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Abstract. Cell migration potency is essential in cancer 
metastasis and is often regulated by extracellular stimuli. 
Oral squamous cell carcinoma cell lines include those that are 
sensitive, as well as resistant, to the effects of the epidermal 
growth factor receptor (EGFR) inhibitor cetuximab on cell 
migration. In the present study, the molecular differences 
in the EGFR response to cell migration between the SAS 
cetuximab‑sensitive and HSC4 cetuximab‑resistant cell lines 
was examined. Treatment with the EGFR inhibitors AG1478 
and cetuximab reduced the migration potency of SAS cells, 
but not HSC4 cells. The migration of the two cell lines was 
inhibited under serum‑free culture conditions, and the addition 
of EGF to the serum‑free medium promoted the migration of 
SAS cells, but not HSC4 cells. In addition, SAS cell migration 
was reduced by the mitogen‑activated protein kinase kinase 
and protein kinase B (Akt) inhibitors PD98059 and MK2206, 
whereas HSC4 cell migration was only inhibited by MK2206. 
EGF induced an increase in extracellular signal‑regulated 
kinase phosphorylation levels in HSC4 cells, and stimulated 
Akt phosphorylation levels in SAS cells. Furthermore, the 
staining of actin filaments with phalloidin was significantly 
increased by the inhibition of EGFR in SAS cells, but was not 
observed as altered in HSC4 cells. Conversely, the addition 
of EGF to the culture medium decreased the accumulation 
of actin filaments in SAS cells. The results suggest that the 
EGF‑EGFR signaling pathway has an important role in SAS 
cell migration via the modulation of actin dynamics, and that 

HSC4 cell migration is regulated by a serum component other 
than EGFR.

Introduction

Despite recent advances in surgery, radiotherapy and chemo-
therapy for the treatment of various types of cancer, morbidity 
remains at a high level (1) and the five‑year survival rate for 
oral cancer has only moderately improved (2,3). Therefore, 
novel therapeutic strategies are required. As the majority of 
types of oral cancer are oral squamous cell carcinoma (OSCC), 
one feature of which is progressive local invasion (4,5), it is 
necessary to elucidate its underlying invasion mechanisms in 
order to improve currently available treatments for OSCC. The 
processes involved in tumor invasion include cell migration, 
interaction between the tumor and stroma at the invasive front 
and the involvement of growth factors and external stimuli that 
affect the invading cells (6‑10). It is important to understand 
the signaling mechanisms underlying the regulation of cell 
migration and invasive growth, in order to facilitate the identi-
fication of novel therapeutic targets (11‑13).

Signal transduction via receptor tyrosine kinases (RTKs) is 
stimulated by the respective extracellular ligands, which regu-
late critical cellular processes, including cell proliferation and 
cell migration (14). Therefore, genetic changes and abnormali-
ties in RTKs often lead to a malignant transformation (14). A 
notable example of extracellular growth factors activating 
RTKs is the epidermal growth factor (EGF) family, the 
members of which function via the EGF receptor (EGFR) (15). 
Although EGFR is expressed in the normal oral epithelium 
as well as in the majority of OSCC cells (15,16), it is also a 
therapeutic target for the treatment of oral cancer  (12,13). 
Previous studies using various cell types have demonstrated 
that the downstream signaling pathways of numerous RTKs 
are involved in the regulation of cell motility (7,17).

Certain mitogen‑activated protein (MAP) kinases, 
including extracellular‑regulated kinase (ERK), Jun kinase and 
tumor protein (p)38, are able to affect various cell functions, 
including migration (18). Phosphatidylinositol‑3 kinase (PI3K) 
controls cell motility through the activation of protein kinase 
B (Akt) and other targets  (19,20); however, cell‑dependent 
differences in these regulatory mechanisms exist (18,21‑23).

