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Abstract. The MLH1 and MSH2 genes in DNA mismatch 
repair are important in the pathogenesis of gastrointestinal 
cancer. Recent studies of normal and alternative splicing 
suggest that the deleterious effects of missense mutations may 
in fact be splicing‑related when they are located in exonic 
splicing enhancers (ESEs) or exonic splicing silencers (ESSs). 
In this study, we used ESE‑finder and FAS‑ESS software to 
analyze the potential ESE/ESS motifs of the 114 missense 
mutations detected in the two genes in East Asian gastroin-
testinal cancer patients. In addition, we used the SIFT tool to 
functionally analyze these mutations. The amount of the ESE 
losses (68) was 51.1% higher than the ESE gains (45) of all 
the mutations. However, the amount of the ESS gains (27) was 
107.7% higher than the ESS losses (13). In total, 56 (49.1%) 
mutations possessed a potential exonic splicing regulator 
(ESR) error. Eighty‑one mutations (71.1%) were predicted to 
be deleterious with a lower tolerance index as detected by the 
Sorting Intolerant from Tolerant (SIFT) tool. Among these, 38 
(33.3%) mutations were predicted to be functionally delete-
rious and possess one potential ESR error, while 18 (15.8%) 
mutations were predicted to be functionally deleterious and 
exhibit two potential ESR errors. These may be more likely 
to affect exon splicing. Our results indicated that there is a 
strong correlation between missense mutations in MLH1 and 
MSH2 genes detected in East Asian gastrointestinal cancer 
patients and ESR motifs. In order to correctly understand the 
molecular nature of mutations, splicing patterns should be 
compared between wild‑type and mutant samples.

Introduction

The incidence and mortality rates of gastric cancer and 
colorectal cancer are among the highest among malignant 
tumors in East Asia. Germline mutations of mismatch repair 
(MMR) genes are responsible for the majority of hereditary 
nonpolyposis colorectal cancer (HNPCC) cases. The MMR 
genes MSH2 (OMIM No.  609309) and MLH1 (OMIM 
No. 120436) are considered to be the two major genes impli-
cated in HNPCC (1,2). Carriers of germline mutations of 
MSH2 and MLH1 genes have a 4‑fold greater risk of gastric 
cancer compared with normal individuals, as well as a high 
risk of colorectal cancer. These two genes are associated with 
gastrointestinal cancer susceptibility.

Missense mutations are among the most common types of 
mutations underlying inherited human diseases. The delete-
rious effects of missense mutations are usually attributed to 
their effects on the structure or function of a protein. The 
assumption may be misleading, as the mutations that affect 
the sequences that are important for splicing modulation are 
likely to have a profound effect on the translated product. It 
has become increasingly clear that exonic point mutations 
located outside the splice sites may affect pre‑mRNA splicing 
and thereby cause disease (3,4). Correct pre‑mRNA splicing 
not only requires that the splice site sequences are present 
at the exon‑intron borders, but is also critically dependent 
on additional intronic and exonic regulatory sequences (5). 
Those present in exons and with the capacity of enhancing 
splicing are called exonic splicing enhancers (ESEs) and 
those with the capacity of inhibiting the splicing are the 
exonic splicing silencers (ESSs). Generally, these classes 
of elements are called exonic splicing regulators (ESRs). 
Consequently, mutations located in ESE or ESS elements 
may affect splicing. The significance and prevalence of this 
phenomenon may have been significantly underestimated, as 
the majority of studies of disease‑related genes are limited to 
the analysis of genomic DNA.

The majority of enhancer sequences within exons have 
been found to bind members of the serine/arginine‑rich (SR) 
protein family, while many silencing elements are bound by 
members of the heterogeneous nuclear ribonuclearprotein 
(hnRNP) family (6). ESEs are discrete, degenerate motifs of 
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6‑8 nts located inside exons (7,8). The study of normal splicing 
suggests that the majority of exons contain at least one func-
tional ESE site (7,9). ESE‑bound SR proteins promote exon 
definition by directly recruiting and stabilizing the splicing 
machinery through protein‑protein interactions (10), and/or by 
antagonizing the function of nearby silencer elements (11). The 
cores of ESSs are considered to be relatively short (6‑10 nts). 
ESS‑bound hnRNPs are proposed to mediate silencing 
through direct antagonism of the splicing machinery or by 
direct competition for overlapping enhancer binding sites. 
The intrinsic strength by which the splice sites are recognized 
by the spliceosome, as well as the antagonistic dynamics 
of proteins binding ESEs and ESSs, control a large propor-
tion of exon recognition and alternative splicing. Therefore, 
exonic splicing regulatory sequences are now increasingly 
recognized as a major target and a common mechanism for 
disease‑causing mutations leading to exon skipping in func-
tionally diverse genes.

