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Abstract. Cancer is a pathological condition in which the 
balance between cell growth and death is disordered. Various 
molecules have been reported to be involved in the oncogenic 
process of invasion, metastasis and resistance to treatment. 
An exponential growth in the collection of genomic and 
proteomic data in the past 20  years has provided major 
advances in understanding the molecular mechanisms of 
human cancer, which has been applied to diagnostic and 
treatment strategies. Targeted therapies have been developed 
and adopted, particularly for advanced, refractory or recur-
rent cancers, depending on individual molecular profiles. The 
aim of the present review is to provide a report of the current 
literature regarding the molecular biology of gynecological 
cancers.
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1. Introduction

Cancer is a complex collection of diseases that arise due to 
genetic and epigenetic alterations that interfere with cellular 
growth and death  (1). Specific molecular alterations that 
induce a normal cell to become malignant, defined as the 
ability to invade and metastaize from the primary lesion, 
have been revealed, but the spectrum of these alterations 
vary substantially among cancers. It is now recognized that 
metastasis is dependent on a balance of stimulating signals 
and inhibitory factors, which must be weighted in favor of the 
stimulating signals to result in metastasis (2). Stem cell studies 
have provided valuable information for cancer biology. As 
studies continue to understand the role of cancer stem cells, 
the resulting information is likely to lead to novel approaches 
to target cancer cells (3). Although conventional combinations 
of surgery, radiation and chemotherapy remain the main-
stay of cancer treatment, it is challenging to treat advanced 
or recurrent cancers in this way. An exponential growth 
in the collection of genomic and proteomic data in the past 
20 years has resulted in the development of various targeted 
therapies (4). In addition, recent advances in biochemical engi-
neering should contribute to a major evolution in the diagnosis 
and treatment of human cancer (5). The initial sections of 
the present review examine the literature regarding the basic 
molecular mechanisms involved in the development of cancers 
and the expansion of the malignant phenotype. The molecular 
changes characteristic of gynecological cancers are outlined 
in section 5.

2. Oncogenesis

At least 3‑6 changes are considered to be required to trans-
form a cell (6). The majority of cancer cells are genetically 
unstable, and this leads to an accumulation of numerous 
secondary molecular alterations that play a role in the evolu-
tion of malignant characteristics, including immortality, 
invasion, metastasis and resistance to therapy (7). Epigenetics 
are hereditary changes that do not originate from DNA muta-
tion  (8). The primary mechanism of epigenetic alteration, 
which is regulated by a family of DNA methyltransferases, is 
methylation of cytosine residues that reside next to guanine (9). 
The majority of cancer types comprehensively reduce DNA 
methylation, a reduction that may contribute to genomic 
instability (10). Selective hypermethylation of cytosines in the 
promoter regions of tumor suppressor genes may lead to the 
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inactivation of the genes, and this may result in carcinogen-
esis (11). Acetylation and methylation of the histone proteins 
that package and order the DNA into structural units, acts as 
another level of epigenetic regulation (11). These genetic and 
epigenetic alterations may become therapeutic targets against 
cancer.

Alterations in genes that stimulate cellular growth (onco-
genes) are able to cause the malignant transformation of 
cells (12). Oncogenes are activated by several mechanisms, 
as follows: First, through the amplification of the oncogenes, 
which results in overexpression of the corresponding proteins; 
second, point mutations may overactivate oncogenes; and 
third, oncogenes may be translocated from one chromosome 
to another, affecting the promoter regions and resulting 
in overexpression of the gene  (13). The third mechanism 
continually occurs in lymphomas and leukemias (14). Peptide 
growth factors, such as epidermal growth factor (EGF), 
platelet‑derived growth factor, and fibroblast growth factor 
families, stimulate intracellular molecular pathways that lead 
to proliferation (15‑17). Growth factor receptors that exist on 
the cell membrane are composed of an extracellular domain, 
a transmembrane region, and a cytoplasmic tyrosine kinase 
domain (18). Following binding of a growth factor, the receptor 
undergoes a conformational change, resulting in the activation 
of the tyrosine kinase in the cytoplasmic domain. The tyrosine 
kinase phosphorylates tyrosine residues on the receptor itself 
and on downstream molecular targets in the cytoplasm (19).

