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Abstract. Piperlongumine (PPLGM), an alkaloid isolated 
from the long pepper (Piper longum L.), can selectively trigger 
cancer cell death in colorectal cancer cells. The present study 
investigated whether the c-Jun NH2-terminal kinase (JNK) 
signaling pathway is involved in PPLGM-induced apoptosis 
in the human colorectal cancer HCT116 cell line. The results 
demonstrated that PPLGM reduced the cell viability and 
induced cell apoptosis in a time- and concentration-dependent 
manner, without a significant effect on cell cycle distribu-
tion. Meanwhile, treatment with 10 µM PPLGM resulted 
in JNK activation within 1 h, and a marked and sustained 
increase in c-Jun phosphorylation in the HCT116 cells. In 
addition, SP600125, a general inhibitor of JNK, inhibited 
PPLGM-induced apoptosis in the HCT116 cells by inhibiting 
PPLGM-induced c-Jun phosphorylation. Altogether, it can be 
concluded that the JNK signaling pathway, at least in part, is 
involved in PPLGM-mediated apoptosis in HCT116 cells.

Introduction

Colorectal cancer (CRC) is one of the leading causes of 
cancer-related mortality worldwide (1). Nearly half of patients 
newly diagnosed with colorectal cancer will develop metas-
tases and require systemic chemotherapy (2). As current 

chemotherapeutic drugs for colorectal cancer have clinically 
significant toxicities, it is a challenging endeavor to develop novel 
chemotherapeutic agents with good efficacy and selectivity (3).

Piperlongumine (PPLGM) is a bioactive component that 
was first isolated from Piper longum L., commonly referred to 
as the long pepper (4). Traditionally, PPLGM has been used for 
treating gastrointestinal and respiratory diseases (5). Notably, 
PPLGM has been shown to selectively target a wide spectrum 
of cancer cells (6-9). PPLGM induces cancer cell death by trig-
gering different pathways, including apoptosis, necrosis and 
autophagy (10‑13). The elevation of reactive oxygen species 
(ROS), characteristic of oxidative stress, is an important mecha-
nism by which PPLGM induces cancer-selective cell death (7,8). 
In addition, ROS-independent mechanisms, such as cellular 
cross-linking events, may also contribute to the induction of 
apoptosis by PPLGM (14). Extensive research has documented 
the fact that PPLGM induces apoptosis in cancer cells by 
interfering with redox and ROS homeostatic regulators (8,15). 
The outstanding efficiency of PPLGM in inducing cancer cell 
death and its low toxicity favor the potential development of this 
compound as a chemotherapeutic agent against cancer (8).

The c-Jun NH2-terminal kinases (JNKs) are protein kinases 
that can phosphorylate the c-Jun transcription factor at serine 
(Ser)63 and -73, resulting in the robust induction of c-Jun trans-
activation (16). Evidence has accumulated demonstrating that 
JNKs are involved in a variety of cell activities, including cell 
apoptosis, which is an important process for tumor suppres-
sion (17,18). Further studies have revealed that JNKs play an 
essential role in cancer cell death induced by redox chemothera-
peutic agents (19,20). In particular, PPLGM‑mediated oxidative 
stress has been shown to be partially induced by inhibiting 
glutathione S‑transferase π‑1 (GSTP1), which is a direct nega-
tive regulator of JNK, resulting in cancer cell death (8,21). We 
thus hypothesize that PPLGM induces cell death in colorectal 
cancer cells via activation of the JNK signaling pathway. The 
present study investigates the effects of PPLGM on JNK signal 
transduction and the role of the JNK signaling pathway on 
PPLGM-mediated cell apoptosis in HCT116 cells.
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Materials and methods 