In this study, we used ESE‑finder (12,13) and FAS‑ESS (14) 
software to analyze the missense mutations of MSH2 and 
MLH1 genes detected in East Asian gastrointestinal cancer 
patients, and to assess whether these mutations hit the predicted 
ESE/ESS motifs and affected gene splicing.

Materials and methods

Subjects. A total of 114 missense mutations, 52 of MSH2 and 
62 of MLH1, detected in the gastrointestinal cancer patients, 
were serially collected for this study from published East 
Asian literature (15‑44) (Table I). The majority of the investi-
gated mutations were exclusively reported in East Asia (China, 
Japan and Korea), and some of the mutations were detected 
in different ethnicities. The study was approved by the Ethics 
Committee of Nanjing University, Nanjing, China.

Potential ESE motif analysis. To identify the ESE motifs 
that were recognized by individual SR proteins, a PCR‑based 
systematic evolution of ligands by exponential enrichment 
(SELEX) was used. During this approach, a natural splicing 
enhancer in a minigene was replaced by short, random 
sequences derived from an oligonucleotide library. The 
generated pool of minigenes was transfected into cultured 
cells, and spliced mRNAs were amplified by RT‑PCR 
and sequenced (7). On the basis of the frequencies of the 
individual nucleotides at each position, a score matrix for 
each nucleotide in each position was calculated. This score 
matrix may be used to predict SR protein‑specific ESEs 
(ESE‑finder) (12,13).

We analyzed wild‑type or mutant exon sequences from 
MLH1 and MSH2 genes in Table  I with ESE‑finder soft-
ware using SR protein score matrices and threshold values, 
essentially as described previously (ESE‑finder: http://rulai.
cshl.edu/tools/ESE/) (12). Sequence motifs for the same or 
different SR proteins may overlap. We considered only the 
wild type or mutant sequence motifs with scores greater than 
or equal to the value of the threshold for the corresponding 
SR protein. The threshold values were as follows: SF2/ASF 
(IgM‑BRCA1) heptamer motif, 1.867; SC35 octamer motif, 
2.383; SRp40 heptamer motif, 2.670 and SRp55 hexamer 
motif, 2.676.

Potential ESS motif analysis. To systematically identify ESS 
motifs, an in vivo splicing reporter system was developed to 
screen a library of random decanucleotides. The resulting 
library was transfected into cultured human 293  cells, 
and stably transfected cells were combined and sorted for 
GFP‑expressing cells by fluorescence activated cell sorting 
(FACS) analysis. The fluorescence‑activated screen for exonic 
splicing silencers (FAS‑ESS, or FAS for short) yielded 176 ESS 
hexamers (FAS‑hex2 set) (14).

We analyzed wild‑type or mutant exon sequences from 
MLH1 and MSH2 genes in Table I with FAS‑ESS software 
using a FAS‑hex2 set (176  ESS hexamers), essentially 
as described previously (FAS‑ESS: http://genes.mit.edu/
fas-ess/) (14).

SIFT analysis. Sorting Intolerant from Tolerant (SIFT) tool 
(accessible at http://sift.jcvi.org/) was applied to detect delete-
rious missense mutations (45,46). SIFT compiles a dataset of 
functionally linked protein sequences by searching the protein 
database using a PSI‑BLAST algorithm. Subsequently, it builds 
an alignment from the homologous sequences with the query 
sequence and scans all positions in the alignment, as well as 
calculating the probabilities for amino acids at that position. 
The substitution at each position with normalized probabilities 
of a tolerance index or SIFT score of <0.05 are predicted to 
be deleterious or intolerant, while those ≥0.05 are predicted 
to be tolerant (45). In this study, reference sequence (RefSeq) 
ID or GenInfo Identifier (GI) number and substitutions were 
provided as inputs to the SIFT blink program (46). A total of 
52 missense mutations in the MSH2 gene (GI: 4557761) and 62 
in the MLH1 gene (GI, 463989) were analyzed for identifica-
tion of deleterious variants.