In head and neck cancer, the signaling pathways involved 
in RTK‑mediated migration have yet to be elucidated and 
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understood. EGFR stimulation induces cell migration through 
the activation of matrix metalloproteinases (MMPs) (24), signal 
transducer and activator of transcription 3 (STAT3) (25,26) 
or the MEK/ERK and PI3K signaling pathways  (9), and 
may be associated with an epithelial‑mesenchymal transition 
(EMT)‑like phenotype (27). Furthermore, cross‑talk between 
EGFR and G‑protein‑coupled receptors contributes to cell 
migration (28,29).

Our previous study reported that cetuximab, an 
EGFR‑specific monoclonal antibody, inhibits migration of the 
SAS OSCC cell line, but not of the HSC4 OSCC cell line; 
however, the proliferation of HSC4 cells was observed to be 
sensitive to cetuximab (30). These results suggested that EGFR 
signaling may induce cell migration in a cell type‑dependent 
manner. In the present study, the underlying mechanisms of 
EGFR signal transduction involved in the migration of the SAS 
and HSC4 OSCC cell lines were investigated and compared.

Materials and methods

Cell culture and reagents. The HSC4 and SAS OSCC cell lines 
were purchased from RIKEN Bioresource Center (Ibaraki, 
Japan). Cells were cultured in Dulbecco's modified Eagle's 
medium (DMEM) supplemented with 10% (v/v) fetal bovine 
serum (FBS) at 37˚C in a humidified atmosphere of 5% CO2. 
DMEM and FBS were purchased from Gibco (Thermo Fisher 
Scientific, Inc., Waltham, MA, USA). The antibodies used 
consisted of anti‑AKT (rabbit monoclonal; cat. no. 4681; dilu-
tion, 1:1,000; Cell Signaling Technology, Inc., Danvers, MA, 
USA), anti‑phospho‑AKT (rabbit polyclonal; cat. no. 9271; 
dilution; 1:1,000, Cell Signaling Technology, Inc.), anti‑ERK 
(rabbit polyclonal; cat. no. sc‑93; dilution, 1:1,000; Santa Cruz 
Biotechnology, Inc. Santa Cruz, CA, USA), anti‑phospho‑ERK 
(mouse monoclonal; cat. no. sc‑7383; dilution, 1:1,000; Santa 
Cruz, Inc.), anti‑profilin‑1 (rabbit polyclonal; cat. no. 3237; 
dilution, 1:1,000; Cell Signaling Technology, Inc.), anti‑cofilin 
(rabbit polyclonal; cat. no. sc‑33729; dilution, 1:1,000; Santa 
Cruz Biotechnology, Inc.), anti‑phospho‑cofilin (rabbit 
polyclonal; cat. no. sc‑12912; dilution, 1:1,000; Santa Cruz 
Biotechnology) and anti‑α‑tubulin (mouse monoclonal; cat. 
no. T6074; dilution, 1:1,000; Sigma‑Aldrich; Merck Milli-
pore, Darmstadt, Germany). The secondary antibodies used 
consisted of ECL™ anti‑mouse IgG, horseradish peroxidase 
(HRP)‑linked (dilution, 1:10,000; cat. no.  NA931V; GE 
Healthcare Japan, Tokyo, Japan) and ECL™ anti‑rabbit IgG, 
HRP linked (dilution 1, 10,000; cat. no. NA934V; GE Health-
care Japan). Cetuximab (Erbitux®) was purchased from Merck 
Serono (Tokyo, Japan). EGFR inhibitor AG1478, Akt inhibitor 
MK2206 and MEK inhibitor PD98059 were from Calbiochem 
(Merck Millipore, Darmstadt, Germany). Acti‑stain™ 488 
(Cytoskeleton, Inc., Denver, CO, USA) was used for actin fila-
ment staining.

