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Abstract. Glioblastoma, the most common and most malig-
nant type of primary brain tumor, is associated with poor 
prognosis, even when treated using combined therapies, 
including surgery followed by concomitant radiotherapy with 
temozolomide-based chemotherapy. The invasive nature of 
this type of tumor is a major reason underlying treatment 
failure. The tumor-tropic ability of neural and mesenchymal 
stem cells offers an alternative therapeutic approach, where 
these cells may be used as vehicles for the invasion of tumors. 
Stem cell-based therapy is particularly attractive due to its 
tumor selectivity, meaning that the stem cells are able to target 
tumor cells without harming healthy brain tissue, as well as 
the extensive tumor tropism of stem cells when delivering 
anti-tumor substances, even to distant tumor microsatellites. 
Stem cells have previously been used to deliver cytokine 
genes, suicide genes and oncolytic viruses. The present review 
will summarize current trends in experimental studies of 
stem cell-based gene therapy against gliomas, and discuss the 
potential concerns for translating these promising strategies 
into clinical use.
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1. Introduction

Gliomas account for ~30% of all brain tumors, and are the 
most common primary tumors of the central nervous system in 
Japan (1). Glioblastoma multiforme (GBM), the most common 
and most malignant type of glioma, has a median survival time 
of 14.6 months and a 5-year survival rate of <10%, despite 
various therapeutic strategies, including surgery, radiotherapy 
and chemotherapy with temozolomide (2,3). Complete surgical 
removal of GBM is not possible due to the invasive nature 
of gliomas to the surrounding healthy brain tissue, and the 
majority of patients die within 1 year of diagnosis as a result 
of a novel secondary tumor foci forming within 2 cm of the 
resected area (4,5). Residual tumor cells are typically resistant 
to standard radiotherapy, and efficient chemotherapy cannot be 
delivered due to the presence of the blood-brain barrier (BBB) 
and systemic toxicity (6). The potential effects of radiotherapy 
on GBM are limited by the associated toxicity to normal tissues. 
In addition, the efficiency of chemotherapy is also limited, as 
chemotherapeutic agents are unable to efficiently cross the BBB, 
while glioma cells also have a high tendency to develop resistance 
against chemotherapeutic agents. Therefore, novel therapeutic 
strategies to eliminate invasive tumor cells without damaging 
the normal brain parenchyma are urgently required (7-9).

Gliomas rarely metastasize outside of the central nervous 
system, and the majority of recurrence occurs proximal to the 
resection site, therefore malignant gliomas are recognized 
as good candidates for local gene therapy (10). One of the 
first and most widely used local gene therapies is that of the 
herpes simplex virus-thymidine kinase (HSV-tk)/ganciclovir 
(GCV) system. However, while clinical studies regarding the 
retrovirus-mediated HSV-tk/GCV gene therapy have been 
conducted, only clinical safety has been proven and no thera-
peutic benefits have been confirmed (10). Although promising 
results have been observed in studies of viral-mediated gene 
therapy in animal models of glioma (11), clinical studies have 
achieved limited success in the attenuation of tumor growth 
and extension of patient survival (12). These poor results 
associated with the use of the viral system are associated 
with, at least in part, the limited distribution of viral vectors 
throughout the invasive tumor (12). In order to improve the 
treatment field of local gene therapy, stem cells‑based strate-
gies were subsequently introduced.

Recent advances in neural stem cell (NSC) research 
suggest that the use of genetically engineered NSCs to 
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produce anti-tumor substances has notable advantages over 
viral vector-mediated gene delivery of therapeutic genes to 
gliomas, as NSCs exhibit extensive tropism for intracranial 
lesions, including gliomas (13). Numerous laboratories have 
replicated this migratory capacity using various types of 
stem cell, including multipotent mesenchymal stem cells 
(MSCs) (14,15), in animal models. In contrast to viral 
vectors, stem cells are primarily attracted to tumor tissue and 
not to normal neural cells, and therefore tumor‑specific gene 
delivery is achieved, whilst minimal side effects are exerted 
on the normal brain tissue (13,16).

Over the past decade, significant attention has been paid to 
stem cell-based strategies as alternative therapies for the treat-
ment of malignant gliomas. This is a result of the fundamental 
ability of stem cells to migrate to brain tumors, regardless of 
the BBB (13). Since then, a wide variety of stem cell-based 
therapeutics have been evaluated (17). Stem cells are rela-
tively easy to modify to carry therapeutic genes (18) and 
exert immunosuppressive properties that may abrogate host 
immunoreaction following implantation (19-22). These cells 
are also capable of protecting oncolytic viruses from the host 
immune response, thereby establishing long-term supplies of 
the therapeutic virus at the tumor site (23).