G‑protein coupled receptors (GPCRs) are cell membrane 
receptors that contain a 7‑transmembrane α‑helical fold, which 
transduces extracellular information into intracellular signal 
transduction pathways  (20). GPCR signaling pathways are 
extremely complex and include the Ras superfamily guanosine 
triphosphatase (GTPase), one of the most frequently mutated 
oncogenes in humans (21). Harvey rat sarcoma viral oncogene 
homolog (H‑RAS), Kirsten rat sarcoma viral oncogene homolog 
(K‑RAS) and neuroblastoma rat sarcoma viral oncogene 
homolog are isoforms of the Ras protein and promote carci-
nogenesis when they are activated by mutations at codon 12, 
13 or 61 (22). Although a high degree of similarity exists among 
the isoforms, K‑RAS mutations are most frequently identified 
in cancer and each isoform demonstrates preferential asso-
ciation to particular cancer types (23). B‑Raf proto‑oncogene, 
serine/threonine kinase (BRAF) is a serine/threonine‑specific 
protein kinase that interacts with Ras proteins in activating 
the MAP kinase pathway  (24). Notably, the most common 
BRAF mutation, the V600E transversion, has been identified 
in numerous types of human cancer (25). Signals generated in 
the cell membrane and cytoplasm, following GPCR binding, 
result in the activation of nuclear transcription factors that are 
responsible for stimulating cell growth, including the FOS and 
JUN oncogenes that form the activator protein 1 transcription 
complex by dimerization (26). The MYC gene family is also 
involved in the development of human malignancies (27), and 
when inappropriately amplified or overexpressed, these tran-
scription factors may act as oncogenes.

Loss of tumor suppressor gene function plays a role in 
tumorigenesis (28). Statistical analysis of cancer incidence 
has proposed the two‑hit theory for the inactivation of tumor 
suppressor genes; mutations in each of the alleles are necessary 
for the loss of tumor suppressor gene function (7). However, 

subsequent interpretations of the analysis indicated that muta-
tions in tumor suppressor genes are not absolutely recessive (7). 
Haploinsufficiency is a condition where only a single functional 
copy of a gene is produced (29). In a tumor suppressor gene, 
haploinsufficiency leads to the development of cancer  (30). 
The phenotypic penetrance of tumor suppressor gene muta-
tions may be affected, not only by the nature of the mutation 
itself, but also by other clinicopathological variables, including 
genetic background, tissue type and environmental factors (31). 
Certain tumor suppressor genes are inactivated by methylation 
of the promoter region of the gene (32). Examples include the 
retinoblastoma gene (RB1) in retinoblastoma  (33), the Von 
Hippel‑Lindau gene in renal carcinomas (34), the BRCA gene 
in breast cancer (35) and the APC gene in colorectal cancer (36). 
RB1 was the first tumor suppressor gene to be identified (37), 
and plays a pivotal role in the regulation of cell cycle progres-
sion. In the G1 phase of the cell cycle, the Rb protein, which is 
upregulated when RB1 is transcribed, binds to the E2F tran-
scription factor and prevents cell cycle progression (38). When 
Rb is phosphorylated by cyclin and cyclin‑dependent kinase 
(cdk) complexes, E2F is released and the cell cycle progresses. 
The RB1 gene mutation has been identified in retinoblastoma 
and certain types of sarcoma, but rarely in other types of cancer, 
unlike the tumor protein p53 (TP53) tumor suppressor gene, 
which is mutated in the majority of human cancers (39,40).

The p53 protein is a sensor of multiple forms of genetic 
toxicities and oncogenic stresses. Since the p53 protein represses 
growth and regulates the survival of stressed cells, it has been 
described as the ‘guardian of the genome’  (7). The clonal 
expansion of cells with the TP53 gene mutation may proceed 
to carcinogenesis (41). Numerous cancer cells possess missense 
mutations in exons 5‑8 in one copy of the TP53 gene, which 
encode the DNA binding domains, and even though a deletion 
of the other copy of the TP53 gene does not occur, the mutant 
p53 protein is able to complex with the wild‑type p53 protein 
and disturb the interaction between the wild‑type p53 protein 
and DNA in a dominant negative fashion (42).