Scratch wound healing assay. Cell migration was evalu-
ated using a scratch wound healing assay, as previously 
described  (30), with certain modifications. Briefly, OSCC 
HSC4 and SAS cells were seeded at 1‑2x104 in 12‑well plates, 
cultured for 24 h, and the semiconfluent cells were treated with 
10 µg/ml mitomycin C for 4 h at 37˚C to block proliferation 
and were subsequently wounded with a sterile 200 µl pipette 

tip in order to generate a cell‑free gap. The cells were then 
washed with PBS and an image was captured using inverted 
phase‑contrast microscopy (IX71; Olympus Corporation, 
Tokyo, Japan) and a digital CCD camera (DP72‑SET; Olympus 
Corporation) to record the wound width at 0 h. One group of 
HSC4 or SAS cells was then cultured in DMEM supplemented 
with 10% FBS as a control. The HSC4 and SAS cells were 
treated with reagents including cetuximab (10 and 20 µg/ml), 
AG1478 (10 and 20  µg/ml), FBS (10%), EGF (10, 20 and 
50 ng/ml), MK2206 (1, 5 and 10 µM) or PD98059 (1, 5 and 
10 µM). Following incubations for 12‑20 h at 37˚C, images of 
the cells were captured using inverted phase‑contrast micros-
copy (IX71, Olympus, Tokyo, Japan) in order to evaluate the 
rate of migration.

Western blotting. The OSCC HSC4 and SAS cells were 
washed with PBS and then lysed with radioimmunopre-
cipitation assay buffer, consisting of 150 mM NaCl, 10 mM 
Tris‑HCl, pH  8.0, 1% (v/v) Nonidate P‑40, 0.5% (w/v) 
deoxycholic acid, 0.1% (w/v) SDS, 5 mM EDTA, 1X Halt™ 
protease inhibitor cocktail (Thermo Fisher Scientific, Inc.) 
and 1X Halt™ protein phosphatase inhibitor (Thermo Fisher 
Scientific, Inc). The protein concentration of the lysates was 
determined using a BCA™ Protein Assay kit (Thermo Fisher 
Scientific, Inc.) and equal amounts of the proteins (10‑50 µg) 
were subjected to SDS‑PAGE analysis. The separated proteins 
were electrophoretically transferred onto polyvinylidene 
fluoride membranes (Clear Trans SP; Wako Pure Chemical 
Industries, Ltd., Osaka, Japan). Non‑specific binding was 
blocked by incubation in 5% (w/v) bovine serum albumin 
(BSA; Sigma‑Aldrich; Merck Millipore) in TBS/Tween‑20 
(TBS‑T) for 1  h at room temperature. The membranes 
were probed with primary antibodies including anti‑ERK, 
anti‑phospho‑ERK, anti‑Akt, anti‑phospho‑Akt, anti‑profilin, 
anti‑cofilin, anti‑phospho‑cofilin and anti‑α‑tubulin in 
TBS‑T overnight at 4˚C and then incubated with horseradish 
peroxidase‑conjugated secondary antibodies for 1 h at room 
temperature. Antibody‑antigen complexes were detected using 
the Enhanced Chemiluminescence Plus Western Blotting 
Detection Reagent (GE Healthcare Japan, Tokyo, Japan).

Staining of actin fiber. Cultured HSC4 and SAS cells were 
fixed in 3.5% (w/v) paraformaldehyde for 10 min at room 
temperature, permeabilized in 0.2% (v/v) Triton X‑100 for 
5 min at room temperature, and blocked in 2% (w/v) BSA for 
30 min at room temperature. Fixed cells were incubated in 
100 nM of Acti‑stain™ 488 phalloidin in the dark for 30 min 
at room temperature. Phalloidin staining was observed under 
fluorescent microscopy (Olympus, Tokyo, Japan).

Statistical analysis. All data are presented as the mean ± standard 
error and an unpaired student's t‑test was used to determine the 
significant differences between the groups. P<0.05 was consid-
ered to indicate a statistically significant difference.