The present review aims to summarize the current status 
of genetically engineered stem cell-based gene therapy for the 
treatment of glioma. The types of cell and therapeutic transgene 
to be used will be discussed in terms of efficacy and safety for 
translating experimental findings to a clinical setting.

2. Tumor tropism of stem cells

NSCs and other types of stem cell exhibit tropism for sites 
of tissue damage, as well as the tumor microenvironment, 
where a variety of substances are secreted (19), including 
inflammatory‑derived factors and angiogenic factors. Acti-
vated astrocytic and microglial cells in the peritumoral edema 
zone generate an inflammatory tumor microenvironment in 
glioma (24,25). Interleukin (IL)-8 (26), monocyte chemo-
tactic protein (MCP)-1 (27) and stromal cell-derived factor 
(SDF)-1α (28) in the peritumoral reactive region attract MSCs. 
Tumor necrosis factor (TNF)-α contributes to enhancement 
of the expression of the CXC chemokine receptor (CXCR) 4 
on MSCs, which facilitates the chemotactic invasiveness of 
MSCs towards stroma-derived SDF-1α (29). This effect is also 
observed in induced pluripotent stem cells (iPSCs) (30,31). 
MCP-1 expression in gliomas may mediate glioma-tropic 
migration of NSCs via the CC chemokine receptor 2 (32). 
Therapeutic irradiation further enhances MSC tropism to 
glioma, via the inflammatory response (33,34).

Tumor tropism of MSCs is enhanced by tumor angiogenesis 
and angiogenic signaling molecules including platelet-derived 
growth factor (PDGF)-BB, PDGF-D (14,16), vascular endothe-
lial growth factor (VEGF)‑A, transforming growth factor‑β1 
and neurotrophin‑3 (35,36). NSC migration is also influenced 
by angiogenic signaling (37). Hypoxia, a condition frequently 
associated with glioma, upregulates CXCR4, urokinase plas-
minogen activator receptor and VEGF receptor 2 on NSCs, 
which enhances their migration towards gliomas (38). The 
tumor tropism of iPSCs is enhanced by stem cell factor (SCF), 
PDGF-BB, SDF-1α and VEGF, and the receptors of those 

factors (c-Kit, intercellular adhesion molecule 1, CXCR4 and 
VEGFR-2) are upregulated in the iPSCs (30).

The interaction between MSCs and the extracellular 
matrix (ECM) is significant, particularly in highly migrating 
MSCs (39). As mentioned previously, multiple factors influ-
ence the tumor tropism of stem cells. Further studies are 
required to integrate these in vitro factors into a comprehensive 
mechanism underlying stem cell migration. Since the in vivo 
tumor microenvironment is markedly more complex, further 
in vivo cell-tracking studies are required for the development 
of improved clinical protocols using stem cells as therapeutic 
vehicles for the treatment of gliomas (40).

3. Types of cell vector

NSCs are mainly located in the subependymal zone of the 
lateral ventricles and the dentate gyrus of the hippocampus, 
and are capable of differentiating into neurons, astrocytes 
and oligodendrocytes (41). Since the first study regarding 
tumor-tropic migration of the immortalized murine NSC 
line C17.2 (13), numerous in vivo studies using NSCs 
to deliver anti-tumor substances to gliomas have been 
conducted (17,42‑50). Although NSCs may be obtained, 
even from the adult human brain, it is not easy to quickly 
expand, modify and characterize these cells in preparation for 
implantation into GBM patients with a short life expectancy. 
Therefore, it is possible that immortalized NSC lines that are 
readily available may be used (https://clinicaltrials.gov/; iden-
tifier, NCT01172964). A well‑characterized NSC line is able 
to be cultured and expanded in vitro to obtain high numbers 
of cells ready for transplantation within a short period, as 
long as the problems associated with immunogenicity and 
tumorigenicity are solved by, for example, steroid administra-
tion. In 2010, a clinical pilot trial using genetically engineered 
immortalized NSCs was initiated for patients with recurrent 
high-grade gliomas, where NSCs were applied at the time of 
surgery (https://clinicaltrials.gov/; identifier, NCT01172964). 

MSCs are multipotent stem cells located in the bone marrow, 
adipose tissue, umbilical cord and placenta, which are able 
to differentiate into cells of mesenchymal lineage, including 
osteoblasts, adipocytes, chondrocytes and myocytes (51,52). It 
is significantly easier to obtain MSCs, for example, via bone 
marrow aspiration, than NSCs. The relatively easy availability of 
these cells makes it possible to graft autologous MSCs (isolated 
from the patient), facilitating the avoidance of graft rejection. 
However, the expansion, modification and characterization of 
these MSCs delays the initiation of treatment, compared with 
that of implantation of readily available, well-characterized, 
existing cell lines. In addition, there are a variety of concerns 
regarding the use of MSCs for gene therapy in the treatment 
of tumors. MSCs may contribute to tumor growth via their 
immunosuppressive function (53), growth factor production (54) 
and contributions to pro-tumorigenic stroma (55), as well as 
through malignant transformation of the recruited MSCs, which 
may induce tumor growth (53,56,57). The interaction between 
MSCs and tumor cells, and the potential risk of MSC trans-
formation into malignant cells remain controversial (58-60). 
MSCs and NSCs have similar tumor tropism and infiltrative 
potential across the BBB (61). Intracranially implanted MSCs 
have demonstrated tropism for experimental gliomas, where 
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MSCs were able to successfully deliver therapeutic substances, 
thereby contributing to the increased survival of glioma-bearing 
model animals (14,15).

