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Abstract. MicroRNAs (miRNAs) are small non‑coding 
RNAs involved in the initiation and progression of several 
types of human cancer, including hepatocellular carcinoma 
(HCC), which is one of the most common types of cancer and 
the third leading cause of cancer‑related mortality worldwide. 
Mounting evidence has demonstrated that miRNAs play a 
vital role in HCC, hepatitis, alcoholic liver disease, liver cell 
development and the metabolic functions of the liver. The 
aim of the present review was to summarize the most recent 
findings on the functions of miRNAs in the liver and discuss 
their potential roles in the diagnosis, prognosis and treatment 
of HCC.
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1. Introduction

Hepatocellular carcinoma (HCC) is the sixth most common 
type of cancer and third‑leading cause of cancer‑related 
mortality worldwide (1). Despite the advances in the manage-
ment of HCC over the last decade, persistent remissions are 
usually not achieved and the high invasiveness and metastatic 

potential represent a major challenge in HCC treatment (2). 
Therefore, novel treatment options are required to improve the 
clinical outcome of HCC patients.

With the development of computational engines for 
microRNA (miRNA) target prediction, biochemical tools and 
techniques to modulate miRNA activity in vitro and in vivo, 
our knowledge of the miRNA field is rapidly expanding (3). 
miRNAs are a class of small non‑coding RNAs that regulate 
a wide range of biological processes through altering the 
expression and translation of their target mRNA genes (4). 
Previous studies have demonstrated that miRNAs may be a 
potential target for cancer diagnosis and treatment. miRNAs, 
regulating 60% of human genes, are a powerful regulator of 
human physiological and pathological processes, including 
embryonic development, cell differentiation, tumorigenesis, 
cancer metastasis and tumor response to therapy (5‑8). Thus, 
miRNAs may be used as diagnostic, prognostic and predictive 
biomarkers in cancer. Increasing evidence has demonstrated 
that abnormal expression of miRNAs in tumors results in the 
deregulation of the expression levels of oncogenes and tumor 
suppressors, which eventually promotes the proliferation of 
tumor cells (9‑11). Therefore, miRNA‑based anticancer thera-
pies have emerged as an effective treatment option and may 
offer a curative potential in cancer therapy, either alone or in 
combination with other treatments (12). The aim of present 
study was to summarize the possible role of miRNA dysregu-
lation in liver cancer and discuss the potential of miRNAs as 
diagnostic, prognostic and therapeutic biomarkers.

2. Introduction of miRNAs

The first small non‑coding but functional RNAs to be identi-
fied over 20 years ago were lin‑4 and let‑7 (13,14), which were 
first identified as regulators controlling developmental timing 
in the nematode Caenorhabditis elegans. Since then, extensive 
studies have been conducted to investigate the role of miRNAs 
in multiple biological processes, ranging from embryonic 
development to the pathogenesis of various diseases, including 
cancer (7,15‑17).

The biogenesis of miRNAs involves multiple steps, 
including transcription, nuclear processing, export and 
cytoplasmic processing (4,18). In the nucleus, miRNAs are 
transcribed as primary miRNA transcripts (pri‑miRNAs) 
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with 5'‑end caps and 3'‑end poly‑A tails, mainly by RNA 
polymerase  II  (19‑21). Pri‑miRNAs consist of ≥1  hairpin 
structures, which finally become one or more functional 
miRNA(s) (22). The pri‑miRNAs are located in intergenic 
and intragenic regions. The intergenic regions are processed 
by protein complexes, including nuclease, DiGeorge 
syndrome critical region gene 8 (DGCR8) and Drosha, while 
intragenic regions are processed by spliceosomes  (23‑25). 
Precursor miRNAs derived from the pri‑miRNAs are 
exported from the nucleus to the cytoplasm by exportin‑5 in 
a RanGTP‑dependent manner (26), then further processed to 
the 22‑nucleotide duplex by Dicer, a second RNase III endonu-
clease, and the double‑stranded RNA‑binding domain proteins 
TAR RNA‑binding protein/protein activator of the interferon 
(IFN)‑induced protein kinase, to form a duplex of mature 
miRNA. Constitutive disruption of either DGCR8 or Dicer, 
two key factors in the miRNA signaling pathway, results in 
a global loss of miRNAs (27). Ultimately, the miRNA duplex 
unwinds, and one of the strands associates with an argonaute 
protein within the RNA‑induced silencing complex, where they 
direct gene expression by mRNA degradation or translational 
repression; the other miRNA strand is rapidly degraded (28).