Reagents. PPLGM and SP600125 (Sigma-Aldrich, St. Louis, 
MO, USA) were dissolved in dimethyl sulphoxide (DMSO) 
to a 50 mM solution and stored at ‑20˚C. Rabbit monoclonal 
antibodies (Abs) against c-Jun and phospho-c-Jun at Ser63 
were purchased from Epitomics (Burlingame, CA, USA). 
Rabbit monoclonal Abs against cysteinyl aspartate‑specific 
proteinase-3 (caspase-3) and JNK, and mouse monoclonal Abs 
against phospho-JNK at Thr183/Tyr185 were obtained from 
Cell Signaling Technology, Inc., (Beverly, MA, USA). Mouse 
monoclonal Abs against poly(adenosine diphosphate-ribose) 
polymerase (PARP) were obtained from BD Biosciences 
(San Jose, CA, USA). Mouse monoclonal Abs against β-actin, 
and anti-mouse immunoglobulin G and anti-rabbit immu-
noglobulin G horseradish peroxidase‑conjugated secondary 
antibodies were purchased from Proteintech Group, Inc. 
(Chicago, IL, USA).

Cell culture. Human epithelial colorectal adenocarcinoma 
HCT116 cells were purchased from Culture Collection of 
Chinese Academy of Science (Shanghai, China) and cultured 
in RPMI 1640 medium (Gibco Life Technologies, Carlsbad, 
CA, USA) supplemented with 10% inactivated fetal bovine 
serum, 100 IU/ml penicillin and 100 µg/ml streptomycin in 
a humidified atmosphere of 5% CO2 at 37˚C until confluence.

Cell viability assay. An MTS assay (CellTiter 96® AQueous 
One Solution Cell Proliferation Assay; Promega Corporation, 
Madison, WI, USA) was used to test cell viability. A total of 
3x104/ml cells in 100 µl cell culture medium were incubated 
with increasing concentrations of PPLGM for 72 h. Detailed 
description of the indicated duration periods and doses is 
provided in Fig. 1. Control cells received DMSO for a final 
concentration that was the identical to the highest concentra-
tion of PPLGM, but less than 0.1% (v/v). At 4 h prior to culture 
termination, 20 µl MTS was added to the wells. The absor-
bance density was read on a 96-well plate reader (Mithras 
LB 940 Multimode Microplate Reader; Berthold Technolo-
gies GmbH & Co. KG, Bad Wildbad, Baden-Württemberg, 
Germany). at wavelength of 490 nm.

Trypan blue dye exclusion assay. The HCT116 cells were 
seeded into 24‑well plates to 20‑30% confluency, and then 
treated with PPLGM in various concentrations for the indicated 
duration. Detailed description of the indicated duration periods 
and doses is provided in Fig. 2. The cells were then trypsin-
ized and stained with 0.4% (w/v) trypan blue (Sigma-Aldrich) 
and the viable cells were counted using a hematocytometer 
(Qiujing Biology Company Limited, Shanghai, China).

Cell cycle analysis by flow cytometry. Subsequent to being 
exposed to a fixed dose of PPLGM for various periods of time, 
the HCT116 cells were collected and fixed overnight in 66% 
cold ethanol at 4˚C. A detailed description of the indicated 
duration periods and doses is provided in Fig. 3. The cells were 
then washed twice in cold phosphate-buffered saline (PBS) and 
labeled with propidium iodide (PI; BD Biosciences, Franklin 
Lakes, NJ, USA). Cell cycle distribution was determined 
using a BD FACScanto II flow cytometry analyzer equipped 

with BD FACSDiva software, version 6.1.3 (BD Biosciences, 
Franklin Lakes, NJ, USA).

Analysis of cell apoptosis by flow cytometry. Apoptosis was 
determined by flow cytometry using an Annexin V‑fluoroiso-
thiocyanate (FITC)/PI double‑staining kit (Nanjing KeyGen 
Biotechnology, Co., Ltd., Nanjing, Jiangsu, China).  The 
HCT116 cells were incubated with increasing concentration 
of drugs for the indicated times. A detailed description of the 
indicated duration periods and doses is provided in Fig. 4. 
Following the drug treatment, the cells were collected, washed 
and stained in working solution (500 µl binding buffer with 5 µl 
Annexin V‑FITC and 5 µl PI) for 15 min in the dark. Apoptotic 
cells were then determined by flow cytometry, and the results 
were analyzed by BD FACSDiva software version 6.1.3.

