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Abstract. Epithelial‑mesenchymal transition (EMT) is a 
biological process that is associated with cancer metastasis 
and invasion. In cancer, EMT promotes cell motility, invasion 
and distant metastasis. Interleukin (IL)‑8 is highly expressed 
in tumors and may induce EMT. The IL‑8/IL‑8R axis has a 
vital role in EMT in carcinoma, which is regulated by several 
signaling pathways, including the transforming growth factor 
β‑spleen associated tyrosine kinase/Src‑AKT/extracellular 
signal‑regulated kinase, p38/Jun N‑terminal kinase‑acti-
vating transcription factor‑2, phosphoinositide 3‑kinase/AKT, 
nuclear factor‑κB and Wnt signaling pathways. Blocking the 
IL‑8/IL‑8R signaling pathway may be a novel strategy to 
reduce metastasis and improve patient survival rates. This 

review will cover IL‑8‑IL‑8R signaling pathway in tumor 
epithelial‑mesenchymal transition.
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1. Introduction

Epithelial‑mesenchymal transition (EMT) is a crucial 
process that promotes cell motility, wound healing, tissue 
regeneration, fibrogenesis and tumor metastasis  (1). EMT 
has been reported to be implicated in multiple steps of 
several developmental processes involved in tumor progres-
sion (2). It can lead to a loss of cell‑cell junctions in tumor 
cells and a decrease in the expression of E‑cadherin in the 
epithelium (3). EMT can also lead to an increase in expres-
sion of vimentin (4), a marker of mesenchymal‑derived cells. 
Notably, EMT facilitates cancer cells to initiate distant 
metastasis and is able to increase motility of cancer cells 
at the leading tumor edge and cell invasion (5). EMT is an 
important process in cancer cell migration and invasion. 
Thus, manipulating the EMT process in vivo may be a useful 
strategy to prevent tumor metastasis. Notably, the cytokine 
interleukin (IL‑8) is important for EMT, and it is highly 
expressed in the cancer microenvironment  (6). Although 
IL‑8 has a pro‑inflammatory role, cancer cells are able to 
evade host immune defense mechanisms (7). The chemokine 
IL‑8 is secreted by fibroblasts, endothelial and immune 
cells. IL‑8 expression is closely associated with cancer (6). 
Furthermore, the involvement of IL‑8 in angiogenesis (8), 
and cancer cell invasion and metastasis has been previously 
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reported (9). A previous study has indicated that in cancer 
patients, increased expression of IL‑8 in tumor tissues may 
be associated with EMT (10).

2. EMT and tumorigenesis

It has been previously demonstrated that EMT in tumors 
can be induced by the secretion of specific factors, including 
IL‑6, IL‑8, vascular endothelial growth factor (VEGF), 
transforming growth factor β (TGFβ), SNAIL, matrix metal-
loprotease (MMP), tumor necrosis factor α (TNFα) and 
TWIST (2,11‑14). The secretion of pro‑inflammatory cytokines 
(TNFα and IL‑6), chemokine IL‑8 and growth factors (TGFβ 
and VEGF) has also been reported in A549 cells, and may 
have important associations with cancer (2). IL‑8 is able to 
promote cell motility, cancer metastasis and cell invasion (15) 
following EMT. Tumor cells are able to secrete IL‑8 via an 
autocrine mechanism, which can promote EMT. A previous 
study revealed that knockdown of IL‑8 suppressed the level 
of phosphorylated AKT in S18 cells (4). IL‑8 knockdown may 
lead to upregulation of the epithelial marker E‑cadherin as 
well as downregulation of the mesenchymal markers vimentin 
and fibronectin (4). Additionally, IL‑8 has been closely associ-
ated with EMT (16) and may promote tumor metastasis and 
cell invasion.

Cancer cells undergo a reversal of EMT, termed 
mesenchymal‑epithelial transition (MET)  (17), to invade 
multiple organs until they migrate to their final destination 
for colonization. In contrast to EMT, MET is associated with 
colonization at the metastatic site (18). Once mesenchymal 
cells reach their destination, the cell phenotype changes to 
an epithelial phenotype via MET to colonize the organs (19). 
These changes involve the loss of cell‑cell junctions, and cells 
acquire motility and invasive capabilities (3). Cancer cells 
must undergo the MET process to migrate to their destination. 
Furthermore, MET is closely associated with cancer cells, 
which may acquire a second colonization (otherwise termed 
metastasis).

A vital characteristic of cancer metastasis is induction of 
EMT, which is associated with interaction with the extracel-
lular matrix (20). In the extracellular matrix, the role of the 
cellular factors is to communicate with the intracellular 
matrix and a number of these factors have been reported to 
be associated with EMT, including IL‑6, IL‑8, VEGF, TGFβ, 
SNAIL, MMP, TNFα and TWIST. The mechanism underlying 
the interaction between these factors and EMT is complicated. 
Notably, the dramatic phenotypic change in EMT is coupled 
with motility and metastasis (21). Understanding the under-
lying mechanisms involved in normal morphogenesis and 
designing treatment strategies to reduce EMT is vital (17).

During the EMT process, cancer cells lose cell polarity and 
adhesion. The cancer cells acquire increased migratory and 
invasive capabilities. The EMT process is regulated by several 
signaling pathways (22,23), which lead to cancer cell migra-
tion and invasion. In breast cancer, cancer cells penetrate and 
transmigrate into the basement membrane barriers, causing 
angiogenesis and invasion (24) into the circulation. It has been 
observed that when EMT was activated by epithelial cells in 
the epithelium constituent of carcinosarcomas, the cells exhib-
ited epithelial and mesenchymal phenotype (25). Furthermore, 

the study was able to directly assess epithelial plasticity and 
EMT reversal.