3. miRNAs in liver development and homeostasis

As the largest gland in mammals, the liver serves as an endo-
crine and exocrine organ with numerous functions, including 
carbohydrate, lipid and amino acid metabolism, urea synthesis, 
detoxification of drugs and toxic endogenous compounds, 
bile production and plasma protein secretion (29). miRNAs 
play vital roles in several organ developmental and differen-
tiation processes. Increasing evidence has demonstrated that 
miRNAs play an important role in regulating liver develop-
ment and homeostasis (30). Hinton et al (27), Fu et al (31) and 
Kim et al (32) evaluated dynamic miRNA changes through 
analyzing definitive endoderm (DE) formation, murine and 
human embryonic stem cells (ESCs) and ESC‑derived hepa-
tocytes. The results of these previous studies indicated that 
different cell lines require definitive regulation by different 
miRNAs. For example, it is necessary that activin A‑mediated 
DE formation is enhanced by the forced combined expression 
of RNAs, including miRNA (miR) 181, miR222, miR196a, 
miR196b, miR333‑5p and let‑7e. It was previously reported 
that a positive feedback loop between miR122 and hepatocyte 
nuclear factor 6 (HNF6) regulates proper hepatocyte‑specific 
gene expression (33). During the process of liver differentiation 
and maturation, hepatoblasts exhibit morphological changes, 
such as epithelial‑to‑mesenchymal transition (EMT). Certain 
miRNAs are involved in the maintainance of the homeostasis 
of transition.

miR122, the most abundant miRNA in the liver, regulates 
the expression levels of 24 hepatocyte‑specific genes, including 
HNF6, forkhead box protein A1 (FOXA1) and HNF4α. Further-
more, miR122 forms a positive feedback loop with FOXA1 and 
HNF4α to regulate hepatocyte maturation (34). Several other 
miRNAs are involved in the regulation of liver development and 
differentiation, including miR148a (35) and miR33 (36).

As the central organ of metabolism in mammals, the liver 
synthesizes plasma proteins and bile acids, maintains the energy 
equilibrium and detoxifies metabolic wastes and xenobiotics. 

The metabolism of glucose, the main energy source of the 
body, is primarily regulated by insulin and glucagon. The dele-
tion of DICER1 in mouse liver led to severe hypoglycemia in 
the fasting state as a result of glycogen depletion (37). Several 
miRNAs are associated with glucose metabolism, including 
miR122, miR34a, miR103/107, let‑7 and miR143 (38). It has 
also been reported that miR122 and miR27b are associated with 
lipid metabolism, miR122, miR485‑3p and let‑7 are involved 
in iron metabolism, while miR132/142‑3p/21, miR142‑3p/21 
and miR130b/185/34a are involved in the metabolism of drugs 
and xenobiotic substances (39). In conclusion, miRNAs play 
pivotal roles in regulating multiple aspects of liver physiology.

4. miRNAs and HCC development

As the miRNAs are vital regulators of liver function, their 
dysregulation is associated with liver dysfunction. HCC is the 
main type of liver cancer and the third most common cause 
of cancer‑related mortality worldwide. miRNAs are often 
deregulated in HCC, and certain specific miRNAs are associ-
ated with the clinicopathological characteristics of HCC. It 
was recently demonstrated that miRNAs play critical roles in 
HCC progression and directly contribute to tumor cell prolif-
eration, avoidance of apoptotic cell death and metastasis by 
targeting a large number of specific mRNAs. miRNAs may 
undergo aberrant regulation during carcinogenesis and act as 
oncogenes or tumor suppressor genes (30,40‑43).