Although numerous tumor suppressor genes encode nuclear 
proteins, such as TP53 and RB1, certain intra‑cytoplasmic tumor 
suppressor molecules have been identified, including: Phos-
phatase and tensin homolog (PTEN), which inhibits invasion 
and metastasis by modulating the cytoskeleton (43); a mutant 
version of the APC gene that is responsible for familial adeno-
matous polyposis syndrome (44); and transforming growth 
factor‑β (TGF‑β) protein, which is coded by the TGFB1 gene 
and inhibits the proliferation of normal epithelial cells (45). 
Additionally, the altered expression of microRNAs, which are 
single RNA strands of 21‑23 nucleotides, has been detected in 
numerous cancers (46).

Families with inherited mutations in genes susceptible to 
cancer exhibit a high incidence of specific types of cancer (47). 
In addition, the age of cancer onset is younger and certain indi-
viduals experience multiple primary cancers (48,49). Mutations 
of tumor suppressor genes and DNA mismatch repair genes are 
usually involved in familial cancer syndromes, such as breast 
cancer 1, early onset (BRCA1) and breast cancer 2, early onset 
(BRCA2) in hereditary breast or ovarian cancer syndrome (50), 
APC in familial adenomatous polyposis syndrome (51), and 
MSH2, MLH1 and MSH6 in hereditary nonpolyposis colorectal 
cancer syndrome (HNPCC) (52).
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3. Escape from cell death

The number of cells in normal tissues is strictly controlled by 
a balance between cell growth and death. Cell proliferation 
is regulated by the cell cycle, in which numerous molecules, 
are involved, including TP53, Rb, E2F, cyclins and cdks (53). 
Cancer cells lose cell cycle regulatory systems and are resis-
tant to death and senescence (54). The three major cell death 
pathways are apoptosis, necrosis and autophagy (55). Apoptosis 
is an energy‑dependent process in which DNA and proteins 
are cleaved by endonucleases and proteases, respectively (56). 
Apoptotic stimuli are delivered through an extrinsic or intrinsic 
pathway and may contribute to the prevention of cancer by 
eliminating transformed cells (57). Necrosis of cells instigates a 
strong immune response, and various anticancer agents stimu-
late a beneficial immune response by enhancing the necrosis of 
tumor cells (58). Autophagy is characterized by the degrada-
tion of cellular proteins and organelles in fused cytoplasmic 
autophagic vesicles and lysosomes (59). Cellular senescence is 
regulated by progressive shortening of telomeres (60). Cancer 
cells are capable of avoiding senescence by enhancing a 
ribonucleoprotein complex telomerase, and in gynecological 
malignancies high activity levels of telomerase are identi-
fied (61).

With regard to immune surveillance, cancer cells have 
developed mechanisms to evade immune responses and prolong 
survival. The receptor‑binding cancer antigen (RCAS1), which is 
expressed on SiSo cells, may induce apoptosis in immune cells, 
including peripheral lymphocytes and natural killer cells (62). 
The involvement of RCAS1 in tumor cell escape from immune 
surveillance has been investigated using clinical specimens, as 
reviewed by Giaginis et al (63). In cervical cancer, the number 
of tumor cells expressing RCAS1 was significantly associated 
with the number of apoptotic lymphocytes at the primary site 
and in metastatic lymph nodes (64). In glioma and oral squa-
mous cell, lung, breast, esophageal, gastric, biliary tract and 
colon cancers, increased numbers of apoptotic lymphocytes or 
decreased numbers of tumor‑infiltrating lymphocytes have been 
reported (65). These observations suggest that RCAS1 plays a 
pivotal role in tumor cell evasion of immune surveillance. The 
signal transduction pathways that induce apoptosis following 
RCAS1  stimulation have been assessed; RCAS1  induced 
p38 MAPK phosphorylation (66), cytochrome c release and 
activation of caspase‑3, but decreased cyclin D3 levels (67). 
However, RCAS1‑induced apoptosis is strongly inhibited by 
the cysteine protease inhibitor benzyloxycarbonyl‑Val‑Ala‑Asp 
fluoromethylketone (62).

