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Abstract. Previous studies have produced inconsistent results 
regarding the contribution of single‑nucleotide polymorphisms 
(SNPs) in the vitamin D receptor (VDR) gene to ovarian cancer 
(OC) in various ethnicities. Additionally, little has been estab-
lished with regard to the role of SNPs located in the retinoid X 
receptor α (RXRA), vitamin D‑binding protein [also know as 
group‑specific component (GC)] and VDR genes in non‑carriers 
of the breast cancer 1/2 early onset (BRCA1/BRCA2) gene 
mutations. All participating individuals in the present study 
were evaluated for BRCA1 mutations (5382incC, C61G and 
4153delA) with HybProbe assays, and for BRCA2 mutation 
(5946delT) using high‑resolution melting (HRM) analysis. 
The associations of 8 SNPs located in RXRA, GC and VDR 
were investigated in OC patients without the BRCA1/BRCA2 
mutations (n=245) and healthy controls (n=465). Genotyping 
of RXRA rs10881578 and rs10776909, and GC rs1155563 and 
rs2298849 SNPs was conducted by HRM analysis, while 
RXRA rs749759, GC rs7041, VDR BsmI rs1544410 and FokI 
rs2228570 genotyping was performed by polymerase chain 
reaction‑restriction fragment length polymorphism analysis. 
In addition, the gene‑gene interactions among all tested SNPs 
were studied using the epistasis option in PLINK software. 
The lowest P‑values of the trend test were identified for VDR 
rs1544410 and GC rs2298849 as Ptrend=0.012 and Ptrend=0.029, 
respectively. It was also found that, in the dominant inheritance 
model, VDR BsmI contributed to an increased risk of OC [odds 
ratio (OR), 1.570; 95% confidence interval (CI), 1.136‑2.171; 
P=0.006; Pcorr=0.048]. The gene‑gene interaction analysis 
indicated a significant interaction between RXRA rs749759 

and VDR FokI rs2228570 (OR for interaction, 1.687; χ2=8.278; 
asymptotic P‑value=0.004; Pcorr=0.032). In conclusion, this 
study demonstrated that certain VDR and RXRA SNPs may 
be risk factors for OC in non‑carriers of BRCA1/BRCA2 muta-
tions in the Polish population.

Introduction

Ovarian cancer (OC) is a leading cause of mortality among 
gynecological carcinomas in Europe and the USA  (1,2). 
Approximately 85% of all OC cases are sporadic, while 15% 
are associated with a family history of ovarian and other 
cancers linked to mutations in high‑penetrance genes, such as 
BRCA1/BRCA2, mismatch repair genes or tumor protein p53 
(TP53) (3,4). In addition to genetic factors, there are several 
other determinants that modulate the risk of OC develop-
ment (3,4), including advancing age, exposure to chemicals 
and/or pollutants, oral contraceptive use, parity, breast‑feeding 
period, lifestyle and diet  (3,5). Other factors influencing 
the development of OC include exposure to sunlight and 
dietary intake of vitamin  D precursors  (6). The role of 
vitamin D in the homeostasis of calcium and bone health is 
well‑established (7,8), and an increasing number of studies 
have investigated the involvement of vitamin D in numerous 
other aspects of health, including the growth of various 
cancers  (9). The actions of the active form of vitamin D, 
1,25‑dihydroxyvitamin D3 [1,25(OH)2D3], in human bodies are 
mediated by several different proteins. These mainly include 
vitamin D‑binding protein (VDBP), vitamin D receptor (VDR) 
and retinoid X receptor (RXR) (10‑12). VDBP is a 56‑58 kDa 
plasma α‑globulin encoded by the group‑specific component 
(GC) gene (10). This protein functions as a major blood plasma 
transporter protein for vitamin D and its metabolites (10). VDR 
forms heterodimers with RXR and binds to DNA to initiate a 
series of epigenetic events leading to chromatin rebuilding and 
initiation of transcription (11,12). Evidence has indicated that a 
GC single‑nucleotide polymorphism (SNP) is associated with 
blood plasma vitamin D levels (13). Furthermore, the VDR 
gene also contains various SNPs, a number of which may alter 
1,25(OH)2D3 action (8). It has recently been demonstrated that 
certain SNPs situated in the RXR‑α (RXRA) gene play a role 
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in the development and recurrence of certain cancers (14,15). 
Therefore, in the present study, 8 SNPs in the RXRA, GC and 
VDR genes, situated in different blocks of linkage disequi-
librium (LD), were selected in order to study whether these 
SNPs may be genetic risk factors for OC. These SNPs were 
studied in a group of healthy controls and OC patients who 
were non‑carriers of the most common mutations of the 
BRCA1/BRCA2 genes.