Results

Potential ESE/ESS analysis of the mutations in MLH1 
and MSH2 genes. We analyzed wild‑type or mutant exon 
sequences from MLH1 and MSH2 genes in Table I using SR 
protein score matrices and threshold values, essentially as 
described. Potential ESE motifs found in the mutations in the 
two genes are listed in Table I (Fig. 1). Some of the mutations 
may load in different potential ESE motifs. Of the 114 muta-
tions analyzed, 47 (41.2%) mutations resulted in 68 ESE motif 
scores (24 SF2/ASF [IgM‑BRCA1], 13 SC35, 19 SRp40 and 
12 SRp55) being eliminated. However, 38 (33.3%) mutations 
created 45 ESE motif scores (12 SF2/ASF [IgM‑BRCA1], 
8 SC35, 14 SRp40 and 11 SRp55).

We analyzed wild‑type or mutant exon sequences from 
MLH1 and MSH2 genes in Table I with FAS‑ESS using the 
FAS‑hex2 set (176 ESS hexamers), essentially as described 
previously. Potential ESS motifs found in the mutations in the 
two genes are listed in Table I (Fig. 2). Of the 114 mutations 
assessed, 9 (7.9%) mutations resulted in 13 ESS motif scores 
being eliminated. However, 17 (14.9%) mutations created 27 
ESS motif scores.

Eliminating the potential ESE motif and creating the 
potential ESS motif have the same effect on exon exclusion. 
We named these mutations as potential ESR error mutations. 
In total, 56 (49.1%) mutations possessed a potential ESR error 
(Table II).
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Deleterious missense mutations predicted by the SIFT server. 
Eighty‑one missense mutations (71.1%) were predicted to be 
deleterious with a tolerance index <0.05; the lower the tolerance 
score, the greater the functional consequence an amino acid 
residue substitution is expected to have (Table I). Additionally, 
32 (28.1%) mutations were predicted to be deleterious with 
potential ESE motif losses, while 13 (11.4%) mutations were 
predicted to be deleterious with potential ESS motif gains. In 
total, 38 (33.3%) mutations were predicted to be deleterious 
with potential ESR errors (Table II).

Discussion

The incidence and mortality rates of gastrointestinal cancer 
are among the highest malignant tumors in East Asia. MMR 
genes MLH1 and MSH2 have been known to play an important 
role in the pathogenesis of gastrointestinal cancer. At present, 
the majority of databases contain annotation data that are 

Figure 1. High‑score splicing regulator (SR) protein motif analysis in MSH2 
exon 6 (A) and a single point mutation variant c.1012G>A (B). High‑score 
motifs are shown in dark gray for SF2/ASF (IgM‑BRCA1), black for SC35, 
light gray for SRp40 and white for SRp55, and only the scores above the 
threshold for each SR protein are shown. The height of each bar indicates 
the score value, and its width and placement on the x‑axis represent the 
length of the motif (6‑8 nt) and its position along the sequence. The arrow 
indicated that the c.1012G>A transversion in MSH2 exon 6 affected a SF2/
ASF motif, reducing the score from 2.620 to 0.840; a SC35 motif, reducing 
the score from 2.669 to 0.917; and a SRp40 motif, reducing the score from 
4.353 to 1.971.
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primarily or exclusively derived from genomic DNA analysis, 
and the effect of a mutation on the mRNA or on the encoded 
protein is usually predicted from the primary sequence, rather 
than by experimentally determining the mRNA expression 
and splicing patterns. Therefore, the majority of reported 
disease‑associated alleles of these genes are small insertions, 
deletions or splice‑site mutations that result in protein trunca-
tion. Thus, only a small number of amino acid substitutions in 
either gene have been described as deleterious missense muta-
tions, yet a very large number of different unclassified variant 
alleles are routinely encountered in clinical and research labo-
ratories. It is therefore necessary to functionally define these 
unclassified variants as deleterious alleles, low‑penetrance 
alleles or benign polymorphisms.