4. Angiogenesis, invasion and metastasis

Angiogenesis is required for cancer cell proliferation. Various 
mediators of angiogenesis have been reported, including vascular 
endothelial growth factor (VEGF), interleukin‑8 and matrix 
metalloproteinases (MMP) (68). Targeted therapy against angio-
genesis using bevacizumab, a humanized VEGF‑neutralizing 
monoclonal antibody, improved the median progression‑free 
survival (PFS) rate in advanced ovarian cancer (69). Burger et al 
reported that the use of bevacizumab during and following 
carboplatin and paclitaxel chemotherapy prolonged the median 
progression‑free survival time in patients with advanced 

epithelial ovarian cancer (69). In addition, debulking surgery 
following neoadjuvant chemotherapy, such as bevacizumab, did 
not increase the rate of post‑operative complications (70).

A crucial first step of metastasis is invasion of cancer cells 
through the basement membrane of tissues. MMPs promote 
cancer cell invasion and endothelial cell migration (71) and were 
reported to be expressed at the invasive front of endometrial and 
ovarian cancer (72). Furthermore ovarian cancers that over-
express MMP‑2 and MMP‑9 demonstrate aggressive clinical 
characteristics  (73,74). Adhesion molecules including focal 
adhesion kinase, integrins and E‑cadherin may facilitate cancer 
progression. Sawada et al reported that α5‑integrin upregulation 
was a molecular mechanism that led to a loss in E‑cadherin, 
thereby promoting ovarian cancer cell metastasis  (75). The 
propensity of various types of cancer to metastasize in specific 
organs was first proposed by Paget in 1889 (76). Paget's hypoth-
esis stated that metastasis resulted from the dependence of the 
seed (cancer cell) on the soil (metastatic site), and was devised 
due to the non‑random pattern observed with metastasis. Recent 
studies provide important information for this non-random 
pattern of metastasis. Breast cancers frequently metastasize to 
the lung, liver and bone marrow (77). Tumor cells also express 
high levels of chemokine (C‑X‑C motif) receptor 4 and CC 
chemokine receptor 7, and chemokine proteins chemokine 
(C‑X‑C motif) ligand 12 and chemokine (C‑C motif) ligand 
21 are detected at high levels in metastatic sites (78).

Several studies have suggested that RCAS1 may be involved 
in the aggressive characteristics of human malignancies, not only 
by helping tumor cells to evade immune surveillance, but also 
by inducing cancer stromal tissue remodeling (79). For example, 
in cervical cancer, RCAS1 expression levels were significantly 
correlated with those of MMP‑1, an interstitial collagenase, 
and laminin‑5, an extracellular matrix molecule (80), which 
have been reported to be involved in tumor invasion and 
metastasis  (81‑82). Additionally, the number of stromal 
vimentin‑positive cells was revealed to decrease in associa-
tion with the RCAS1 expression level in cervical and ovarian 
cancer (79,84). The reduction in vimentin expression may result 
in tumor progression, since vimentin is involved in apoptosis (83) 
and the mechanical stability of stromal cells (85‑87). Further-
more, RCAS1 expression is significantly associated with VEGF 
expression and microvessel density in cervical cancer  (88). 
RCAS1 is hypothesized to induce VEGF expression through the 
TGF‑β and MAPK signaling pathways. Liby et al reported that 
a blockade of protein kinase B (Akt)‑3 resulted in smaller and 
less vascularized tumors with a downregulation of RCAS1 and 
VEGF expression in a xenograft mouse model (89). MMPs and 
laminin also play an important role in angiogenesis via regula-
tion of extracellular matrix degradation and remodeling (90).