Materials and methods

Patients and controls. The patients included 245 women with 
histologically determined OC according to the International 
Federation of Gynecology and Obstetrics (FIGO) (16), who 
were diagnosed at the Clinic of Gynecological Surgery, 
Poznań University of Medical Sciences (Poznań, Poland) 
between January 2012 and April 2014. Histopathological clas-
sification, including the stage, grade and tumor type (Table I), 
was performed by an experienced pathologist. Patients and 
controls were Caucasian and from the Wielkopolska area of 
Poland. The controls were composed of 465 unrelated healthy 
female volunteers who were matched by age to the patients 
with cancer (Table I). Written informed consent was provided 
by all individuals involved in the study. The study procedures 
were approved by the Ethics Committee of Poznań University 
of Medical Sciences (Poznań, Poland).

Genotyping. Genomic DNA was obtained from periph-
eral blood leukocytes by salt extraction. All participating 
individuals were tested for the three most common BRCA1 
mutations affecting the Polish population (5382incC, C61G 
and 4153delA) using the LightCycler  480 system (Roche 
Diagnostics, Mannheim, Germany) with HybProbe probes 
and a LightCycler DNA Master HybProbe kit (Roche, India-
napolis, IN, USA). Information on HybProbe probe sequences 
is available upon request. In addition, they were tested for the 
presence of the most common BRCA2 mutation (5946delT) 
using high‑resolution melting (HRM) analysis (Table II) using 
the LightCycler 480 system and 5x HOT FIREPol® EvaGreen® 
HRM Mix (containing HOT FIREPol DNA polymerase, 5x 
EvaGreen HRM buffer, 12.5 mM MgCl2, dNTPs, EvaGreen® 
dye, bovine serum albumin and no ROX dye) (Solis BioDyne, 
Tartu, Estonia). The reaction system (10 µl) contained 1X Hot 
Fire Pol EvaGreen HRM Mix, 0.2 pmol/µl of each primer and 
2 ng/ml DNA template. Primer sequences and conditions for 
HRM analysis are presented in Table II. Polymerase chain 
reaction (PCR) was performed under the following condi-
tions: Initial denaturation step at 95˚C for 15 min, followed 
by 50 cycles at 95˚C for 10 sec and 60˚C for 10 sec, with a 
final elongation step at 72˚C for 15 sec. Amplified DNA frag-
ments were then subjected to HRM; the temperature was 
increased from 80-95˚C in 0.1˚C/2 sec increments. The DNA 
samples were subsequently genotyped for 8 SNPs in RXRA, 
GC and VDR (Table II). SNPs were selected with the use of 
the genome browsers of the International HapMap Consor-
tium (http://www.hapmap.org/index.html.en), University of 
California, Santa Cruz (http://genome.ucsc.edu), and dbSNP 
database (http://www.ncbi.nlm.nih.gov/projects/SNP/). SNPs 
were selected according to functional significance, location in 
district LD blocks, and minor allele frequency (MAF) >0.1 in 