Western blotting. The procedures for western blotting were 
performed as described previously (22). Briefly, equal 
amounts of protein were separated by 10% sodium dodecyl 
sulfate-polyacrylamide gel electrophoresis and transferred to 
a polyvinylidene difluoride membrane (Millipore, Billerica, 
MA, USA). The membranes were then blocked with 5% 
skimmed-milk, 20 mM PBS and 0.1% Tween-20 buffer for 
1 h at room temperature, and incubated with rabbit anti-c-Jun 
(dilution, 1:1,000), rabbit anti-phospho-c-Jun at Ser63 (dilu-
tion, 1:1,000), rabbit anti-caspase-3 (dilution, 1:1,000), mouse 
anti-PARP (dilution, 1:1,000), mouse anti-β-actin (dilution, 
1:10,000) and rabbit anti-JNK (dilution, 1:1,000), mouse 
anti-phospho-JNK at Thr183/Tyr185 (dilution, 1:1,000) 
overnight at 4˚C. The next day, following incubation with 
horseradish peroxidase‑conjugated secondary antibodies  
(dilution, 1:10,000) for 1 h at room temperature, the signals 
were detected using an enhanced chemiluminescence detec-
tion kit (Santa Cruz Biotechnology, Inc., Dallas, TX, USA).

Treatment with JNK inhibitors. The cells were preincubated 
with the JNK inhibitor, SP600125 (10 µM), for 2 h and 
then treated with PPLGM (10 µM) for 24 h. Cell apoptosis 
was analyzed by flow cytometry and the protein levels were 
measured by western blotting.

Statistical analysis. All experiments were performed at least 
three times, and results are expressed as the mean ± standard 
deviation. Statistical analysis was performed by one-way 
analysis of variance followed by Tukey's test using GraphPad 
Prism 6.02 software (GraphPad Software, Inc., La Jolla, CA, 
USA). P<0.05 was considered to indicate a statistically signifi-
cant difference.

Results

PPLGM causes concentration‑ and time‑dependent growth 
inhibition of HCT116 cells. The dose-response effects of 
PPLGM on HCT116 were evaluated by MTS assay (Fig. 1). The 
half maximal inhibitory concentration value for PPLGM was 
4.6 µM in the HCT116 cells at 72 h. Next, the cytotoxic effects 
of PPLGM on the HCT116 cells were tested by trypan-blue 
dye exclusion assay (Fig. 2). PPLGM at different concentra-
tions inhibited the cell viability in the HCT116 cells, and the 
cellular response to the drug increased markedly as the drug 



ONCOLOGY LETTERS  10:  709-715,  2015 711

concentration was raised from 2.5 to 10 µM (Fig. 2). The result 
showed that the inhibition of cell proliferation by PPLGM in 
the HCT116 cells was concentration- and time-dependent. 
After the cells had been treated with 5 µM PPLGM for 24 h, 
the cell viability decreased sharply compared with the control 
(Fig. 2). In addition, flow cytometric analysis revealed no 
significant alteration in cell‑cycle distribution in the HCT116 
cells incubated with 5 µM PPLGM (Fig. 3). Thus, PPLGM 
inhibited the growth of HCT116 cells without significantly 
affecting the cell cycle, suggesting that the loss of viability in 
the HCT116 cells may be attributable to cell death, but not to 
cell cycle withdrawal.