Chronic hepatitis caused by hepatotropic viruses, namely 
hepatitis B virus (HBV) and hepatitis C virus (HCV), are a 
major risk factor for HCC (44) and may affect the course of 
liver tumor development (45). Numerous genetic and epigen-
etic alterations are involved in hepatocellular carcinogenesis. 
Park et al (46) demonstrated that the inflammatory responses 
induced by obesity or administration of diethylnitrosamine 
contribute to HCC development in mice.

It was previously indicated that transient inhibition of 
HNF4α, which is essential for liver development and hepato-
cyte function, initiates hepatocellular transformation through 
an miRNA‑inflammatory feedback loop circuit consisting of 
miR124, interleukin 6 receptor (IL6R), signal transducer and 
activator of transcription 3 (STAT3), miR24 and miR629 (47). In 
this feedback loop circuit, miR24 and miR629 inhibit HNF4α 
expression, directly resulting in hepatocellular transformation. 
STAT3 is a direct regulator of miR24 and miR629 expression, 
the increase of which exerts vital effects on HCC initiation. 
As a direct downstream effector of HNF4α activity, miR124 
targets IL6R and consequently modulates the IL6R/STAT3 
pathway during hepatocellular transformation. The activation of 
this circuit suppresses HNF4α expression to sustain oncogen-
esis. Administration of miR124, a modulator of inflammatory 
signaling, induces tumor‑specific apoptosis, thus suppressing 
hepatocellular carcinogenesis. Accordingly, manipulation of 
this miRNA feedback inflammatory loop may be of clinical 
value in the treatment of liver cancer. In order to elucidate the 
mechanisms underlying the effect of miRNAs on HCC develop-
ment, some of the associated miRNAs are summarized below.

miRNAs and hepatic cancer stem cells (CSCs). Mounting 
evidence in cancer biology indicates that a small population of 
cells in tumor tissues, referred to as CSCs, have the ability to 
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maintain tumorigenesis (44). CSCs in the liver sustain tumor 
formation and development and endow tumor cells with stem 
cell properties (49,50).

As a result of the high renewal capacity, currently avail-
able chemotherapeutic and radiotherapeutic regimens fail to 
eliminate the bulk of cancer cells (51,52). Several signaling 
pathways, including MET, MYC, transforming growth factor‑β, 
Hedgehog, p53, WNT/β‑catenin and epidermal growth factor, 
have been demonstrated in hepatocarcinogenesis, a number of 
which may overlap with other pathways associated with hepatic 
progenitor cells (53). According to Oishi and Wang (54), hepatic 
progenitor cells are considered to be the origin of a proportion 
of HCCs, whereas miR181 may be involved in HCC progres-
sion by targeting HCC CSCs. Ji et al (55) demonstrated that 
conserved miR181 family members were highly expressed in 
embryonic livers and isolated hepatic stem cells using a global 
microarray‑based miRNA profiling approach, followed by 
validation with reverse transcription quantitative polymerase 
chain reaction (RT‑qPCR).

Furthermore, deletion of miR181 resulted in a reduction 
in the number of HCC cells and tumor‑initiating ability; 
however, exogenous miR181 expression in HCC cells restored 
their growth. miR181 has been found to directly target hepatic 
transcriptional regulators of differentiation and is an inhibitor 
of WNT/β‑catenin signaling. It may be concluded that miR181 
is involved in the regulation of human liver CSCs (55). There-
fore, miRNAs are vital regulators of the maintainance of 
stemness characteristics of hepatic CSCs through modulation 
of tumor‑suppressive and oncogenic signaling pathways asso-
ciated with tumorigenesis and tumor development.

