoptosis (17,18). These reports suggest that there are numerous relationships between CysLT₁R and various types of cancers, and that the CysLT₁R antagonist can prevent cell growth in other types of cancer besides TC.

In conclusion, our study provides evidence that the cell growth and apoptosis of TC cells are among the pathways or mechanisms related to CysLT₁R. Growth inhibition of TC cells by blocking CysLT₁R was associated with the induction of apoptosis. Thus, the CysLT₁R antagonist provides a novel approach to anticancer therapies.

Acknowledgements

This work was edited by Hilah Edney, BSc, MSc

References

- Weidner N, Folkman J, Pozza F, Bevilaqua P, Allred EN and Moore DH: Tumor angiogenesis: a new significant and independent prognostic indicator in early stage breast carcinoma. J Natl Cancer Inst 84: 1857-1887, 1992.
- 2. Lafyatis R, Thompson NL, Remmers EF, *et al*: Transforming growth factor-beta production by synovial tissues from patients and streptococcal cell wall arthritic rats: studies on secretion by synovial fibroblast-like cells and immunohistologic localization. J Immunol 143: 1142-1148, 1989.
- 3. Hase T, Yoshimura R, Matsuyama M, *et al*: Cyclooxygenase-1 and -2 in human testicular tumours. Eur J Cancer 39: 2043-2049, 2003.
- Yoshimura R, Matsuyama M, Mitsuhashi M, *et al*: Relationship between lipoxygenase and human testicular cancer. Int J Mol Med 13: 389-393, 2004.

- 5. Lynch KR, O'Neill GP, Liu Q, *et al*: Characterization of human cysteinyl leukotriene CysLT1 receptor. Nature 399: 789-793, 1999.
- Ohd JF, Wikstrom K and Sjolander A: Leukotrienes induce cellsurvival signaling in intestinal epithelial cells. Gastroenterology 119: 1007-1018, 2000.
- Nielsen CK, Campbell JI, Ohd JF, *et al*: A novel localization of the G-protein-coupled CysLT1 receptor in the nucleus of colorectal adenocarcinoma cells. Cancer Res 65: 732-742, 2005.
- Matsuyama M, Yoshimura R, Mitsuhashi M, *et al*: 5-Lipoxygenase inhibitors attenuate growth of human renal cell carcinoma and induce apoptosis through arachidonic acid pathway. Oncol Rep 14: 73-79, 2005.
- 9. Yoshimura R, Matsuyama M, Tsuchida K, Kawahito Y, Sano H and Nakatani T: Expression of lipoxygenase in human bladder carcinoma and growth inhibition by its inhibitors. J Urol 170: 1994-1999, 2003.
- 10. Matsuyama M, Yoshimura R, Mitsuhashi M, *et al*: Expression of lipoxygenase in human prostate cancer and growth reduction by its inhibitors. Int J Oncol 24: 821-827, 2004.
- Sano H, Hla T, Maier JA, et al: In vivo cyclooxygenase expression in synovial tissues of patients with rheumatoid arthritis and osteoarthritis and rats with adjuvant and streptococcal cell wall arthritis. J Clin Invest 89: 97-108, 1992.
- 12. Storms W: Update on montelukast and its role in the treatment of asthma, allergic rhinitis and exercise-induced bronchoconstriction. Expert Opin Pharmacother 8: 2173-2187, 2007.
- Horwitz RJ, McGill KA and Busse WW: The role of leukotriene modifiers in the treatment of asthma. Am J Respir Crit Care Med 157: 1363-1371, 1998.
- Wenzel SE: New approaches to anti-inflammatory therapy for asthma. Am J Med 104: 287-300, 1998.
- Drazen J: Clinical pharmacology of leukotriene receptor antagonists and 5-lipoxygenase inhibitors. Am J Respir Crit Care Med 157: 233-237, 1998.
- Matsuyama M, Yoshimura R, Tsuchida K, *et al*: Lipoxygenase inhibitors prevent urological cancer cell growth. Int J Mol Med 13: 665-668, 2004.
- 17. Matsuyama M, Hayama T, Funao K, *et al*: Overexpression of cysteinylLT₁ receptor in prostate cancer and CysLT₁R antagonist inhibits prostate cancer cell growth through apoptosis. Oncol Rep 18: 99-104, 2007.
- Funao K, Matsuyama M, Naganuma T, *et al*: The cysteinylLT₁ receptor in human renal cell carcinima. Mol Med Rep 1: 185-189, 2008.