PPLGM induces apoptosis in HCT116 cells. To confirm the 
capability of PPLGM in inducing apoptosis, the control and 
PPLGM‑treated HCT116 cells were assessed by flow cytom-
etry subsequent to staining with Annexin V and PI. After 

48 h of treatment with 10 µM PPLGM, the population of 
apoptotic HCT116 cells reached 67.3% (Fig. 4A). These data 
supported the occurrence of apoptosis in the HCT116 cells 
following PPLGM treatment. Next, to further verify apoptotic 
induction, cleaved PARP and caspase-3 in the PPLGM-treated 
HCT116 cells were monitored by western blotting. As illus-
trated in Fig. 4B, PARP cleavage and the reduction of caspase-3 
protein levels, known hallmarks of apoptosis, appeared after 
24 h of treatment with 10 µM PPLGM. Taken together, these 
results show that PPLGM induces a substantial level of apop-
tosis in HCT116 cells.

PPLGM activates the JNK signaling pathway in HCT116 cells. 
As JNK is the protein kinase that can phosphorylate c-Jun at 
Ser63 and -73, c-Jun phosphorylation at site Ser63 was selected 

Figure 2. Piperlongumine (PPLGM) inhibits HCT116 cell proliferation in a 
dose- and time-dependent manner. An equal number of HCT116 cells were 
plated and cultured in 24-well plates for 24 h, treated with different con-
centrations of PPLGM and incubated for the indicated time intervals. Cells 
were then stained with trypan blue and the viable cells were counted. Each 
experiment was performed in triplicate and the number of viable cells was 
plotted graphically with the standard deviation.

Figure 1. Piperlongumine (PPLGM) reduces the cell viability of HCT116 cells. 
The HCT116 cells were exposed to the indicated concentrations of PPLGM 
for 72 h and then subjected to an MTS proliferation assay. Data are presented 
as the mean ± standard deviation from three experiments.

Figure 3. Effect of piperlongumine (PPLGM) on the distribution of cell cycle 
phases in HCT116 cells. The HCT116 cells were exposed to 5 µM PPLGM 
for the indicated time intervals and analyzed by flow cytometry following 
staining with propidium iodide. Figures were selected as representative data 
from three independent experiments. 2N, diploid cells; 4N, tetraploid cells.
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for evaluation of the JNK signaling pathway. When the cells were 
incubated with increasing concentrations of PPLGM for 48 h, a 
moderate increase of c-Jun phosphorylation was detected at 5 µM 
only (Fig. 5A). According to the results of previous studies (8,9) 
and the current results (Fig. 4), 10 µM PPLGM induced cancer 

Figure 4. Piperlongumine (PPLGM) triggers apoptosis in HCT116 cells. (A) The cells were treated with PPLGM at increasing concentrations for 48 h and then 
underwent Annexin V/propidium iodide (PI) staining for flow cytometric analysis of cell apoptosis. (B) The cells were exposed to PPLGM at increasing concentra-
tions for 48 h or were treated with 10 µM PPLGM for the indicated times. PARP and caspase-3 protein levels were determined by western blotting. β-actin was used 
to verify equal loading. Figures were selected as representative data from three independent experiments. PARP, poly(adenosine diphosphate‑ribose) polymerase.

Figure 6. Piperlongumine (PPLGM) induces c-Jun NH2-terminal kinase (JNK) 
phosphorylation. Protein expression levels were determined by western blotting. 
β‑actin was used to verify equal loading. HCT116 cells were exposed to 10 µM 
PPLGM for various periods of time. Figures were selected as representative 
data from three independent experiments. p‑, phosphorylated; t‑, total.

Figure 7. SP600125 inhibits piperlongumine (PPLGM)-induced c-Jun phos-
phorylation. For the inhibition experiments, the cells were incubated for 2 h in 
the presence or absence of 20 µM SP600125, then 10 µM PPLGM was added 
and incubated for 24 h. p-c-Jun and t-c-Jun was determined by western blotting. 
β-actin was used to verify equal loading. Figures were selected as representative 
data from three independent experiments. p‑, phosphorylated; t‑, total.