Hematopoietic progenitor cells are a readily available cell 
type, which exhibit marked glioma tropism (62,63). Implan-
tation of human skin-derived stem cells, which are able to 
migrate to experimental gliomas and inhibit tumor angio-
genesis, may present an autologous stem cell therapy for the 
treatment of gliomas (64). Systemically injected endothelial 
progenitor cells have been demonstrated to be able to target 
experimental gliomas and assimilate into the tumor vascula-
ture (65,66). Endothelial progenitor cells have been genetically 
modified to produce oncolytic measles virus and tested as a 
potential anti-glioma therapy (67), or engineered to express 
cytotoxic anti-tumor genes (65). Embryonic stem cell-derived 
astrocytes have demonstrated intracranial migratory potential 
and therapeutic efficacy following implantation into subcuta-
neously established gliomas (68). In addition, NSCs derived 
from iPSCs have also been used as vectors in gene therapy for 
experimental glioma (69).

4. Cytokine‑based therapy

Various types of cytokine have been delivered to gliomas, 
by NSC or MSC, and have demonstrated therapeutic effi-
cacy (14,43,70,71). Positive therapeutic effects of intratumoral 
injection of IL-4-producing NSCs on murine glioma growth 
have been identified (42). NSC‑produced IL‑4 exerted more 
powerful anti-tumor effects than that of virus-mediated 
transfer of IL-4 (42). The capabilities of genetically engi-
neered NSCs and MSCs expressing therapeutic cytokines 
IL-2 (72), IL-7 (70), IL-12 (43), IL-18 (73) and IL-23 (71) 
to augment the immune response to the tumor were also 
evaluated. TNF‑related apoptosis‑inducing ligand (TRAIL) 
activates the pro-apoptotic death receptors 4 and 5, which 
trigger caspase‑8‑dependent apoptosis (74). TRAIL is able 
to selectively target tumor cells, whilst sparing the majority 
of non‑malignant cells (75). The tumor‑specific therapeutic 
effect of TRAIL‑producing NSCs, MSCs and ESC‑derived 
astrocytes have been shown in several studies of experimental 
gliomas (76‑79). A study, which simulated the clinical scenario 
of GBM treatment, demonstrated that inoculation of stem 
cells encapsulated in a biodegradable, synthetic ECM in the 
resection cavity following surgical debulking of human GBM 
tumors in mice, effectively inhibited tumor regrowth (80).

5. Enzyme/prodrug‑based therapy (‘suicide’ gene therapy) 

Enzyme/prodrug systems, which are also known as ‘suicide 
gene therapies,’ have been the most widely used type of gene 
therapy for glioma treatment. Among these systems, the 
HSV-tk/GCV system has been the most extensively studied. 
The HSV-tk gene phosphorylates non-toxic GCV into a 
toxic GCV-monophosphate in the cells, which is then further 
phosphorylated by cellular enzymes to GCV-triphosphate. 
Incorporation of GCV‑triphosphate into the DNA results in 
chain termination of the DNA (10). Activated GCV is toxic not 
only to the HSV-tk-producing cells, but also to the cells in their 
vicinity, a phenomenon known as the ‘bystander effect’. Since 
GCV-triphosphate is a relatively large molecule, the bystander 

effect is hypothesized to be mediated by gap junctions between 
cells, through which the phosphorylated prodrug is able to be 
transported (81). In addition, connexin 43 expression is impor-
tant for the bystander effect (82). Migratory stem cell vectors 
have been introduced to achieve improved intratumoral distri-
bution of the prodrug-converting enzyme. In vivo preclinical 
studies confirming the feasibility of this approach for the treat-
ment of glioma have been conducted using NSCs (17,44,83) 
and MSCs (81,84-90) as HSV-tk delivery vehicles. It has also 
been proven that the ‘bystander effect’ of HSV-tk/GCV suicide 
gene therapy does not damage normal brain tissues (91).