the Caucasian population. Genotyping of the GC rs1155563 
and rs2298849, and RXRA rs10881578 and rs10776909 SNPs 
was conducted by HRM using the LightCycler 480 system and 
5x Hot Fire Pol EvaGreen HRM Mix (Solis BioDyne). The 
PCR program and the final concentrations of reagents for 
HRM reactions are presented above. Primer sequences and 
conditions for HRM analyses including primer-dependent 
annealing temperature, PCR product length and melting range 
are presented in Table II. Genotyping of the GC rs7041, VDR 
BsmI rs1544410 and FokI rs2228570, and RXRA rs749759 
SNPs was performed by PCR followed by restriction fragment 
length polymorphism (RFLP) analysis with the appropriate 
restriction enzymes (Fermentas, Vilnius, Lithuania), according 
to the manufacturer's instructions. Primer sequences and 
conditions for PCR‑RFLP analyses and restriction fragment 
length are presented in Table  II. Genotyping quality was 
evaluated by repeated genotyping of 15% randomly selected 
samples.

Statistical analysis. For each SNP, the Hardy‑Weinberg equi-
librium (HWE) was assessed by Pearson's goodness‑of‑fit χ2 
statistic. The differences in the allele and genotype frequen-
cies between cases and controls were determined using 
standard χ2 or Fisher's exact tests. The odds ratio (OR) and 
associated 95% confidence interval (CI) were also calculated. 
Data were analyzed under recessive and dominant inheritance 
models. For the additive inheritance model, SNPs were tested 
for association with OC using the Cochran‑Armitage trend 
test. To adjust for the multiple testing, a Bonferroni correction 

Table I. Clinical characteristics of ovarian cancer patients and 
healthy controls.

	 Patients	 Controls
Characteristic	 (n=245)	 (n=465)

Age, years; mean ± SD	 58.9±9.6	 57.0±6.2
Histological grade, n (%)		
  G1	 84 (34.3)	
  G2	 83 (33.9)	
  G3	 78 (31.8)	
  Gx	   0 (0.0)	
Clinical stage, n (%)		
  I	 93 (38.0)	
  II	 41 (16.7)	
  III	 82 (33.5)	
  IV	 29 (11.8)	
Histological type, n (%)		
  Serous	 79 (32.3)	
  Mucinous	 30 (12.2)	
  Endometrioid	 46 (18.8)	
  Clear cell	 25 (10.2)	
  Brenne	   0 (0.0)	
  Mixed	 23 (9.4)	
  Solid	 25 (10.2)	
  Untyped carcinoma	 17 (6.9)	
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was employed. Haplotype analysis was performed using the 
UNPHASED 3.1. program (https://sites.google.com/site/fdud-
bridge/software/unphased-3-1) with the following analysis 
options: All window sizes, full model and uncertain haplo-
type. Haplotypes with a frequency <0.01 were set to zero. The 
P‑values for global tests of haplotype distribution between 
cases and controls were determined. Statistical significance 
was assessed using the 1,000‑fold permutation test. The 
gene‑gene interactions among all tested SNPs were analyzed 
using the logistic regression and epistasis option in PLINK 
software (http://pngu.mgh.harvard.edu/purcell/plink/). 
PLINK creates a model based on allele dosage for each SNP 
and considers allelic by allelic epistasis. To all significant 
associations, the Bonferroni correction considering the 
number of tested SNPs was applied.

Results

Association of RXRA, GC and VDR SNPs with development 
of OC. The prevalence of RXRA, GC and VDR genotypes did 
not exhibit deviation from HWE between patients and control 
groups (P>0.05). The number of each genotype, OR and 95% 
CI evaluation for the 8 RXRA, GC and VDR SNPs are listed 
in Table III. The lowest P‑values of the trend test were found 
for VDR BsmI rs1544410 and GC rs2298849 in women with 
OC (Ptrend=0.012 and Ptrend=0.029, respectively). The statis-
tical significance threshold for multiple testing determined 
by correction of SNP number was P=0.00625. Therefore, it 
was found that, in a dominant inheritance model, VDR BsmI 
contributes to increased risk of OC (OR, 1.570; 95% CI, 
1.136‑2.171; P=0.006). However, none of the other RXRA, 
GC and VDR polymorphisms demonstrated a significant 
contribution to OC either in dominant or recessive inheritance 
models (Table III).