miRNAs and cell cycle regulation. As defects in cell cycle 
control are among the hallmarks of HCC, multiple tumor 
activators and suppressors involved in cell cycle regulation 
are often aberrantly targeted by deregulated miRNAs in 
HCC. For example, regulated miRNAs may target essential 
cell cycle regulators, including cell cycle inhibitors of the 
cyclin‑dependent kinase (CDK) interacting protein/kinase 
inhibitory protein family, cyclin‑CDK complexes, the phos-
phoinositide 3‑kinase/Akt/mammalian target of rapamycin 
signaling cascade, and other cell growth regulatory 
genes (43). The direct targets of miR26a involved in the cell 
cycle are cyclins D2 and E2, from a family of proteins that 
control cell cycle progression by activating CDK cyclins, 
which exhibit reduced expression in HCC (56). The expres-
sion of miR26a induces HCC cell cycle arrest through direct 
targeting of these two cyclins.

miR122 suppresses HCC cell growth by directly targeting 
cyclin G1 expression (57). miR122 shortens the G2‑M phase, 
leading to a reduction in the invasive ability of HCC‑derived 
cells through modulating cyclin G1, p53 protein stability and 
transcriptional activity (58). In addition, miR124, which is 
silenced through CpG methylation in HCC, targets CDK6 to 
induce cell cycle arrest at the G1‑S checkpoint (59).

miRNAs and apoptosis. The ability to escape apoptosis enables 
tumor cells to survive in the tumor environment, even after 
invading distal tissue. Cytochrome c, a potent catalyst of apop-
tosis, is released from mitochondria when proapoptotic signals 
emerge. An increasing number of studies have demonstrated 

that miRNAs play an important role in regulating the B‑cell 
lymphoma‑2 (Bcl‑2) family of proteins, which are associated 
with mitochondrial apoptosis signaling. The Bcl‑2 protein 
family includes Bcl‑2‑interacting mediator of cell death (Bim), 
Bcl‑2‑modifying factor (Bmf), Bcl‑2, Bcl‑2‑like protein 2 
(Bcl‑W), Bcl‑extra large (Bcl‑XL) and myeloid leukemia cell 
differentiation protein (Mcl‑1). Shimizu et al (60) demonstrated 
that the let‑7 family of miRNAs enhanced sorafenib‑induced 
apoptosis by repressing Bcl‑XL expression in HCC. miR29 
may promote apoptosis by targeting Mcl‑1 and Bcl‑2 in the 
mitochondrial pathway (61). Therefore, upregulated let‑7 and 
miR29 expression may improve the sensitivity of HCC cells to 
certain apoptotic signals, thus exerting antitumor effects. Bcl‑2, 
Bcl‑W, Bcl‑XL and Mcl‑1 exert antiapoptotic effects; however, 
Bim and Bmf exert a proapoptotic effect. miR221 and miR25 
exert their antiapoptotic effect through targeting and inhibiting 
Bmf and Bim, respectively (62,63). Other apoptosis‑related 
genes are also targeted by miRNAs. Yang et al (64) reported 
that miR602 repressed HCC cell apoptosis by inhibiting Ras 
association domain family 1, isoform A. In addition to cell 
cycle regulation, miR221 and miR222 render tumor cells more 
resistant to tumor necrosis factor‑related apoptosis‑inducing 
ligand‑induced apoptosis through inhibiting the expression 
of phosphatase and tensin homolog (PTEN) and metallopro-
teinase inhibitor 3 (65).