Results

The EGF‑EGFR signaling pathway is associated with the 
migration of SAS cells, but not the migration of HSC4 cells. 
Changes in the EGFR signaling pathway induced by cetuximab 
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have an important role in the migration of SAS cells, but not 
in the migration of HSC4 cells (30). In the present study, the 
effects of the AG1478 EGFR inhibitor on cell migration were 
examined and compared with those of cetuximab (Fig. 1A). 
The migration of SAS cells was significantly inhibited by 
AG1478 (10 µM P=0.00036, 20 µM P=0.00000055) as well 
as cetuximab (10 µM P=0.0027, 20 µM P=0.000045) treat-
ment, whereas the migration of HSC4 cells was not affected 
by these inhibitors (Fig. 1A). As the migration of HSC4 and 
SAS cells was significantly stimulated (HSC4 P=2.8x10‑18; 
SAS P=0.00012) by the addition of FBS in culture medium 
(Fig.  1B), the effects of EGF, an EGFR ligand present in 

serum, on migration were examined. EGF was observed to 
significantly stimulate the migration of SAS cells (20 ng/ml, 
P=0.0022, 50 ng/ml, P=0.000023), but not of the HSC4 cells 
(Fig. 1C). These results suggest that the EGF‑EGFR signaling 
pathway induces the migration of SAS cells, whereas the 
signaling pathways induced by various other factors present in 
serum may contribute to the migration of HSC4 cells.

The EGFR‑Akt signaling pathway is associated with the 
migration of SAS cells. The ability of distinct RTKs to 
stimulate the migration of certain cell lines (14) indicates that 
various signal transduction pathways may be involved in the 

Figure 1. Treatment with EGF or EGFR inhibitors affected the migratory potency of SAS cells. (A) Cetuximab and AG1478 inhibited the migration of SAS 
cells, but not of HSC4 cells. Phase‑contrast micrographs of scratch wound healing assays performed following treatment with cetuximab or AG1478 for 
24 h in HSC4 cells, or 12 h in SAS cells. The graph represents the wound width measurements of treated cells, as compared with non‑treated cells (1.0). 
(B) FCS‑induced migration of HSC4 and SAS cells. Phase‑contrast micrographs of scratch wound healing assays performed in HSC4 and SAS cells with (+) 
or without (‑) serum. (C) EGF induced migration in SAS cells, but not in HSC4 cells. Phase‑contrast micrographs of scratch wound healing assays performed 
following treatment with EGF for 20 h in HSC4 cells, or 12 h in SAS cells. Error bars, SEM; n=3; **P<0.01; ***P<0.001. EGF, epidermal growth factor; EGFR, 
EGF receptor; FBS, fetal bovine serum.
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motility of HSC4 and SAS cells. In order to investigate the 
downstream signaling factors involved in OSCC cell motility, 
the effects of specific Akt and MEK inhibitors on the migra-
tion of these cells were evaluated. The Akt inhibitor MK2206 
significantly suppressed the migration of HSC4 (1  µM, 
P=0.0097; 5 µM, P=0.000018; 10 µM, P=0.000023) and SAS 
cells (5 µM, P=0.047; 10 µM, P=0.0056; Fig. 2A). In addition, 
EGF was observed to induce Akt phosphorylation in SAS 
cells, but not in HSC4 cells (Fig. 2C). These results indicate 
that the Akt signaling pathway is required for the migration of 
these cell lines, and that EGF induces Akt phosphorylation in 
SAS cells, but not in HSC4 cells. The MEK inhibitor PD98059 
was identified to significantly inhibit the migration of SAS 
cells (5  µM, P=0.000039; 10  µM, P=8.9x10‑9), but not of 
HSC4 cells (Fig. 2B). The phosphorylation of ERK was highly 
and moderately induced by EGF in HSC4 and SAS cells, 
respectively (Fig. 2C). These data indicate that EGF is able 
to activate the ERK signaling pathway in certain OSCC cell 

lines; however, the ERK signaling pathway is only involved in 
the migration of SAS cells.