Association of RXRA, GC and VDR haplotypes with devel‑
opment of OC. Haplotype analysis of the studied RXRA, GC 
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Table IV. Results of haplotype analysis of the RXRA, GC and 
VDR genes in patients with ovarian cancer. 

Polymorphisms	 χ2	 Global P‑value

RXRAa

  rs10881578, rs10776909	 2.820	 0.420
  rs10776909, rs749759	 4.874	 0.181
  rs10881578, rs10776909, rs749759	 7.862	 0.345
GCb

  rs7041, rs1155563	 0.843	 0.839
  rs1155563, rs2298849	 4.871	 0.181
  rs7041, rs1155563, rs2298849	 7.956	 0.336
VDRc

  rs1544410, rs2228570	 9.345	 0.025

aEmpirical 5% quantile of the best P‑value, 0.01066; bempirical 5% 
quantile of the best P‑value, 0.01146; cempirical 5% quantile of the 
best P‑value, 0.01984. GC gene encodes vitamin D‑binding protein. 
RXRA, retinoid X receptor α; VDR, vitamin D receptor.
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and VDR SNPs did not indicate any contribution of SNP 
combinations to the risk of OC (Table IV). In OC patients, 
the lowest global P‑value, P=0.025, was observed for haplo-
types composed of the VDR rs1544410 and rs2228570 
SNPs (Table V). However, these results did not reach signifi-
cance when permutations were used to generate empirical 
P‑values. The empirical 5% quantile of the best P‑value 
following 1,000 permutations was 0.01066 for RXRA, 0.01146 
for GC and 0.01984 for VDR.

Analysis of gene‑gene interactions among the RXRA, GC 
and VDR polymorphisms. The gene‑gene interactions 
among all tested SNPs conducted by the logistic regres-
sion and epistasis option in PLINK software demonstrated 
a significant interaction between RXRA rs749759 and 
VDR rs2228570, amounting to an OR for interaction of 
1.687, χ2=8.278, asymptotic P‑value=0.004 and Bonfer-
roni correction (Pcorr)=0.032 (Table V). In addition to this 
finding, an asymptotic P‑value of <0.05 was observed for 

the following combinations: RXRA rs10776909 and VDR 
rs2228570 (OR, 1.681; χ2=6.678; P=0.010; Pcorr=0.08); GC 
rs1155563 and RXRA rs10776909 (OR, 1.743; χ2=5.764; 
P=0.016; Pcorr=0.128); and GC rs1155563 and VDR rs2228570 
(OR,  1.413; χ2=3.867; P=0.049; Pcorr=0.392) (Table  V). 
However, these P‑values did not remain statistically signifi-
cant after Bonferroni correction.

Discussion

Adequate 1,25(OH)2D3 levels seem to be involved in the preven-
tion of many diseases, including cardiovascular, musculoskeletal, 
autoimmune and infectious disorders, diabetes mellitus, infer-
tility and others (17). The particularly significant protective 
role of vitamin D has been demonstrated in the context of the 
development and progression of various malignancies  (18). 
Inadequate plasma levels of vitamin D have been associated 
with poor prognosis or development of head and neck cancers, 
thyroid, lung, liver, breast, gastric and colon cancers (19‑25).

Table V. Results of gene‑gene interaction analysis.

	 SNP 1	 SNP 2
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	  OR for		  Asymptotic
Gene	 Identifier	 Gene	 Identifier	 interaction	 χ2	 P‑value