  A

  B

Figure 5. Piperlongumine (PPLGM) promotes c-Jun phosphorylation at 
Ser63. Protein expression levels were determined by western blotting. β-actin 
was used to verify equal loading. (A) HCT116 cells were exposed to PPLGM 
at increasing concentrations for 48h. (B) HCT116 cells were treated with 
10 µM PPLGM for the indicated times. Figures were selected as representa-
tive data from three independent experiments. p‑, phosphorylated; t‑, total.

  A

  B
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cell death more significantly than 5 µM PPLGM. Therefore, the 
concentration of 10 µM PPLGM was used in subsequent experi-
ments. Treatment with 10 µM PPLGM for 12 h resulted in a 
marked increase in c-Jun phosphorylation in the HCT116 cells 
when the cell lysates were immunoblotted with the appropriate 
phospho-specific antibodies (Fig. 5B). The 10-µM PPLGM 
treatment resulted in sustained c-Jun phosphorylation, which 
was still apparent after 24 h in the HCT116 cells (Fig. 5B). In 
addition, the c‑Jun expression level was elevated in parallel 
with increased c-Jun phosphorylation in the PPLGM-treated 
HCT116 cells (Fig. 5). The 10-µM PPLGM treatment induced 
c-Jun phosphorylation prior to PARP cleavage and loss of cell 
viability, suggesting that the JNK signal pathway may mediate 
PPLGM-induced apoptosis.

To further examine whether the JNK signaling pathway is 
activated by PPLGM in HCT116 cells, the cells were exposed 
to 10 µM PPLGM for various periods of time, and analyzed for 
PPLGM-induced changes in JNK phosphorylation by western 
blot analysis using dual phospho-specific JNK antibodies. 
As shown in Fig. 6, JNK phosphorylation levels increased in 
the HCT116 cells within 1 h of PPLGM incubation and then 
decreased again from 3 h onwards.

SP600125 inhibits PPLGM‑mediated apoptosis through 
restraining JNK signal pathway activation in HCT116 cells. 

To identify whether the JNK signaling pathway was involved 
in PPLGM-mediated apoptosis, SP600125, a general inhibitor 
of JNK, was co-incubated with PPLGM in the HCT116 cells 
and cell apoptosis was then determined using flow cytometry. 
Pre-treatment with the SP600125 JNK inhibitor completely 
blocked the PPLGM-induced phosphorylation of c-Jun (Fig. 7) 
and significantly inhibited PPLGM‑induced cell apoptosis in 
the HCT116 cells (Fig. 8). The percentage of apoptotic cells 
following treatment with 20 µM SP600125, 10 µM PPLGM, 
or 20 µM SP600125 plus 10 µM PPLGM were 7.2, 35.7 and 
12.0%, respectively. The difference between PPLGM alone 
and PPLGM plus SP600125 was significant (P<0.0001).

Discussion

Recent data has showed that PPLGM can selectively kill 
various cancer cells, including human colorectal cancer 
cells (8,9). To the best of our knowledge, the present study is 
the first to indicate that the JNK signaling pathway is involved 
in PPLGM-induced cell apoptosis in human colorectal cancer 
cells. The results showed that PPLGM reduced cell viability 
independently of cell cycle withdrawal and induced cell 
death in a time- and concentration-dependent manner. At 
the same time, JNK signaling was activated during PPLGM 
treatment in the HCT116 cells. In addition, SP600125 

Figure 8. SP600125 rescues HCT116 cells from apoptosis induced by piperlongumine (PPLGM). For the inhibition experiments, the cells were incubated for 
2 h in the presence or absence of 20 µM SP600125, then 10 µM PPLGM was added and incubated for 24 h. The induction of apoptosis was estimated by flow 
cytometric analysis. Each value is the mean ± standard deviation of three determinations. ***P<0.0001. PI, propidium iodide.
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inhibited PPLGM-induced JNK signaling and apoptosis in 
the HCT116 cells, suggesting that PPLGM-mediated apoptosis 
was at least partially dependent on the activation of the JNK 
signal pathway in the HCT116 cells (23).