EGFR inhibitors promote, and EGF suppresses, the accumu‑
lation of actin filaments in SAS cells. As the remodeling of 
the actin network is considered to be involved in cell migra-
tion (31), the effects of cetuximab or AG1478 treatment on actin 
filament levels were examined using phalloidin staining. The 
degree of staining observed was markedly increased following 
the treatment of SAS cells with cetuximab (P=0.000020) 
and AG1478 (P=0.00036), as compared with untreated 
cells (Fig. 3A). By contrast, the EGFR inhibitors cetuximab 
(P=0.73) and AG1478 (P=0.89) were not observed to affect the 
degree of phalloidin staining in HSC4 cells (Fig. 3A). EGFR 
is induced by EGF binding, it was then examined whether 
EGF affects actin organization in HSC4 and SAS cells. EGF 
treatment reduced the degree of palloidin staining in SAS 
cells (P=0.00014), but not in HSC4 cells (P=0.94; Fig. 3B). 

Figure 2. The EGF‑EGFR signaling pathway induces the migration of SAS cells via Akt phosphorylation. The effects of (A) MK2206 or (B) PD98059 treat-
ment on the migration of HSC4 and SAS cells. Phase‑contrast micrographs and graphs are as described in Fig. 1. (C) Representative western blot demonstrating 
that EGF promotes ERK phosphorylation in HSC4 cells, and Akt phosphorylation in SAS cells. Protein extracts from each cell sample were probed with 
anti‑ERK, anti‑phospho‑ERK, anti‑Akt and anti‑phospho‑Akt, and anti‑α‑tubulin as the loading control. Error bars, SEM; n=3; *P<0.05, **P<0.01, ***P<0.001; 
EGF, epidermal growth factor; EGFR, EGF receptor; Akt, protein kinase B; ERK, extracellular‑regulated kinase; p, phosphorylated.
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These results indicate that the EGF‑EGFR signaling pathway 
regulates actin filament turnover, and that it is necessary for 
cell motility. Thus, we examined effect of EGFR signaling 
on profiling and cofilin levels, because these proteins play 
key roles in actin polymerization and depolymerization, 
respectively. However, following treatment of the HSC4 and 
SAS cells with EGFR inhibitors, profiling‑1 expression levels 
were not observed to be altered and cofilin‑1 phosphorylation 
increased in both cells (data not shown).

Discussion

The directed migration of tumor cells into the surrounding 
tissues and blood vessels promotes the tissue invasion of 
metastatic cancer cells (32). This directed cell migration is 
often regulated by responses to extracellular stimuli (33‑35). 
Notably, signal transduction via EGFR has an important role in 
cell motility in various types of cancer (36,37). In the present 
study, EGF‑EGFR signaling was identified to be required for 
the migration of SAS OSCC cells, but not for HSC4 OSCC 
cells. In our previous study, it was demonstrated that EGFR 
activity is essential for the proliferation of HSC4 cells, but not 
SAS cells (30). The Akt inhibitor MK2206 and ERK inhibitor 
PD98059, which did not affect HSC4 cell migration, were 
observed to inhibit SAS cell migration. EGF stimulated the 
phosphorylation of ERK in HSC4 cells and Akt in SAS cells. 
These results indicate that the EGF‑EGFR signaling pathway 
induces fundamental phenomena, including cell proliferation 
and migration, in a cell type‑dependent manner. Furthermore, 
it is possible that the migration of SAS cells is regulated by 

EGF‑EGFR signal transduction via Akt, and that the prolif-
eration of HSC4 cells is regulated by EGF‑EGFR signal 
transduction via the MEK‑ERK signaling pathway.

