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Abstract. The present study aimed to identify genes with a differ-
ential pattern of expression in gastric cancer (GC), and to find 
novel molecular biomarkers for GC diagnosis and therapeutic 
treatment. The gene expression profile of GSE19826, including 
12 GC samples and 15 normal controls, was downloaded from 
the Gene Expression Omnibus database. Differentially-expressed 
genes (DEGs) were screened in the GC samples compared 
with the normal controls. Two-way hierarchical clustering of 
DEGs was performed to distinguish the normal controls from 
the GC samples. The co‑expression coefficient was analyzed 
among the DEGs using the data from COXPRESdb. The gene 
co-expression network was constructed based on the DEGs using 
Cytoscape software, and modules in the network were analyzed 
by ClusterOne and Bingo. Furthermore, enrichment analysis of 
the DEGs in the modules was performed using the Database 
for Annotation, Visualization and Integrated Discovery. In 
total, 596 DEGs in the GC samples and 57 co‑expression gene 
pairs were identified. A total of 7 genes were enriched in the 
same module, for which the function was phosphate transport 
and which was annotated to participate in the extracellular 
matrix-receptor interaction pathway. These genes were collagen, 
type VI, α3 (COL6A3), COL1A2, COL1A1, COL5A2, thrombo-
spondin 2, COL11A1 and COL5A1. Overall, the present study 
identified several biomarkers for GC using the gene expression 
profiling of human GC samples. The COL family is a promising 
prognostic marker for GC. Gene expression products represent 
candidate biomarkers endowed with great potential for the early 
screening and therapy of GC patients.

Introduction

Gastric cancer (GC) is one of the leading causes of 
cancer-related mortality worldwide, and is particularly 
prevalent in East Asian countries, including China, Japan and 

Korea (1). Each year, ~990,000 people are diagnosed with GC 
worldwide; ~738,000 of whom succumb to the disease (2). The 
high patient mortality rate is due to the fact that the clinical 
manifestations of GC usually only become apparent at an 
advanced disease stage, when the current available therapies 
will have a limited effect (3,4). Therefore, it is of utmost 
importance to understand the associated mechanisms and to 
identify biomarkers for the development of strategies for the 
screening, early detection and treatment of GC.

GC is a complicated and multifactorial disease, and 
environmental and genetic factors play important roles in its 
etiology (5). One of the characteristics of gastric malignant cells 
is metastasis, whereby cancer cells penetrate vascular channels 
and invade parenchymal tissue to form satellite tumors in distant 
organs (6). In this process, the extracellular matrix (ECM) 
and the basement membrane provide a protective barrier to 
prevent cancer cell invasion and metastasis (7). Similar to other 
malignancies, gene expression profiling using complementary 
DNA microarrays has been used to identify genes involved 
in gastric carcinogenesis, and to identify novel diagnostic and 
prognostic markers for GC (8‑11). Recent studies have reported 
genetic alterations in GC, involving tumor suppressor genes, 
cell adhesion molecules, oncogenes and growth factors, such as 
p53, trefoil factor 1 and E-cadherin (10,12-15). However, these 
studies have yielded few useful biomarkers, most likely due to 
shortcomings concerning the experimental design, the validity 
of the supporting statistical analysis and the gene selection in 
the studies. Thus, the present study focused on the gene expres-
sion profiling of GC to identify novel biomarkers in this disease.