miRNAs and cancer metastasis. The aberrant expression of 
miRNAs has been found to be closely associated with HCC 
cell metastasis  (66). Among these miRNAs, the reduced 
expression of miR122 in HCC may suppress the hepatic 
phenotype and enhance the metastatic properties of HCC (67). 
miR34a downregulates c‑Met in HCC, resulting in the reduc-
tion of cell migration and invasion (68). By contrast, miR21 
promotes cell growth, invasion and metastasis by inhibiting 
PTEN gene activity in HCC (69). miR224 was found to be 
highly expressed during extensive metastasis of HCC (70). 
Li et al (71) confirmed that miR224 promotes the expression of 
the tumor invasion‑associated proteins phosphorylated‑p21‑ac-
tivated kinase 4 and matrix metalloproteinase‑9 by directly 
targeting homeobox  D10. A series of miRNAs, including 
3 upregulated miRNAs (miR10a, miR100 and miR122) and 
2 downregulated miRNAs (miR145 and miR198), were found 
to be expressed in HCV‑HCC tissues, but not in normal liver 
parenchyma (72). In addition, decreased levels of miR126 have 
been specifically observed in the HCC subgroups associated 
with alcohol consumption (73).

Other miRNAs are also involved in the regulation of HCC 
invasion and metastasis, including miR17‑5p (74), miR30d (75) 
and miR151 (76). In conclusion, miRNAs may be considered 
as a neoteric modulator of tumor cell migration and invasion 
in HCC, and provide a novel approach to the treatment of 
HCC. More miRNAs involved in HCC development are listed 
in Table I.

5. miRNAs and clinical management of HCC

miRNAs for HCC diagnosis. Due to the lack of reliable 
markers for early diagnosis, the overall 5‑year survival rate of 
HCC remains extremely low (77). Liver damage induced by 
multiple agents, ranging from chemicals to viruses, is clinically 
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evaluated by measurement of serum aminotransferase levels 
(alanine and aspartate aminotransferase). However, these 
markers are associated with several limitations, including the 
requirement of fresh blood samples, lack of tissue specificity, 
and the inability to distinguish between hepatocyte damage 
and inflammation. Similarly, the marker α‑fetoprotein, tradi-
tionally used to monitor patients at high risk of HCC, may only 
be detected in a proportion of HCC patients, with an associ-
ated risk of false‑negative and ‑positive results (78). Therefore, 
there is an urgent need for novel molecular biomarkers to 
assist in the early diagnosis and prognosis of HCC. Increasing 
evidence suggests that unique miRNA signatures may serve as 
valuable diagnostic and prognostic biomarkers in HCC (79).

miRNAs are present in various body fluids, including 
serum and plasma  (80,81). Furthermore, miRNAs exhibit 
significant stability under extreme conditions, such as low 
pH (acidic environment) and resistance to RNAase, and are 
considered as alternative non‑invasive biomarkers  (80,82). 
Several studies have demonstrated that specific circulating 
miRNAs are present in various diseases (81,82). The above-
mentioned traits of miRNAs render them optimal biomarkers 
for liver diseases.

Since miRNAs have the advantages of being released from 
cancer cells into body fluids, accessible non‑invasiveness and 
stability, a number of unique circulating miRNAs have the 
potential to serve as diagnostic markers for HCC. In 2010, 
Li et al (83) employed a ‘proof‑of‑principle’ approach, which 
included Solexa sequencing of pooled serum samples, followed 
by multiple RT‑qPCR validation sets at an individual level, and 
identified unique expression profiles for HBV‑ and HCC‑related 
serum miRNAs. Ultimately, the results suggested that let‑7f, 
miR25 and miR375 may distinguish HCC patients from 
healthy subjects [area under the curve (AUC) = 99.67±0.15%; 
sensitivity, 97.9%; and specificity, 99.1%] (83). Additionally, 
miR23a, miR23b, miR342‑3p, miR375 and miR423 may 
differentiate between HBV‑positive HCC patients and control 
subjects (AUC=99.9±0.1%; sensitivity, 96.9%; and speci-
ficity, 99.4%) (83). Zhou et al (84) made these findings more 
comprehensive in another study; their results suggested that a 
7‑miRNA signature, including 3 upregulated miRNAs (miR21, 
miR192 and miR801) and 4 downregulated miRNAs (miR26a, 
miR27a, miR122 and miR223), may be used to distinguish 
HCC patients from healthy subjects, chronic hepatitis B and 
cirrhosis patients. Together with other biochemical tests, 
quantitative analysis of circulating miRNA may significantly 
improve the early detection rate and screening of potential 
HCC patients.

