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Abstract. Multidrug resistance (MDR) to chemotherapy 
presents a major obstacle in the treatment of cancer patients, 
which directly affects the clinical success rate of cancer 
therapy. Current research aims to improve the efficiency of 
chemotherapy, whilst reducing toxicity to prolong the lives of 
cancer patients. As with good biocompatibility, high stability 
and drug release targeting properties, nanodrug delivery 
systems alter the mechanism by which drugs function to 
reverse MDR, via passive or active targeting, increasing drug 
accumulation in the tumor tissue or reducing drug elimination. 
Given the potential role of nanodrug delivery systems used in 
multidrug resistance, the present study summarizes the current 
knowledge on the properties of liposomes, lipid nanoparticles, 
polymeric micelles and mesoporous silica nanoparticles, 
together with their underlying mechanisms. The current 
review aims to provide a reliable basis and useful information 
for the development of new treatment strategies of multidrug 
resistance reversal using nanodrug delivery systems.
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1. Introduction

At present, chemotherapy remains the optimal choice for cancer 
therapy, and tumor multidrug resistance (MDR) is a major factor 
that reduces the efficacy of chemotherapy (1). MDR is a pheno-
type that tumor cells acquire, which confers resistance to certain 
chemotherapy drugs, as well as concurrent cross‑resistance 
to additional antitumor drugs that have different structures 
or mechanisms of action (2,3). The complexity of MDR has 
impeded the study of reversal agents  (3‑5). In recent years, 
the application of nanotechnology for drug carrier design has 
resulted in the development of novel nanoparticle drug delivery 
systems that aim to reverse MDR (6‑8). Inorganic nanodrug 
delivery systems, lipid‑based systems and polymer nanodrug 
delivery systems are the most common nanodrug delivery 
systems, which exhibit non‑toxic, biocompatible and highly 
stable properties (8,9). The application of nanoparticle drug 
delivery systems is increasing due to their advantage of controlled 
and targeted drug release (9,10). Studies have demonstrated 
that entrapped small molecule drugs (10‑200 nm in diameter) 
are more conducive to drug uptake and efflux; these nanodrug 
particles function via passive and active mechanisms, whereas 
in the systemic blood circulation they exhibit sustained release 
that subsequently enhances intracellular drug accumulation in 
tumor cells, yielding an improved effect (1,11‑14). In the present 
review, the application of nanoparticle drug delivery systems in 
reversing the MDR of tumors is reviewed, which may provide an 
improved understanding of novel strategies for cancer therapy.
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2. MDR and applications of nanodrug transmission sys-
tems

Cancer MDR may be caused by a number of complex 
factors, including ATP‑binding cassette (ABC) transporters, 
multi‑drug resistance protein [P‑glycoprotein 1 (P‑gp)], 
MDR‑associated proteins (MRPs), breast cancer resistance 
protein (ABCG2), glutathione transferase, metallothionein, 
DNA topoisomerase II and catalytic enzymes (2,3,5). These 
substances exhibit various functions in the induction of 
tumor cell MDR (Fig. 1). Cellular MDR is divided into the 
ATP‑dependent efflux pumps and non‑ATP‑dependent efflux 
pumps types. The ‘pumpsʼ type use the energy obtained from 
ATP hydrolysis to efflux drugs via ATP‑dependent transport 
proteins, such as P‑gp, MRPs and BCRPs, which decreases 
the intracellular drug concentration and subsequently results 
in drug resistance. The ‘non pumps’ type do not depend on the 
energy from ATP hydrolysis while activating the anti‑apoptotic 
proteins, such as Bcl‑2, and efflux drugs directly  (2,7,9). 
Nanoparticle drug transmission systems may alter drug uptake 
in tumor cells  (12). The system delivers the chemotherapy 
drug directly to tumor cells, which functions to reverse 
MDR (10). Entrapment affects the pharmacokinetic properties 
of drugs; free drugs cross the cell membrane passively and 
are easily identified by the efflux pumps located on the cell 
membrane or captured by ABC transporter proteins, whereas 
drug‑loading nanoparticles may avoid recognition by the ABC 
efflux pumps and endocytosis by ABC transporters, leading 
to increased intracellular accumulation of chemotherapeutic 
drugs (Fig. 1) (10,12,14).