5. Gynecological malignancies

Cervical cancer. Worldwide, cervical cancer was the fourth 
most commonly diagnosed malignancy in women in 2012, with 
an estimated 527,600 novel cases and 265,700 fatalities (91). 
Overall, ~85% of novel cases and mortalities occurred in 
developing countries. Human papilloma virus (HPV) has been 
reported to play a pivotal role in the carcinogenesis of cervical 
cancer (92). HPV DNA is composed of 7,800 nucleotides that 
include early and late open reading frames (ORFs) (93). Early 
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ORFs encode 7 proteins, termed E1‑7, that are involved in 
viral replication and host cell transformation (94). Late ORFs 
encode structural proteins of the virion, such as L1 and 2. 
Cellular transformation may be associated with the integration 
of HPV DNA into the host genome, for example E6 and 7 bind 
to and inactivate p53 and Rb, respectively, resulting in trans-
formation. This observation suggests that the oncogenic 
potential of HPV is associated with the binding affinities of 
E6 and 7 (95,96).

The majority of HPV infections spontaneously regress, 
and only a small proportion of HPV‑infected individuals 
develop cervical cancer (97). Additive molecular alterations 
to HPV infections are considered to be required for the 
progression to cervical cancer, but these changes are not yet 
fully understood. Comparative genomic hybridization analysis 
has revealed the addition of chromosomes 1q and 3q and the 
loss of chromosomes 2q, 3p and 11q in cervical cancer (97). 
The fragile histidine triad gene (FHIT) is located in chromo-
some 3p and FHIT expression is frequently reduced in cervical 
cancer (98). Since allelic losses and homozygous deletions, 
as well as loss of heterozygosity, are frequently detected in 
microsatellites in FHIT, alterations and inactivation of the 
FHIT gene are presumed to contribute to and accelerate 
cervical carcinogenesis, for example decreased expression of 
FHIT and overexpression of p16 and c‑myc are considered 
to be early events in cervical cancer (99). Mutations in the 
K‑RAS or H‑RAS genes are suggested to be a late event for 
cervical carcinogenesis (100). RCAS1 expression has been 
immunohistochemically studied during the carcinogenesis of 
cervical cancer and was not detected in dysplasias; however, 
20% of carcinomas in situ, 16% of microinvasive carcinomas, 
and 82% of invasive carcinomas stained for the expression of 
RCAS1 (101). Therefore, RCAS1 expression may be associated 
with tumor progression and invasion in the squamous cell 
epithelium of the cervix.

Endometrial cancer. Endometrial cancer is the most 
commonly diagnosed gynecological malignancy in developed 
countries (102). In the USA, a projected 54,870 patients are 
expected to be diagnosed and 10,170 cases are expected to 
be fatal in 2015 (103). Between 2006 and 2010, the incidence 
of novel cases of endometrial cancer increased by 1.5% 
per year among females aged <50 years and 2.6% per year 
among females aged ≥50 years. In the same period, mortality 
from endometrial cancer increased by 1.5% per year among 
females aged <50 years, but were stable among females aged 
≥50 years. The majority of endometrial cancers are sporadic, 
~5% of cases are considered to be hereditary and caused by 
DNA mismatch repair gene mutations  (104). Endometrial 
cancer is the second most commonly diagnosed malignancy in 
females with HNPCC (105).

Endometrial cancers are classified as Type  I  or  II, 
according to clinicopathological variables (106). Type I endo-
metrial cancer arises from preneoplastic lesion hyperplasia 
that has undergone unchecked estrogenic stimulation (107). 
During menopause, estrogens are produced from androgens 
secreted from adrenal glands and non‑specialized ovarian 
stroma. Niwa et al reported that estrone was the most effec-
tive estrogen to promote endometrial carcinogenesis in a 
mouse model  (108). Almost 80% of Type  I endometrioid 

adenocarcinomas exhibited a loss of PTEN expression (109), 
and mutations of K‑RAS and β‑catenin are frequently 
detected (110). Microsatellite instability (MSI) is a significant 
genetic alteration demonstrated in almost 45% of endometrial 
cancer lesions (111) that results from impaired DNA mismatch 
repair. Cells without normally functioning DNA mismatch 
repair cannot correct errors, including single base mismatches, 
insertions and deletions during DNA replication. Mismatch 
repair gene MLH1 deficiency, caused by epigenetic hyper-
methylation in its promoter region, is most frequently observed 
in sporadic endometrial adenocarcinomas. Loss of PTEN 
expression, K‑RAS mutation and MSI are suggested to be 
early events in endometrial carcinogenesis. Type II carcinomas 
develop from atrophic endometrium and are frequently serous 
or clear cell adenocarcinomas. TP53 mutations occur in ~90% 
of serous adenocarcinomas and are almost always associated 
with aneuploidy (112). p16 inactivation, HER2 overexpression, 
and reduced E‑cadherin expression are observed in ~45, 70, 
and 80% of cases, respectively (113,114).