miRNAs for prediction of prognosis in HCC. In recent years, 
an increasing number of studies have indicated that miRNAs 
may be applied not only as diagnostic biomarkers, but also as 
prognostic factors for cancer. Identifying relevant biomarkers 
may help classify patients at a higher risk for tumor recurrence 
following radical resection for HCC. Furthermore, relevant 
biomarkers play a pivotal role in improving the therapeutic 
strategies for patients with early‑stage disease, without evident 
vascular invasion, regional lymph node or distant metas-
tasis (85). In order to simplify the evaluation of prognostic 
miRNA signatures in cancer, Aguirre‑Gamboa et  al  (86) 
developed SurvMicro, a freely accessible and easy to use web 

tool that assesses miRNA signatures from publicly available 
miRNA profiles using multivariate survival analysis. Surv-
Micro consists of a wide and updated database of >40 cohorts 
in different tissues, and is a bioinformatics tool that aids the 
evaluation of multivariate prognostic miRNA signatures in 
several types of cancer, including HCC. This bioinformatics 
tool provides strong evidence regarding the potential of 
miRNAs as biomarkers for the prognosis of HCC.

Of note, Zhu et al  (87) reported that the expression of 
miR29a‑5p in formalin‑fixed paraffin‑embedded HCC tissues 
may provide useful information for predicting early recurrence 
following HCC resection through studying two independent 
large cohorts of patients with long‑term follow‑up; they found 
that the sensitivity and specificity of miR29a‑5p as a predictor 
of early recurrence of Barcelona Clinic Liver Cancer stage 0/A 
HCC were 74.2 and 68.2%, respectively, by multivariate anal-
ysis. However, the mechanism underlying the involvement of 
miR29a‑5p in early recurrence of HCC has not yet been eluci-
dated, although it may include HCC invasion and metastasis, 
which are the main causes of early recurrence following HCC 
resection (88,89). In addition, other miRNAs are considered as 
potential biomarkers for the prognosis of HCC. For example, 
downregulation of the expression of miR26 indicates that 
HCC patients are sensitive to IFN‑α therapy (90). A charac-
teristic feature of tumors with low miR26 expression is unique 
activation of IFN‑α signaling via the nuclear factor‑κB‑IL‑6 
signaling pathway. As a consequence, HCC cells exhibiting low 
expression of miR26 become more sensitive to growth repres-
sion by IFN‑α through IL‑6‑STAT3 signaling. In conclusion, 
miRNA profiling may be able to predict clinical response to 
therapy for HCC and provide novel prognostic tools, paving 
the way for the personalized therapy of HCC patients.

miRNAs in HCC treatment. The mechanisms underlying 
miRNAs acting as regulators of multiple aspects of liver 
development is an appealing research focus in HCC treatment. 
Preclinical models constructed to elucidate the biological 
role of any specific miRNA lay the foundation for the emer-
gence of the first indications of the feasibility and efficacy 
of miRNA‑based therapy in cancer. The strategies targeting 
miRNA expression in HCC mainly encompass direct and 
indirect methods of preventing the expression of an oncogenic 
miRNAs or reintroducing a tumor suppressor miRNA that is 
lost in cancer, and using drugs to modulate miRNA expression 
by separately targeting their transcription and processing. For 
example, silencing oncogenic miR221 generates a proapop-
totic and antiproliferative response in vitro in different cellular 
models of HCC (91), while reinduction of miR26a suppresses 
cancer cell proliferation and activates tumor‑specific apoptosis 
in vivo, resulting in significant suppression of tumor progres-
sion without toxicity (57). By contrast, miRNAs may be used 
as adjuvant tools, largely due to their involvement in specific 
networks, including apoptosis, proliferation, or receptor‑driven 
pathways. Therefore, miRNAs may affect the response of 
HCC to targeted therapy or chemotherapy. Xu  et  al  (92) 
demonstrated that miR122 renders HCC cells sensitive to 
Adriamycin® and vincristine by reducing the expression of 
multidrug resistance‑related genes, including the antiapoptotic 
genes Bcl‑W and cyclin B1. DNA methylation of miR193a‑3p 
enhances the resistance of HCC cells to 5‑fluorouracil through 
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downregulation of the serine/arginine‑rich splicing factor 2, 
resulting in upregulation of the proapoptotic splicing form 
of caspase 2 (93). IFN is widely employed in the treatment 
of HCC. However, miR146a induces resistance of HCC 
cells to IFN‑α by downregulating mothers against decapen-
taplegic homolog 4 (94).