3. Liposomes

Liposomes are preparations that utilize a phospholipid 
bilayer membrane vesicle to encapsulate drug molecules. The 

hydrophilic and hydrophobic bilayer cores entrap hydrophilic 
and lipophilic drugs, respectively. Liposomes have been 
demonstrated to prolong the blood‑circulation time of drugs, to 
alter the pharmacokinetics and distribution of P‑gp inhibitors 
in vivo, and to increase the drug concentration in the tumor 
cells, while reducing the impact on normal tissues, thus exerting 
toxicity to enhance the effects of chemotherapy (15‑21). A 
study by Zhou et al (22), which investigated MDR reversal 
using doxorubicin (DOX) liposomes in vitro, demonstrated that 
DOX liposomes were mainly detected in the nucleus of human 
breast cancer P‑gp overexpression cells (MCF‑7/Adr) with an 
increased toxicity, and exhibited a stronger cellular retention 
capacity in human carcinoma KBv200 cells. Kang et al (23) 
used rhodamine (a P‑gp substrate) to penetrate liposomes, and 
this combination resulted in increased liposome retention in 
the MCF‑7/Adr cell line, which exhibits P‑gp overexpression 
in vitro. Further assessment demonstrated that the incorpora-
tion of cholesterol and polyethyleneglycol‑attached lipids was 
effective in further increasing the rhodamine retention in 
MCF‑7/Pgp cells. More rigid liposomes are able to sequester 
rhodamine more efficiently, thereby inhibiting direct interac-
tions of rhodamine with P‑gp proteins. These studies indicated 
that by optimizing the composition of liposomes, reduction of 
P‑gp‑mediated MDR may be achieved.

4. Lipid nanoparticles

Lipid nanoparticles are a type of nanodrug delivery system 
that are assembled using natural or synthetic lipids, such 
as stearic acid, lecithin and triglycerides, as the matrix, to 
entrap anticancer drugs (particle size, 50‑1,000 nm) in a lipid 
core (23,24). Lipid nanoparticles have various routes of admin-
istration, exhibit good biological compatibility and stability, 
and effectively control drug release to avoid degradation and 
leakage. Solid lipid nanoparticles (SLNs) and nanostructured 

Figure 1. Main factors responsible for drug excretion and the delivery of encapsulated and free drugs. GST, glutathione transferase; Topo II, topoisomerase II; 
TS, thymidylate synthase; MT, metallothionein; LRP, lung resistance‑related protein.
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lipid carriers (NLCs) are the most common types, which have 
gained increasing attention as they represent promising drug 
carriers (25,26). One study showed that NLCs exhibit increased 
stability when compared with SLNs (24). Wong et al  (27) 
showed that, compared with free doxorubicin, DOX‑loaded 
SLNs exhibit a high encapsulation efficiency, a faster release 
rate in vitro, and an enhanced uptake and retention capacity 
in human breast cancer cells (MDA435/LCC6/MDR1), 
resulting in significantly enhanced cytotoxicity. A novel 
polymer‑lipid hybrid nanoparticle (PLN) system has also 
been developed (28). Prepared DOX‑GG918‑PLN and doxo-
rubicin and mitomycin C co‑loaded PLN carriers exhibited 
a good antitumor effect in vitro and in vivo, with significant 
reversal effects, which indicates that the carriers present 
a novel technique for improving the efficacy of local solid 
tumor chemotherapy  (29‑32). Liposomes alone exhibit no 
specific targeting, however, via the modification of nanodrug 
delivery systems using various ligands, including folic acid 
or anti‑transferrin monoclonal antibodies, specific targeting 
may be obtained (33‑35). Ligands with selective and specific 
affinities may be incorporated into the lipid bilayer of lipo-
somes, which may then be identified by specific cells, yielding 
targeted nanoparticles (36,37).

5. Polymeric micelles

Polymeric micelles, which are a type of drug carrier with a 
hydrophobic core and hydrophilic polyethylene glycol (PEG) 
shell, present an ideal choice for the effective delivery of 
anticancer drugs (particle size, 10‑100 nm) with poor solu-
bility  (38,39). Compared with the free drug, drug‑loaded 
polymeric micelles, which demonstrate a higher stability 
and biocompatibility in vitro and vivo, and a significantly 
increased blood circulation time, are transferred to the tumor 
site via active and passive targeting mechanisms. Passive 
targeting occurs via the enhanced permeability and retention 
effect, which causes drugs to be selectively accumulated and 
released at the tumor site. By modifying the surface of polymer 
micelles, drug accumulation by the tumor may be increased 
via the active targeting pathway. Therefore, polymer micelles 
present an ideal carrier molecule for active or passive targeted 
drug delivery as they improve the therapeutic index while 
reducing toxic side effects (40‑44). The use of drug‑conjugated 
polymer micelles that exhibit simultaneous entrapment of two 
drugs and maintain antitumor activity has been reported (38). 
Currently, several types of polymer micelle transmission 
systems are being used to overcome MDR, and certain studies 
have demonstrated that a number of block copolymers may 
decrease the production of ATP in resistant cells, thus reducing 
the activity of P‑gp (45‑47). Saiyin et al (48) implemented the 
simultaneous entrapment of a chemotherapeutic drug and 
autophagy inhibitors, and engineered the sequential release of 
these drugs. The prioritized release of the autophagy inhibi-
tors suppressed the phagocytosis of tumor cells, subsequently 
increasing sensitivity to the chemotherapeutic drug, which 
resulted in a synergistic effect. This combination provides 
a novel platform for chemotherapy. Yu et al (49) prepared 
docetaxel‑loaded pH‑responsive PEG‑hyperbranched poly-
acylhydrazone micelles, which exhibited increasing tumor 
toxicity in  vitro; however, when combined with glucose, 