Cytosine deaminase (CD) is another well-investigated 
prodrug-activating enzyme, which converts 5‑fluorocytosine 
(5‑FC) to its toxic form, 5‑fluorouracil (5-FU), thereby inducing 
cell death (92). 5-FU is able to diffuse across cell membranes 
without requiring direct cell-to-cell contact, and exerts a 
marked bystander effect (93). Since the first report regarding the 
use of CD-expressing NCSs for the treatment of intracranial rat 
gliomas (13), multiple in vivo preclinical studies have demon-
strated the treatment efficacy of the use of NSCs (18,93‑95) and 
MSCs (96‑98). As previously mentioned, a clinical pilot trial 
using immortalized NSCs engineered to produce CD, in combi-
nation with oral 5-FC administration, commenced in 2010. This 
pilot was for patients with recurrent high-grade gliomas, and 
aimed to examine whether intracerebral NSC implantation and 
systemic 5-FC administration was safe and feasible.

Rabbit carboxylesterase (CE) is able to convert, more 
efficiently than human CE (99), the prodrug CPT‑11 into the 
cytotoxic drug 7-ethyl-10-hydroxycamptothecin, which func-
tions as a potent inhibitor of topoisomerase I (100). Intratumoral 
injection of genetically modified MSCs expressing rabbit CE, in 
combination with systemic administration of CPT-11, modestly 
prolonged the survival of brainstem glioma-bearing rats (101). 
Cytochrome P450 2B6 (CYP2B6) catalyzes the transforma-
tion of cyclophosphamide (CPA) into the non-toxic metabolite, 
4‑hydroxy CPA (102). Co‑cultures of CYP2B6‑NSC with human 
CPA-treated U87 Mg glioma cells demonstrated significant 
bystander effect-mediated cytotoxic effects on tumor cells (102). 
A further in vivo study demonstrated that intracerebral inocula-
tion of CYP2B6-NSCs, prior to intracerebral administration of 
CPA, effectively inhibited the growth of aggressive high‑grade 
gliomas (46). Previous studies regarding these ‘suicide gene 
therapies’ are summarized in Table I.

6. Oncolytic virus‑based therapy

Oncolytic virotherapy describes the process where viruses 
with the capacity to infect tumor cells are delivered to tumors. 
The viruses are able to replicate within and subsequently lyse 
the tumor cells. Following cell lysis, the viral particles are 
released and thus infect the neighboring tumor cells. However, 
the distribution of locally injected viruses throughout the 
tumor tissue and to invasive tumor cells is difficult. Further-
more, the viral particles may be attacked and neutralized by the 
host immune system prior to the exertion of any effects (103). 
To circumvent these obstacles, tumor-tropic migratory cells 
may be used to deliver viral particles to the distant parts 
of tumor and to protect against their attack by the immune 
system (23). Preclinical experiments using NSCs (49,104,105) 
and MSCs (106-108) have demonstrated extended delivery of 
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oncolytic viruses and prolonged survival of glioma-bearing 
animals treated with stem cell-mediated oncolytic virotherapy.

7. Conclusion

Neural, mesenchymal and other types of stem cell, engineered 
to express various therapeutic genes are attractive candidates 
for use in the treatment of malignant glioma patients. For the 
evaluation of such novel treatment strategies, cases of glioma 
which are recurrent following standard therapy, including 
radiotherapy with temozolomide-based chemotherapy, 
should be selected for the study cohort. Implanting geneti-
cally modified stem cells into any remaining tumor tissue 
following surgical resection, or stereotactically injecting 
stem cells into the unresectable tumor are two potential 
treatment modalities (17). These treatments may prolong 
the period of re-remission, without inducing the serious side 
effects associated with more extensive chemotherapeutic 
strategies (6). In addition, repeated treatment may be possible 
as a number of the treatment substances employed are essen-
tially non-toxic to humans.

However, despite the abundance of basic findings that 
support the use of stem cell vectors in tumor therapy, there 
are also several issues regarding the translation of this strategy 
into a clinical setting. These issues include the choice of cell 
vector and therapeutic transgene, as well as the optimal route 
of administration (for example, intratumoral or intravenous 
administration). Teratogenicity of the stem cells, particularly 
that of MSCs, is one of the most significant concerns to be 
solved prior to the commencement of clinical studies, even 
when the targets of treatment are fatal diseases, for example 

GBM. The interaction between MSCs and tumor cells and 
the potential risk of MSCs transforming into malignant cells 
remain controversial (58-60). Therefore, the use of readily 
available well-characterized MSCs, for example the C17.2 
NSC line, is suggested. The use of stem cells transduced with 
suicide genes, for example the HSV-tk gene, to eliminate 
transplanted therapeutic stem cells may function as an addi-
tional ‘safety valve’. As a result of the promising preclinical 
results regarding the use of stem cell-based therapy for glio-
blastomas, clinical studies should be conducted under careful 
clinical protocols, including sophisticated imaging techniques 
for evaluating the fate of the implanted stem cells (40).
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