RCAS1 expression was investigated during the carcinogen-
esis of endometrial cancer, and was significantly increased in 
endometrial adenocarcinoma compared with normal cells or 
hyperplasias, suggesting that RCAS1 expression may be asso-
ciated with oncogenic transformation (115). RCAS1 expression 
was revealed to be inversely correlated with the prognosis of 
patients with endometrial cancer (116).

Ovarian cancer. The majority of ovarian cancers are sporadic 
and arise from an accumulation of genetic damage  (117). 
Ovarian cancers are heterogeneous regarding histopathology 
and malignant potential; therefore, the characteristic patterns 
of molecular signature are also varied (118). Serous borderline 
tumor and low‑grade serous adenocarcinoma are frequently 
characterized by mutations in K‑RAS and BRAF  (119). 
Sporadic high‑grade serous adenocarcinoma is usually 
advanced at diagnosis and the prognosis of patients is poor. 
Ovarian cancer has frequent mutations in TP53 and occasional 
overexpression of HER‑2/neu, AKT2 and MYC (120,121). 
Endometrioid and clear cell adenocarcinomas have been 
suggested to associate with endometriosis and possess frequent 
mutations of PTEN and PIK3CA (122). Mucinous adeno-
carcinoma is usually diagnosed at an early stage of disease 
and characterized by mutations in K‑RAS  (123). In total, 
~10% of ovarian cancers are attributable to inherited muta-
tions of cancer susceptibility genes, including BRCA1 and 
BRCA2  (124), and high‑grade serous adenocarcinoma is 
a predominant histological type in patients with inherited 
BRCA mutations. BRCA1 and BRCA2 are located in chromo-
some 17q and 13q, respectively (125). Since the BRCA1 and 
BRCA2 proteins complex with Rad51 recombinase and other 
molecules that are involved in the repair of DNA double strand 
breaks by homologous recombination, BRCA1 and BRCA2 are 
classified as tumor suppressor genes (126). The life‑time risk 
of ovarian cancer ranges between 20‑40% and 10‑20% in 
BRCA1 and BRCA2 carriers, respectively, and the median 
age of patients is 40‑50 years old (127-129). Poly(adenosine 
diphosphate‑ribose) polymerase (PARP) is involved in the 
repair of DNA single strand breaks by base excision. The effi-
cacy of a PARP inhibitor was investigated in ovarian cancer 
patients with BRCA mutations (130). Randomized phase II 
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studies of platinum‑sensitive recurrent high-grade serous 
cancers (both germline BRCA and sporadic) showed that 
patients treated with a PARP inhibitor exhibited a significant 
improvement in PFS when compared with patients who were 
administered a placebo (131).

Lysophosphatidic acid, heparin‑binding EGF (HB‑EGF) 
and amphiregulin, have been reported to play pivotal roles in 
proliferation and dissemination of ovarian cancer (132,133). 
Yagi et al reported that inhibitory agents against HB‑EGF, 
including CRM197, were possible chemotherapeutic and 
chemosensitizing agents for ovarian cancer (134). The clinical 
application of novel treatments which target these molecules  
is expected in the future.

6. Conclusion

Since it is challenging to treat advanced or recurrent cancers 
using conventional treatments, the development of novel and 
highly specific targets for therapy is required. An exponential 
growth in the collection of genomic and proteomic data in the 
past 20 years has provided major advances in understanding 
the molecular mechanisms of human cancer. This progress has 
resulted in the development of targeted therapies tailored to an 
individual molecular profile. Recent advances in biochemical 
engineering should contribute to major evolution in diagnosis 
and treatment of human cancer.
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