In this study, we selected 114 missense mutations of MSH2 
and MLH1 genes detected from East Asian gastrointestinal 
cancer patients in published studies. The ethnic group included 
Chinese, Japanese and Korean individuals. The missense 
mutations contribute to certain forms of cancer susceptibility 
in East Asian populations, but it was unclear whether these 
were the definite pathogenic mutations in gastrointestinal 
cancer.

The consequences of splicing unclassified variants found 
in the MLH1 or the MSH2 genes may be studied directly at 
the patient RNA level. However, the number of variants that 
may be tested for splicing alterations using patient RNA is 
limited by the difficulty of obtaining blood samples suitable 
for RNA extraction. The bioinformatic tools, the ESE‑finder 
and FAS‑ESS, may enable prediction of the splicing defect of 
the mutations. These tools have already been used success-
fully to predict ESEs/ESSs and their disruption in a variety of 
genes, including ACF, BRCA1, BRCA2, FBN1, IGF1, PDHA1, 
SMN1, SMN2, TNFRSF5, CFTR, MlH1, MSH2, Tp53, MCAD 
and others (3,7,47‑52). Auclair et al conducted a systematic 

RNA screening of a series of 60 western patients who carried 
unrelated exonic or intronic mutations in the MLH1 or MSH2 
genes (53). In addition, it was found that the potential correla-
tion between aberrant splicing and prediction of ESE by the 
ESE‑finder demonstrated a sensitivity of 80% and a specificity 
of 42%.

Under the conditions of the null hypothesis, there is no 
correlation between ESEs and mutations; the amount of 
ESE motif scores eliminated or created should be equal. 
However, in the present study, the amount of ESE losses 
(68) was 51.1% higher than ESE gains (45). This suggested 
that the mutations loaded in the potential ESE motifs were 
more likely to eliminate the ESE motif score, and that they 
affected gene splicing. Additionally, under the conditions 
of the null hypothesis, there is no correlation between ESSs 
and mutations; the amount of ESS motif scores eliminated 
or created should be equal. Conversely, in the present study, 
the amount of ESS gains (27) was 107.7% higher than the 
amount of ESS losses (13). This suggested that the mutations 
were more likely to create the ESS motif score and that 
they affected gene splicing, indicating that there is a strong 
association between missense mutations in MLH1 and MSH2 
genes and ESE/ESS motifs. Some of the mutations should be 
splicing‑related deleterious alleles.

As an upper limit for the estimate of the proportion of 
ESR‑related mutations, we suggest that 56 (49.1%) mutations, 
which have lost ESE or gained ESS motifs, were delete-
rious for the reason that they disturbed functional splicing 
enhancers or or created functional splicing silencers, respec-
tively. This approach was likely to overestimate the proportion 
of ESR‑related pathogenic mutations. This is due to the fact 
that not all ESR motifs are true functional ESRs, and not all 
nucleotide substitutions in functional ESRs disturb their func-
tion.

Figure 2. Fluorescence‑activated screen for exonic splicing silencers (FAS‑ESS) analysis of MLH1 exon 4 (A) and a single point mutation variant c.332C>T (B). 
The arrow indicates that the c.332C>T transversion in MLH1 exon 4 created a new ESS motif.

  A

  B

Table II. Potential ESR errors detected in the mutations of the two genes.

	 Total mutations	 ESE eliminated	 ESS created	 ESR error	 Two ESRs error

Total mutations	 114 (100.0%)	 47 (41.2%)	 17 (14.9%)	 56 (49.1%)	 25 (21.9%)
SIFT deleterious	 81 (71.1%)	 32 (28.1%)	 13 (11.4%)	 38 (33.3%)	 18 (15.8%)

ESR error; mutations that have lost one ESE motif or gained one ESS motif. Two ESRs error; mutations that have eliminated at least two 
potential ESE motifs, or created at least two potential ESS motifs, or eliminated one or more potential ESE motifs and created one or more 
potential ESS motifs. ESR, exonic splicing regulator; ESE, exonic splicing enhancer; ESS, exonic splicing silencer.
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According to previous studies, no extensive functional 
analysis was available for these mutations. We used the SIFT 
tool to functionally analyze the missense mutations. SIFT is 
a program that predicts the effect of amino acid substitutions 
on protein function, on the basis of sequence conservation 
during evolution and the nature of the amino acids substituted 
in a gene of interest. In total, 81 missense mutations (71.1%) 
were predicted to be deleterious with a tolerance index <0.05. 
Among them, 38 (33.3%) mutations were predicted to be 
deleterious and have at least one potential ESR error. Some of 
these may be pathogenic with exon exclusion.