With the same gene expression profile, Wang et al performed 
gene set enrichment analysis and identified that increased INHBA 
expression was associated with poor survival in GC (16). A 
study by Liu et al demonstrated that the ECM‑receptor and cell 
cycle pathways may play important roles in GC (17). In addition, 
a study using the same microarray data revealed high periostin 
expression in GC tissues, which was associated with gene 
groups that regulated the cell proliferation and cell cycle (18). 
The present study analyzed the differentially‑expressed genes 
(DEGs) in GC using gene expression profiling. Comprehensive 
bioinformatics was used to analyze the significant pathways 
and functions, and to construct the gene co-expression network 
and sub-network to investigate the critical DEGs of GC. The 
study aimed to obtain a better understanding of the molecular 
circuitry in GC and to identify genes potentially useful as novel 
diagnostic or therapeutic markers for GC.
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Materials and methods

Affymetrix microarray data. The gene expression profile 
of GSE19826 (16) was downloaded from the Gene Expres-
sion Omnibus database (19), which freely distributes 
high-throughput molecular abundance data, largely gene 
expression data generated by microarray technology. The plat-
form information is as follows: GPL570 [HG‑U133_Plus_2] 
Affymetrix Human Genome U133 Plus 2.0 Array (Affymetrix 
Inc., Santa Clara, CA, USA). In this dataset, 12 cancerous 
portions of gastric specimens (from Chinese patients) and 15 
normal gastric tissues (controls) were included.

Data preprocessing and screening of DEGs. The preprocessed 
microarray data were obtained and then log2 transformation 
was performed on these data. The most popular method, the 
Linear Models for Microarray data (limma) package (20) in 
R language (21), was used to analyze the chip data. Upregu-
lated and downregulated genes were identified between GC 
and normal controls. The false discovery rate (FDR) (22) was 
utilized for multiple testing correction using the Benjamini 
and Hochberg method (23). The threshold for the DEGs was 
set as |log2 fold change (FC)|>1.5 and FDR <0.05.

Hierarchical clustering. Hierarchical clustering methodology 
is a powerful data mining approach that has been extensively 
applied to identify groups of similarly expressed genes or condi-
tions from gene expression data. In order to reveal sets of samples 
in which the closest groups were adjacent, two-way hierarchical 
clustering analysis (24) was performed on genes and condi-
tions using Euclidean distance (25) by the ‘pheatmap’ package 
(http://cran.r‑project.org/web/packages/pheatmap/index.html) 
in R language. The result was represented by a heatmap.

Co‑expression network construction of DEGs. From the 
perspective of systems biology, functionally-related genes 
are frequently co-expressed across a set of samples (26). 
COXPRESdb (http://coxpresdb.jp) provides co‑expression 
associations for multiple species of mammals, as comparisons 

of co-expressed gene lists can increase the reliability of gene 
co‑expression determinations (27). The gene co‑expression 
network was constructed to assess the functional associations 
between co-expressed genes of DEGs using COXPRESdb, 
in which genes were indexed by their Entrez Gene IDs. To 
obtain the co-expression associations, a Pearson Correlation 
Coefficient >0.6 was chosen as the threshold.

Selection of modules in co‑expression network. Gene products 
in the same module often have the same or similar functions, 
and they work together to perform one bio‑function (28). 
Therefore, the network was visualized using Cytoscape (29) 
and module division was made by using the plugin Clus-
terOne (30) in Cytoscape (parameters: Minimum size, 3; 
overlap threshold, 0.8), then module function was annotated 
using another plugin‑Bingo (31) and the significant function of 
each module was achieved.

Function and pathway enrichment analysis of DEGs in 
modules. Gene Ontology and Kyoto Encyclopedia of Genes 
and Genomes enrichment analyses were performed for the 
DEGs in the co-expression network using the online tool, 
DAVID (32). P<0.05 was used to indicate statistical signifi-
cance.

Results

DEG screening. Following data preprocessing, 42,450 genes 
were mapped to the probes; the gene expression profile after 
normalization is shown in Fig. 1. The black lines in each of the 
boxes, representing the medians of each dataset, are almost 
in a straight line, indicating a good degree of standardization. 
Compared with the normal tissues, a total of 596 genes were 
differentially expressed, consisting of 182 upregulated and 
414 downregulated genes.