enhanced antitumor activity and lower systemic toxicity were 
observed. Therefore, these results indicate that polymeric 
micelles may be used for selective targeted drug delivery.

6. Combined treatment strategies based on nanodrug de-
livery systems

Enhancing the efficiency of drug delivery to tumor cells 
and preventing apoptosis by modulating intracellular signal 
transduction mechanisms presents an effective method to 
overcome MDR (50‑52). The co‑delivery of reversal agents 
and chemotherapy drugs by nanodrug delivery systems may 
regulate the expression of intracellular ABC transporter 
proteins and silence MDR genes (52‑54), thereby affecting the 
efflux or apoptosis of tumor cells and reducing the toxicity 
of chemotherapy (55‑57). In a study by Abouzeid et al (58), 
co‑coated curcumin (a reversal agent) and paclitaxel‑loaded 
PEG‑phosphatidylethanolamine/vitamin  E micelles were 
demonstrated to exhibit significantly increased toxicity in 
human ovarian carcinoma resistant cells (SK‑OV‑3/TR) in vitro 
and in vivo, with the synergistic antitumor effects observed 
in vivo being superior to those observed in vitro. Furthermore, 
Tang et al (59) reported that the co‑delivery of DOX and a 
P‑gp inhibitor (verapamil) using a reduction‑sensitive lipo-
some resulted in increased apoptosis induction and necrosis of 
MCF‑7/Adr tumor cells.

7. Mesoporous silica nanoparticles

Recently, gene technology and nanobiomaterial vector 
delivery systems, such as silicon nanogene vectors as non‑viral 
gene vectors, have gained increasing attention as a promising 
approach for tumor MDR reversal (60‑63). Silicon nanodrug 
systems exhibit good biocompatibility and a non‑cytotoxic 
surface that is easily modified. The main aims of the formed 
mesoporous silica nanodrug delivery systems (MSNs) are to 
control targeted‑drug release and overcome MDR (64‑66). 
With regard to MDR reversal, MSNs are considered to alter 
the original route of drug uptake, while avoiding identification, 
binding and efflux by ABC proteins. In addition, the different 
MSN pore sizes allow the effectively controlled release of 
intratumor drugs and accumulation (67‑70). MSNs present an 
alternative method for the more efficient delivery of chemo-
therapy drugs and targeted gene therapy. Meng et al  (70) 
revealed that coating P‑gp‑targeted siRNA with DOX 
using MSNs significantly increased the chemotherapeutic 
drug concentration within the cell nucleus of the squamous 
carcinoma resistant cell line, KB‑V1, and promoted cell apop-
tosis and death. Notably, Zhang et al (71) also developed a 
polymer‑lipid supported‑MSN. This system exhibited targeted 
and controlled drug release in vitro and exhibited a significant 
effect in the treatment of breast cancer, with a low toxicity 
in vivo.

8. Conclusion

Cancer is a common disease that seriously affects human 
health and reversal of MDR in cancer has long been a topic of 
research. However, due to the complex and diverse resistance 
mechanisms of cancer, the limitation of biological activity and 
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toxicity of MDR reversal agents, the existing reversal agents 
cannot meet the requirements of treatment. Compared with 
traditional anticancer drugs, nanodrug delivery systems show a 
clear advantage in terms of reversing MDR during the process 
of tumor therapy. Novel drug‑loaded nanoparticle systems, 
such as the co‑entrapped reversal agents and chemotherapy 
drugs and the co‑loaded P‑gp inhibitors and chemotherapy 
drugs, and the specific modification of nanoparticles may 
alter the transmission method and the targeting of drugs and 
antagonize the drug efflux by tumor cells. Thus, the accumula-
tion of drug within the tumor cells may be improved. The good 
biocompatibility, high stability, drug release and targeting of 
nanodrug delivery systems overcome the shortcomings of the 
traditional drug delivery system, and show great promise in 
cancer MDR reversal. However, with the enhanced targeting, 
the tissue distribution of drugs has also changed and led to new 
adverse reactions; therefore, additional in vivo evaluation of 
safety and efficacy data are urgently required.
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