Eliminating and creating the potential ESE motif has the 
same effect on exon exclusion. One mutation may eliminate 
one or more potential ESE motifs. The greater the number of 
potential ESE motifs eliminated, the more likely the muta-
tion was to affect the ESE motifs. However, one mutation 
may create one or more potential ESS motifs. The greater the 
number of potential ESS motifs created, the more likely the 
mutation was to affect the ESS motifs. In total, 25 (21.9%) 
mutations eliminated at least two potential ESE motifs, or 
created at least two potential ESS motifs, or eliminated 
one or more potential ESE motifs and created one or more 
potential ESS motifs. These may be more likely to affect exon 
splicing. Among these, 18 (15.8%) mutations, c.1012G>A, 
c.1168C>T, c.1799C>T, c.1808A>G, c.2047G>A, c.2064G>A, 
c.2108C>A, c.2128G>T, c.2141C>T in MSH2; c.242C>T, 
c.318C>G, c.327T>G, c.332C>T, c.1186T>A, c.1561C>A, 
c.1907T>C, c.2059C>T, c.2263A>G in MLH1, were predicted 
to be deleterious in the SIFT analysis. These were the muta-
tions that most likely affected exon splicing, and were denoted 
as ESR‑relevant mutations. We proposed that some of these 
disrupted functional ESEs or created functional ESSs, leading 
to the creation of a misspliced message predicted to encode 
a truncated, non‑functional protein. However, these data did 
not allow us to determine which of the SR protein/hnRNPs 
motifs were functional. Although it is unlikely that each motif 
was able to be recognized simultaneously, due to the overlap 
between them, it is possible that each motif was important in a 
different cell type, depending on the relative expression levels 
of SR protein/hnRNPs.

Several putative ESR sequences have been found in exons 
where they have been sought systematically, raising the 
possibility of functional redundancy. This may diminish the 
potential exon‑skipping effect of a mutation in any one ESR. 
However, in cases where 3‑10 putative ESE sequences occur 
within a single exon, a single ESE‑disrupting base substitution 
may lead to efficient exon skipping. Fackenthal et al found 
that BRCA2 T2722R was a deleterious allele that caused 
BRCA2 exon 18 skipping (48), and Pagenstecher et al found 
a silent mutation MLH1 c.1731G>A caused MLH1 exon 15 
skipping (54). However, a single ESS‑creating base substitu-
tion may lead to efficient exon skipping. Oliveira et al found 
that POMGNT1 c.636C>T created a new ESS and caused 
POMGNT1 exon 7 skipping (55), and Raponi et al found that 
BRCA1 c.231G>T created a new ESS and caused BRCA1 
exon 6 skipping (56). This suggests that, at least in certain 
cases, individual ESRs may be critical for splicing even when 
other ESRs are present in the same exon. However, the splice 
mutations of MLH1 and MSH2 have been underestimated. The 
strong correlation between missense mutations with splicing 

enhancer/silencer motifs found in this study also suggested 
that splicing‑related mutations in the two genes may be 
relatively common. The computer predictions do not always 
correlate with in vivo splicing defects. The predictable ESR 
error mutations require experimental analysis for validation in 
a further study.

In conclusion, our results indicated that there is a strong 
correlation between missense mutations in MLH1 and MSH2 
genes detected in East Asian gastrointestinal cancer patients 
and ESR motifs. In total, 38 (33.3%) mutations were predicted 
to be functionally deleterious and possess one potential ESR 
error, while 18 (15.8%) mutations were predicted to be func-
tionally deleterious with two potential ESR errors. These may 
be more likely to affect exon splicing. To truly understand the 
molecular nature of mutations, splicing patterns should be 
compared between wild‑type and mutant samples.
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