Hierarchical clustering. The hierarchical clustering algorithm 
was used to group the genes and samples on the basis of simi-
larities of gene expression. In the results shown in Fig. 2, one 

Figure 1. Normalized expressed value data. The black line in each box represents the median of each set of data, which determines the degree of standardiza-
tion of data through its distribution.
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normal sample was grouped into the region of GC samples, 
suggesting that 93.33% of samples were classified correctly. 
Thus, the DEGs screened had significant expression patterns 
that could distinguish the disease samples from the normal 
controls.

Co‑expression network construction and module selection. A 
total of 57 co‑expressed gene pairs were determined between 
DEGs. In Fig. 3, the upregulated and downregulated genes tended 

to connect up, respectively. The study identified 4 modules from 
the network (Fig. 4). The function of the DEGs in each module 
is presented in Table I. Module 1 had one upregulated gene, 
PDZ and LIM domain 7 (PDLIM7). Genes in modules 2 and 
4, which mostly belonged to the collagen (COL) family, were 
significantly associated with phosphate transport.

Pathway annotation of the DEGs in modules. Two pathways 
were found to be enriched (Table II), the ECM‑receptor 

Table I. Functions of the genes in the modules.

GO‑ID corr P‑value N Description Genes in test set

Module 1
  31214 4.30x10-2 2 Biomineral formation CASR, PDLIM7
  1503 4.30x10-2 2 Ossification CASR, PDLIM7
Module 2
  6817 8.57x10‑8 5 Phosphate transport COL6A3, COL1A2, COL1A1, COL5A2, COL5A1
  15698 7.47x10‑7 5 Inorganic anion transport COL6A3, COL1A2, COL1A1, COL5A2,  COL5A1
  6820 1.25x10-6 5 Anion transport COL6A3, COL1A2, COL1A1, COL5A2, COL5A1
  6811 8.30x10-4 5 Ion transport COL6A3, COL1A2, COL1A1, COL5A2, COL5A1
  6810 3.10x10-2 5 Transport COL6A3, COL1A2, COL1A1, COL5A2, COL5A1
  48513 1.76x10-4 6 Organ development FAP, COL6A3, FBN1, COL1A2, COL1A1, COL5A2
  48731 9.03x10-4 6 System development FAP, COL6A3, FBN1, COL1A2, COL1A1, COL5A2
  48856 1.64x10-3 6 Anatomical structure FAP, COL6A3, FBN1, COL1A2, COL1A1, COL5A2
   development
  7275 4.45x10-3 6 Multicellular organismal FAP, COL6A3, FBN1, COL1A2, COL1A1, COL5A2
   development
  51234 1.03x10-2 6 Establishment of localization FAP, COL6A3, COL1A2, COL1A1, COL5A2, COL5A1
  32502 1.29x10-2 6 Developmental process FAP, COL6A3, FBN1, COL1A2, COL1A1, COL5A2
  51179 1.62x10-2 6 Localization FAP, COL6A3, COL1A2, COL1A1, COL5A2, COL5A1
  32501 2.24x10-2 6 Multicellular organismal FAP, COL6A3, FBN1, COL1A2, COL1A1, COL5A2
   process
Module 3
  6936 2.46x10-3 2 Muscle contraction MYL1, KBTBD10
  3012 2.46x10-3 2 Muscle system process MYL1, KBTBD10
Module 4
  6817 7.88x10-4 3 Phosphate transport COL6A3, COL12A1, COL1A1
  15698 2.15x10-3 3 Inorganic anion transport COL6A3, COL12A1, COL1A1
  6820 2.47x10-3 3 Anion transport COL6A3, COL12A1, COL1A1
  22610 2.64x10-2 3 Biological adhesion COL6A3, COL12A1, THBS2
  7155 2.64x10-2 3 Cell adhesion COL6A3, COL12A1, THBS2
  6811 3.28x10-2 3 Ion transport COL6A3, COL12A1, COL1A1
  48513 1.16x10-2 4 Organ development FAP, COL6A3, COL12A1, COL1A1
  48731 2.64x10-2 4 System development FAP, COL6A3, COL12A1, COL1A1
  48856 3.20x10-2 4 Anatomical structure  FAP, COL6A3, COL12A1, COL1A1
   development
  7275 3.46x10-2 4 Multicellular organismal FAP, COL6A3, COL12A1, COL1A1
   development
  51234 4.04x10-2 4 Establishment of localization FAP, COL6A3, COL12A1, COL1A1
  32502 4.11x10-2 4 Developmental process FAP, COL6A3, COL12A1, COL1A1
  51179 4.52x10-2 4 Localization FAP, COL6A3, COL12A1, COL1A1