GC	 rs7041	 GC	 rs1155563	 1.184	 0.903	 0.342
GC	 rs7041	 GC	 rs2298849	 1.129	 0.370	 0.543
GC	 rs7041	 RXRA	 rs10881578	 0.930	 0.172	 0.678
GC	 rs7041	 RXRA	 rs10776909	 1.241	 1.152	 0.283
GC	 rs7041	 RXRA	 rs749759	 1.097	 0.274	 0.601
GC	 rs7041	 VDR	 rs1544410	 0.808	 1.575	 0.210
GC	 rs7041	 VDR	 rs2228570	 1.257	 2.254	 0.133
GC	 rs1155563	 GC	 rs2298849	 0.826	 0.539	 0.463
GC	 rs1155563	 RXRA	 rs10881578	 1.186	 0.781	 0.377
GC	 rs1155563	 RXRA	 rs10776909	 1.743	 5.764	 0.016
GC	 rs1155563	 RXRA	 rs749759	 1.328	 1.850	 0.174
GC	 rs1155563	 VDR	 rs1544410	 0.890	 0.353	 0.553
GC	 rs1155563	 VDR	 rs2228570	 1.413	 3.867	 0.049
GC	 rs2298849	 RXRA	 rs10881578	 1.042	 0.037	 0.848
GC	 rs2298849	 RXRA	 rs10776909	 0.823	 0.582	 0.446
GC	 rs2298849	 RXRA	 rs749759	 0.821	 0.757	 0.384
GC	 rs2298849	 VDR	 rs1544410	 0.882	 0.341	 0.559
GC	 rs2298849	 VDR	 rs2228570	 1.156	 0.551	 0.458
RXRA	 rs10881578	 RXRA	 rs10776909	 0.823	 0.783	 0.376
RXRA	 rs10881578	 RXRA	 rs749759	 0.897	 0.316	 0.574
RXRA	 rs10881578	 VDR	 rs1544410	 1.322	 2.132	 0.144
RXRA	 rs10881578	 VDR	 rs2228570	 0.939	 0.131	 0.717
RXRA	 rs10776909	 RXRA	 rs749759	 1.463	 3.100	 0.078
RXRA	 rs10776909	 VDR	 rs1544410	 1.187	 0.707	 0.400
RXRA	 rs10776909	 VDR	 rs2228570	 1.681	 6.678	 0.010
RXRA	 rs749759	 VDR	 rs1544410	 1.088	 0.213	 0.644
RXRA	 rs749759	 VDR	 rs2228570	 1.687	 8.278	 0.004
VDR	 rs1544410	 VDR	 rs2228570	 1.206	 1.292	 0.256

Statistically significant results are highlighted in bold (P<0.00625). GC gene encodes vitamin D‑binding protein. SNP, single‑nucleotide 
polymorphism; RXRA, retinoid X receptor α; VDR, vitamin D receptor; OR, odds ratio.
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Reduced vitamin  D levels have also been observed 
in patients with OC compared with general population, 
and low vitamin  D levels have been associated with an 
increased risk of developing certain histological OC 
subtypes, such as borderline and mucinous (26,27). Recently, 
Walentowicz‑Sadlecka et al (28) reported that low levels of 
25(OH)D3, a pre‑hormonal form of vitamin D, are accompa-
nied by a reduced survival rate in patients with OC.

The antitumor activity of 1,25(OH)2D3 can be mediated by 
microRNA specific for the telomerase transcript in OC and 
in other human cancer types (29). It has been demonstrated 
that 1,25(OH)2D3 also inhibits proliferation of adrenocortical 
and pancreatic cancer cells and suppresses hepatocellular 
carcinoma development by reducing inflammatory cytokine 
production in vivo (30‑32). In addition, vitamin D inhibits 
motility, invasion and metastasis of squamous cell carcinoma 
and suppresses breast and prostate cancer progression in 
murine models (33,34). Furthermore, the vitamin D analog 
EB1089 was found to trigger apoptosis of gastric cancer 
cells, and in preclinical studies exerted an anti‑proliferative 
effect on human OC xenografts in murine models (35,36).

VDRs have been identified in various types of malig-
nant cells  (37). This implies that the anticancer action of 
1,25(OH)2D3 may be mediated by the levels of VDR, and 
also by VDBP and RXRA levels, which further suggests 
that SNPs situated in genes encoding these proteins may 
contribute to OC development.

In the present study, a significant contribution of the VDR 
BsmI SNP to OC was observed in the Polish population. This 
result confirmed our previous studies, which demonstrated a 
moderate association of the BsmI VDR B gene variant with 
OC (38). The meta‑analysis by Qin et al (39) implicated the 
BsmI SNP as a moderate risk factor for OC in the European 
population. In contrast to these findings, there was no asso-
ciation of the BsmI polymorphism with OC in a number of 
other studies, which included a Caucasian population and 
cohorts from Massachusetts and New Hampshire in the 
USA (40,41). Three meta‑analyses also did not confirm BsmI 
SNP as a risk factor of OC in Caucasian, North American, 
Asian and overall populations (42‑44).