miRNAs may alter the sensitivity of tumor cells to chemo-
therapy and/or radiotherapy. Weidhaas et al (95) reported that 
specific inhibition of miR210 may increase the sensitivity of 
HCC cells to radiotherapy. A direct target of miR210 in human 
HCC cells is apoptosis‑inducing factor M3 (AIFM3), also 
referred to as AIF‑like, as it is a gene homolog of AIF. AIFM3 
is mainly present in mitochondria, resulting in cytochrome c 
release and apoptosis in a caspase‑dependent manner (96,97). 
AIFM3 downregulation by small interfering RNA‑impaired 
radiation‑induced apoptosis in human HCC cells was associ-
ated with reduced miR210 expression. miR210 downregulation 
enhances radiation‑induced apoptosis in human HCC cells by 
targeting the AIFM3 gene (95). Therefore, specific regulation 
of miRNAs in combination with radiotherapy may be expected 
to exert strong antitumor effects on HCC cells.

Therapies based on directly targeting miRNAs are faced 
with several challenges. First, steadily and effectively delivering 
a therapeutic RNA to target tissues remains a major obstacle. 
A direct method is difficult, since it would involve exiting the 
circulatory system, transiting the cell membrane, escaping 
from endosomal vesicles into the cytoplasm and avoiding 
being filtered and excreted by the kidney. In addition, escaping 
removal by phagocytic immune cells in the bloodstream, such 
as macrophages and monocytes, is another challenge.

A number of studies have investigated methods to overcome 
these difficulties. Among the established approaches to in vivo 
delivery of miRNAs, adeno‑associated viral vectors have been 
considered to be a promising therapeutic strategy for cancer, 

due to the lower risk of vector‑related toxicities and the higher 
gene transfer efficacy (57,98). In 2009, Kota et al (56) utilized 
an adeno‑associated virus carrying the miR26a gene to infect 
a mouse model of HCC, resulting in the inhibition of cancer 
cell proliferation and induction of tumor‑specific apoptosis. 
However, the utilization of a viral system to reintroduce an 
miRNA is inevitably associated with certain shortcomings. 
The delivered material may be integrated into the host DNA 
or remain episomal, depending upon the nature of the system. 
For example, retroviral and lentiviral vectors integrate their 
DNA into the host genome, resulting in the risk of inser-
tional mutagenesis and activation of protooncogenes due to 
the unpredictable site of integration. In addition to miRNA 
delivery using viral vectors, artificially synthesized miRNA 
or anti‑miRNA oligonucleotides (AMOs) are other noteworthy 
therapeutic approaches  (99). Since synthesized miRNA or 
AMOs consist of single‑stranded 2'‑O‑methyl‑modified anti-
sense oligonucleotides fully complementary to the predicted 
miRNA binding sites in the 3'‑untranslated region of a specific 
target mRNA, this strategy may markedly reduce unwanted 
or off‑target effects. Hatakeyama et al  (100) encapsulated 
AMOs including 2‑O‑methyl and phosphorothioate modifi-
cations against miR122 (AMO122) into the YSK05‑MEND, 
which is a pH‑sensitive multifunctional envelope‑type 
nanodevice (MEND) containing a pH‑sensitive lipid YSK05. 
YSK05‑MEND was then utilized to regulate liver‑specific 
miR122. Compared with Lipofectamine®  2000 (LFN2k), 
YSK05‑MEND displayed a higher activity in liver cancer 
cells due to efficient endosomal escape, despite the lower 
uptake. Furthermore, YSK05‑MEND exhibited minimal 
cytotoxicity at 100 nM of AMO122 in treated cells, whereas 
LFN2k exhibited cytotoxicity at 50  nM. Compared with 
free AMO122, the YSK05‑MEND delivered higher amounts 
of AMO122 to the liver. In addition, free AMO122 is more 