Corr P‑value, corrected P‑value; N, nodes; GO‑ID, gene ontology identification.
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interaction and focal adhesion pathways. Of these, the 
ECM‑receptor interaction pathway was most significantly 
enriched (P=9.44x10-5), and 7 genes [collagen, type VI, α3 
(COL6A3), COL1A2, COL1A1, COL5A2, thrombospondin 2 
(THBS2), COL11A1 and COL5A1] were predicted to partici-
pate in the pathway.

Discussion

GC is the fourth most frequently occurring malignant 
tumor worldwide, with high incidence and mortality rates. 
Therefore, it is of great importance to conduct research on 
the treatment of GC (33). Major efforts are being made to 
understand GC at a molecular level (34). Since microarrays 
can simultaneously investigate the expression levels of thou-
sands of genes in the human genome, use of the technique 
has been widely applied in the identification of disease 
biomarkers (26,35). In the present study, a total of 596 DEGs 
were identified in the GC samples compared with the normal 
controls. Furthermore, the co-expression interaction network 
of DEGs was construction and 4 modules were identified. 
The upregulated PDLIM7 gene was enriched in module 

1, while 7 other upregulated genes (COL6A3, COL1A2, 
COL1A1, COL5A2, THBS2, COL11A1 and COL5A1) were 
involved in the ECM‑receptor interaction pathway. The COL 
family of genes were mainly enriched in module 2, for which 
the function was phosphate transport.

Figure 2. Heat-map overview of the two-way hierarchical clustering analysis 
of the differentially-expressed genes. Blue coloration indicates decreased 
expression in GC and red coloration indicates increased expression in GC. 
Samples (12 GC and 15 controls) are represented by columns. The red box 
represents the normal sample that was enriched into the cancer samples group.

Figure 4. Selected modules from the gene co-expression network. Green 
nodes represent downregulated genes. Red nodes indicate upregulated genes.

Figure 3. Co-expression network of differentially-expressed genes. Green 
nodes represent downregulated genes. Red nodes indicate upregulated genes.

Table II. Significant pathways of DEGs in the selected modules.

Term Count FDR Genes

hsa04512: ECM‑receptor interaction 7 9.44x10-5 COL6A3, COL1A2, COL1A1, COL5A2, THBS2, COL11A1,
   COL5A1
hsa04510: Focal adhesion 8 9.10x10-4 PGF, COL6A3, COL1A2, COL1A1, COL5A2, THBS2,
   COL11A1, COL5A1