The migration of HSC4 cells was promoted by the addi-
tion of FBS; however, the addition of EGF did not affect 
their migration, indicating that HSC4 cell migration requires 
certain extracellular stimuli present in serum other than EGF. 
At present, ~60 RTKs have been identified and their activi-
ties have been demonstrated to affect various physiological 
functions, including cell migration (38). In addition to EGF, 
previous studies have revealed that the following RTKs are also 
involved in regulating the migration of various cancer cells: 
growth arrest‑specific 6 (GAS6) receptor (AXL); hepatocyte 
growth factor receptor (MET); fibroblast growth factor; and 
discoidin domain receptor family, member 1 (39‑43). There-
fore, further examination of how these candidate RTKs are 
involved in the regulation of OSCC cell migration is required.

The cytoskeleton, which is composed of actin filaments, is 
a highly organized network that enables cellular motion (44). 
In the present study, it was demonstrated that the degree of 
phalloidin staining in SAS cells treated with EGFR inhibi-
tors was markedly increased, as compared with the control 
cells. Untreated control cells exhibited a normal arrangement 
of actin filaments near the outer layer of the cell periphery. 
Although this staining pattern was fundamentally unchanged 
following treatment of the control cells with EGFR inhibitors, 
intense overall cortical staining was observed. By contrast, 
the degree of phalloidin staining of the actin filaments was 
reduced in SAS cells by the addition of EGF; however, the 
staining pattern was not altered. It was hypothesized that 
the accumulation of actin filaments may produce irregular 
tension in the cytoskeletal system that is able to disrupt the 
orchestrated generation of force and interfere with directional 
cell migration. Therefore, it was concluded that the effects of 
EGFR inhibitors on the motility of SAS cells are possibly due 
to the accumulation of actin filaments in the cytoskeleton.

Previous studies have indicated that profilin and cofilin 
have key roles in regulating the assembly of actin filaments 
beneath the plasma membrane, in order to promote cell motility 
and other actin‑associated processes (45,46). Profilin‑1 is an 
actin monomer‑binding protein considered to be an essential 
factor in actin polymerization (47,48). In addition, the depo-
lymerization of actin filaments is regulated by cofilin, the 
phosphorylated form of which cannot sever actin filaments 
and therefore shows negative regulation (49‑51). Therefore, 
the effects of EGFR inhibitors on the expression levels of 
profilin‑1 and phosphorylated cofilin‑1 were examined. 
However, our unpublished western blot analysis data suggested 
that profiling‑1 and cofilin‑1 may not necessarily have direct 
roles in the actin dynamics regulated by EGFR signaling. It 
was hypothesized that various other actin‑binding proteins 
involved in the reorganization of the actin cytoskeleton are 
regulated downstream of the EGFR signaling pathway, and 
that EGFR inhibition promotes the overexpression of these 
proteins, resulting in the accumulation of actin filaments and 
cell dysmotility.

The proliferation of SAS cells, which possess a stem 
cell‑like potency (52), was resistant to cetuximab in monolayer 
culture conditions, despite the phosphorylation of EGFR; 
however, the growth of SAS cell aggregates, in which EGFR 

Figure 3. The EGF‑EGFR signaling pathway regulates the actin network. 
Fluorescent images of phalloidin staining of the actin filaments in HSC4 
and SAS cells treated with (A) cetuximab or AG1478 and (B) EGF. Fixed 
cells were permeabilized and stained with Acti‑stain™ 488. EGF, epidermal 
growth factor; EGFR, EGF receptor.



OHNISHI et al:  CANCER CELL MIGRATION REGULATED BY EGFR 935

levels were increased, was sensitive to cetuximab (30). In the 
present study, it was demonstrated that SAS cell migration is 
also sensitive to the EGFR inhibitors cetuximab and AG1478. 
Therefore, EGFR may be a candidate therapeutic target for the 
prevention of cancer stem cell dissociation from the primary 
tumor, migration into the surrounding tissues during the early 
stage and colonization at distant sites in OSCC metastasis.
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