Table I. Dysregulated microRNAs in hepatocellular carcinoma.
 
	 Upregulated	 Downregulated
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ 
Function	 miRs	 References	 miRs	 References
 
Proliferation	 miR155, miR18a, miR210,	 (101‑108)	 let‑7a, let‑7b, let‑7c,	 (109‑122)
	 miR221, miR224, miR519d,		  let‑7d, let‑7f‑1, miR1,	
	 miR590‑5p		  miR124, miR200a,miR203,	
			   miR219‑5p, miR223, miR376a,	
			   miR449, miR450a, miR520b	
Apoptosis	 miR210, miR221, miR224,	 (58,62,91,	 let‑7a, let‑7b, let‑7c, let‑7d,	 (60,109,111,
	 miR519d	 105‑107,	 let‑7f‑1, miR101, miR122,	 115‑117,122,
		  123,124)	 miR125b, miR195, miR376a,	 125‑137)
			   miR449	
Cell cycle	 miR373	 (140)	 miR138, miR195, miR26a/b	 (134,138,139)
Metastasis 	 miR10a, miR135a, miR143,	 (68,69,105,	 let‑7g, miR122, miR125a,	 (109,114,126,
	 miR181b, miR182, miR21, 	 107,120,	 miR125b, miR139, miR3a, 	 133,141‑143)
	 miR200a, miR210, miR224, 	 144‑157)	 miR7	
	 miR301a, miR550a,			 
	 miR590‑5p			 

miR, microRNA.
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easily eliminated via the kidney due to its molecular weight. 
The dose at which systemic administration of YSK05‑MEND 
results in the knockdown of miR122 and an increase in target 
gene expression in the liver, with a subsequent reduction of 
plasma cholesterol, is significantly lower compared with that 
of free AMO122. The duration of the effect of AMO122 
delivered by YSK05‑MEND is also longer compared with 
that of free AMO122. In conclusion, these results suggest that 
YSK05‑MEND is a promising system for in vivo delivery of 
AMOs to the liver (100).

6. Conclusions and perspectives

Small non‑coding RNAs as regulators of gene expression have 
been demonstrated to be involved in all biological systems. 
Several miRNAs are deregulated to promote hepatocellular 
carcinogenesis through inducing translational inhibition 
and degradation of target mRNAs critical for HCC develop-
ment. miRNAs may be used as biomarkers for diagnosis 
and prognosis and may be a potential therapeutic tool for 
HCC. Although significant progress has been achieved in 
the miRNA field, a number of questions remain to be further 
elucidated. Undoubtedly, the identification of novel miRNAs 
and novel miRNA functions in liver development and abnor-
mity pave the way to designing effective and safe strategies 
for the diagnosis and treatment of this life‑threatening disease. 
With the identification of HCC‑associated miRNA signatures 
and the overcoming of certain obstacles, including unwanted 
off‑target effects and inefficient miRNA delivery, the use of 
miRNAs as a diagnostic and therapeutic tool in HCC appears 
to be a promising research focus in the immediate future.
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