Term represents the pathway name. Count represents the number of DEGs enriched in each pathway. DEGs, differentially-expressed genes; 
FDR, false discovery rate; ECM, extracellular matrix.
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COL1A1 and COL1A2 encode the α1 and α2 chains 
of type I collagen, respectively (36). Collagen is the main 
constituent of the ECM component in tumors, and a number of 
collagen types have been found in GC tissues (37). The major 
constituents of the ECM are collagens, adhesive glycopro-
teins and proteoglycans (38). Specific interactions between 
cells and ECM‑mediated cell‑surface‑associated compo-
nents and transmembrane molecules result in the control 
of cellular activities, such as adhesion and migration (39). 
Matsui et al showed that collagen degradation, which was an 
essential step in the tumor cell invasion of the surrounding 
tissues, was increased in GC tissues (40). Su et al reported 
that COL1A1 and COL1A2 were commonly upregulated in 
GC, and were associated with invasion and metastasis (41). In 
line with this previous study, the present results showed that 
COL1A1 and COL1A2 were upregulated in GC, suggesting 
that they play an important role in cancer cell invasion and 
metastasis in this disease. On the other hand, the COL family 
genes were mainly enriched in modules 2 and 4, for which 
the function is phosphate transport. COL6A3 was clustered 
into module 2. COL6A3 encodes one of the three α chains of 
type VI collagen. Another significant DEG that was enriched 
in GC was COL11A1, another member of the COL family, 
which encodes one of the two α chains of type XI collagen. 
Using microarray technology, COL6A3 and COL11A1 levels 
have been proven to be elevated in GC endothelium when 
compared with normal endothelium (42,43). The present 
study demonstrated that COL6A3 and COL11A1 were 
upregulated and participated in the ECM‑receptor interac-
tion pathway, which was in line with these previous studies. 
Taken together, the results indicated that the COL family in 
the present study may be molecular biomarkers for GC.

THBS2, which has demonstrated functions as a potent 
inhibitor of tumor growth and angiogenesis, is a disulfide‑linked 
homotrimetric glycoprotein that mediates cell-to-matrix 
and cell-cell interactions (44). Stamper et al reported that 
genes associated with ECM‑receptor interactions, including 
TBHS2, underwent significant changes in expression when 
comparing craniosynostosis patients and controls (45). In addi-
tion, Yasui et al suggested that changes in the ECM could be 
induced by the degradation of collagen I, which was of great 
importance to the infiltration and metastasis of cancer cells in 
GC (45). In line with this previous study, the present results 
also indicated that TBHS2 was upregulated in GC compared 
with normal controls, suggesting that TBHS2 may play a role 
in ECM changes and promote GC progression.

PDLIM7 is a family of proteins composed of PDZ and LIM 
domains that have been proposed to direct protein-protein 
interactions. Wu et al demonstrated that the LIM domains 
of Enigma recognized tyrosine‑containing motifs with 
specificity residing in the target structures and the LIM 
domains (46). Another study showed that receptor tyrosine 
kinases play essential roles in the control of cancer cell 
growth and differentiation (47). In the present study, PDLIM7 
was found to be upregulated, showing enrichment in module 
1, and interacted with other DEGs identified in the study. 
Another hub gene in module 1 was adenosine deaminase, 
RNA‑specific, B1 (ADARB1) (Fig. 4). ADARB1, also known 
as ADAR2, encodes the enzyme responsible for pre‑mRNA 
editing of the glutamate receptor subunit B by site‑specific 

deamination of adenosines (48). A previous study demon-
strated that the dysregulation of adenosine to inosine in human 
cancers possibly contributed to the altered transcriptional 
program required to sustain carcinogenesis (49). Moreover, 
Camarata et al reported that PDLIM7 could regulate T‑box 
protein 5 transcriptional activity, which is involved in the 
transcriptional regulation of genes required for mesoderm 
differentiation (50). In this context, we speculate that PDLIM7 
may play a crucial role in GC development via the interaction 
with ADARB1.

In conclusion, the present study investigated the critical 
genes in GC based on microarray data. The target genes 
COL1A1, COL1A2, COL6A3, THBS2, COL11A1, PDLIM7 
and ADARB1 were involved in the progression of GC. 
COL6A3, COL1A2, COL1A1, THBS2 and COL11A1were 
identified to be involved in the ECM‑receptor interaction 
pathway. Furthermore, the genes of the COL family were 
associated with phosphate transport. COL1A1 and COL1A2 
may play an important role in tumor invasion and metastasis 
in GC. TBHS2 may impact ECM changes and promote GC 
progression. Moreover, PDLIM7 may play a crucial role in 
GC development via the interaction with ADARB1. The genes 
identified in GC tissues in the present study may prove to be 
molecular biomarkers for this disease, although further studies 
must be performed to confirm these results.
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