Accumulated data have shown that PPLGM induces 
cell death through different pathways in multiple types of 
cancer cells (7-12). Previous studies have demonstrated that 
caspase-3-mediated PARP cleavage and cell cycle arrest at the 
G2/M phase are involved in PPLGM-induced cell apoptosis in 
human prostate cancer PC-3 cells (11). In the present study, 
HCT116 cells treated with PPLGM demonstrated likewise 
up-regulation of PARP/procaspase-3 cleavage (Fig. 4B), but 
not cell cycle arrest (Fig. 3); this discrepancy in the effect 
of PPLGM on cell cycle distribution may be a result of the 
different responses to PPLGM in different cell lines.

c-Jun, a cognate substrate for JNK, is a labile protein that is 
degraded by JNK under non-stressed conditions (24). However, 
a variety of cellular stresses, such as oxidative stress, can 
strongly activate the JNKs, which inhibit c-Jun ubiquitination 
and promote c-Jun transcription through c-Jun phosphoryla-
tion (24,25). Inhibition of the ubiquitin-proteasome system 
induced by PPLGM in cancer cells may also reduce the 
ubiquitin-dependent degradation of c-Jun (26). Collectively, 
a steady elevation of c‑Jun expression is associated with the 
expression and stabilization of c‑Jun. Hence, in the present 
study, it followed that sustained c-Jun phosphorylation was 
concomitant with the c‑Jun overexpression observed during 
PPLGM treatment (Fig. 5).

The positive association between c-Jun activation and 
cell apoptosis has been well documented in neurons, endo-
thelial and myeloma cells, fibroblasts and colorectal cancer 
cells (3,27-30). Similarly, the activation of JNK and the 
subsequent phosphorylation of c-Jun have been linked with 
apoptotic cell death induced by PPLGM in HCT116 cells 
(Figs. 7 and 8). Conversely, other studies have shown that 
the inhibition of JNK by SP600125 sensitizes tumor cells to 
CD95-induced apoptosis in HCT116 cells and that this effect 
is cell line‑specific (31). Whether c‑Jun activation leads to the 
inhibition or promotion of apoptosis should be dependent on 
the stimuli and the cell type.

Recent data have indicated that the mitogen-activated protein 
kinase (MAPK) core pathways are involved in PPLGM-induced 
cancer cell death. Notably, p38 MAPK activation leads 
to cell death through autophagy in human osteosarcoma 
U2OS cells (12). The present results showed that JNK signaling 
is involved in PPLGM-induced apoptosis in HCT116 cells 
(Figs. 7 and 8). As reported earlier in the colorectal cancer 
HT‑29 cell line (9), the extracellular signal‑regulated kinase 
(ERK) signaling pathway is also activated in PPLGM-treated 
HCT116 cells (data not shown), strongly arguing that a decrease 
in ERK and an increase in JNK are required for the induction of 
apoptosis (17). A previous study in hamster fibroblast CC139 cells 
demonstrated that phosphoinositide 3'-kinase (PI3K) inhibition 
is necessary for JNK-mediated cell death (32). In addition, 
PPLGM causes PI3K inhibition to induce caspase-dependent 
apoptosis in human triple-negative breast cancer cells (13). Alto-
gether, the mechanisms of signal transduction are complicated 
during the course of PPLGM-induced cancer cell death and 
the cross-talk between different signaling pathways should be 
further elucidated.

In summary, the present results suggested that in the 
HCT116 cells, PPLGM reduced cell viability and triggered 
cell apoptosis through the JNK signal pathway in a concentra-
tion- and time-dependent manner. A clear understanding of 
the molecular mechanisms of PPLGM-mediated cell apoptosis 
may shed light on the further clinical development of PPLGM 
for chemotherapy.
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