In the present study, no significant difference was identi-
fied in the prevalence of the FokI SNP between OC patients 
and controls. These observations are in agreement with those 
of Clendenen et al (40), who did not observe the FokI SNP 
to be a risk factor for OC in Caucasian women. By contrast, 
other studies identified the FokI polymorphism as a risk 
factor for OC in Massachusetts and New Hampshire, Indian, 
Caucasian, Japanese and overall populations (41‑43,45‑48).

The distinct influence of the BsmI and FokI SNPs on OC 
risk in various ethnicities may result from exposure of the 
studied groups to various environmental factors, the size 
of these groups and their genetic background. The possible 
role of BsmI and FokI polymorphisms on the action of VDR 
have been demonstrated elsewhere (8,49‑51). The BsmI SNP 
may alter the length of the polyadenylate sequence within 
the 3'‑untranslated region of the VDR gene (8). Furthermore, 
Luo et al (49) demonstrated that the BsmI SNP was responsible 
for the significantly lowered VDR mRNA levels in patients 
bearing the A (B) allele as compared to bearers of the GG 
(bb) genotype. The FokI polymorphism results in the creation 

of two protein variants; longer VDR, encoded by the changed 
allele form (ATG) (f), has an additional three amino acids 
and is 1.7 times less efficient than the shorter, common allele 
form (ACG) (F) (50). In addition, Monticielo et al (51) demon-
strated significantly increased vitamin D levels in individuals 
possessing the TT (ff) genotype versus carriers of the CC (FF) 
genotype of the FokI SNP. Recently, Larcombe et al  (13) 
demonstrated high frequency of VDR f allele associated with 
a downregulation of the Th1 immune response.

In the current study, no associations were observed 
between OC and the SNPs GC rs1155563 and rs7041, and 
RXRA rs10881578, rs10776909 and rs749759. To date, 
certain polymorphisms situated in GC have been reported 
to be associated with vitamin D metabolite levels in blood 
plasma (13,52). The GC rs7041 SNP was associated with high 
concentrations of VDBP in blood plasma and a high binding 
affinity to 25(OH)D3 in a Canadian cohort (13). In addition, 
the GC (436K) alleles (rs4588) (Fig. 1B) were associated with 
lower 25(OH)D3 concentrations in young Canadian adults of 
East Asian and European ancestry (52).

However, in the present study, a significant interac-
tion was identified between the RXRA rs749759 and FokI 
rs2228570 SNPs. Previous studies have proposed that RXRA 
rs7861779 and rs12004589 SNPs may be used as markers 
for colorectal cancer (53). Haplotype CGGGCA (rs1805352, 
rs3132297, rs3132296, rs3118529, rs3118536 and rs7861779) 
within linkage blocks of RXRA are associated with a reduced 
risk of metachronous neoplasia in the proximal colon (5). 
The RXRA haplotype, situated 3' of the coding sequence 
(rs748964 and rs3118523) increased the risk of renal carci-
noma among carriers with the  (CG) haplotype compared 
to the (GA) common haplotype  (54). The RXRA SNPs 
(rs10881583, rs881658, rs11185659, rs881657 and rs7864987) 
were linked to poor disease‑free survival in patients with 
breast cancer (15). Furthermore, head and neck squamous 
cell carcinoma patients possessing the RXRA SNP rs3118570 
exhibited an increased risk of developing a second primary 
tumor or recurrence (55).

In conclusion, the current study confirmed that the 
VDR BsmI SNP is risk factor for OC in non‑carriers of the 
BRCA1/BRCA2 mutations in the Polish population. Further-
more, a significant interaction between the RXRA rs749759 
and VDR FokI rs2228570 SNPs in these studied groups was 
identified. However, the results of this study must be verified 
other independent cohorts.
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