The EMT in carcinoma allows cancer cells to gain 
increased motility and invasiveness. EMT involves a change in 
phenotype from epithelial to mesenchymal, thereby allowing 
cells to invade and colonize nearby tissues. Disseminated 
cancer cells need to transmigrate the epithelial status during 
the period of metastatic colonization. These cancer cells 
have high proliferative potential, allowing the formation of 
secondary tumors. The normal cellular junctions consist 
of specific epithelial splicing and epigenetic mechanisms to 
maintain epithelial homeostasis (25). In summary, EMT is 
regulated by many factors in the extracellular and intracellular 
matrix. It has a vital role in regulating cancer cell motility, 
metastasis, invasion, reverse transition and establishment of a 
secondary tumor.

3. Regulation of EMT

Transforming growth factor β (TGFβ). E‑cadherin and 
vimentin are markers of epithelial and mesenchymal cells, 
respectively (6). It has been previously demonstrated in A549 
human lung carcinoma cell line that a number of cytokines 
are associated with EMT, including IL‑8, VEGF, TGFβ and 
TNFα (26). It has also been reported that TGFβ is able to induce 
EMT in multiple cell lines via activation of the E‑cadherin 
repressor (19). Bone morphogenetic protein 7 is a member of the 
transforming growth factor‑β family and serves an important 
role in kidney development (27). TGFβ has an important role 
in cell migration and is a tumor‑promoting factor. It has also 
been reported that TGFβ is able to upregulate MMP expres-
sion in A549 lung cancer cells. TGFβ is able to induce EMT to 
promote metastasis (28). Other studies have also revealed that 
TGFβ is able to induce EMT by upregulating the expression of 
zinc finger E‑box binding homeobox 1 (ZEB1) in renal tubular 
epithelial cells (29). Epstein‑Barr virus‑induced TGFβ‑spleen 
associated tyrosine kinase (Syk)/Src AKT/extracellular 
signal‑regulated kinase (ERK) signaling may also be able to 
promote malignant and invasive potential in human corneal 
epithelial cells by inducing EMT, and thus may be an effec-
tive therapeutic target for the treatment of ocular disease (30). 
Therefore, the TGFβ signaling pathway may have an important 
role in advancing tumor progression and metastasis.

MMPs. The role of MMPs in cell invasion and tumor metas-
tasis has been well established. MMPs are able to remodel the 
cell cytoskeleton in tumor cells to induce EMT. It has been 
demonstrated that MMP‑2 is able to facilitate tumor metas-
tasis and cell invasion. MMP‑2 may therefore be a sensitive 
predictor of lung tumor progression (31). Furthermore, MMPs 
released by tumor‑associated neutrophils, may facilitate tumor 
progression, leading to cytoskeleton remodeling and promo-
tion of tumor metastasis (32). Therefore, MMPs may have an 
important role in tumor metastasis and thus may provide a 
novel target for cancer therapeutics.

SNAIL. Previous studies have suggested that SNAIL has 
an important role in EMT in cancer cells, particularly in 
epithelial tumor cells  (33,34). SNAIL is able to reduce the 
number of cell‑cell junctions in cancer tissue and alter the cell 
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cytoskeleton (35). SNAIL, vimentin and TWIST are upregu-
lated in human hepatic cells, and these changes are associated 
with EMT (13). It has also been demonstrated that SNAIL is able 
to directly activate IL‑8 via binding with the IL‑8 receptor (36). 
EMT is promoted by the expression of Notch, which leads to 
E‑cadherin activation via SNAIL  (37‑39). Additionally, a 
previous study suggested that high expression of Notch leads 
to EMT (40). Notably, SNAIL‑induced EMT can be eliminated 
by anti‑IL‑8 receptor B neutralizing antibodies, suggesting 
that IL‑8 has an effective role in mediating SNAIL‑induced 
EMT and in advancing carcinoma development (41). Targeting 
IL‑8 may provide a novel strategy for the treatment of cancer. 
Previous studies have also revealed close associations between 
EMT and SNAIL in tumor metastasis (42‑44). ZEB1, TWIST 
and SNAIL have also been implicated in carcinoma via the 
phosphatidyl inositol 3‑kinase (PI3K) (45,46) and glycogen 
synthase kinase 3β signaling pathways (42).

VEGF. A previous study demonstrated that IL‑6  (47) and 
VEGF (48) cytokines are secreted by neoplastic cells under-
going EMT. Furthermore, it has been reported that these 
two cytokines can co‑operate to induce EMT (2) in prostate 
intraepithelial neoplasia‑like cells via an autocrine loop (48). 
MCF7 breast cancer cells are also able to undergo EMT via 
TWIST overexpression, and this was associated with increased 
synthesis of the angiogenic factor VEGF (49). VEGF has an 
important role in angiogenesis, thus VEGF and microvessel 
density may be useful biomarkers for predicting outcomes for 
colorectal cancer patients (50). In summary, VEGF has a vital 
role in cancer progression by promoting EMT via angiogenesis.

IL‑8 and IL‑8R. It has been reported that the levels of IL‑8 
and IL‑8 receptor type 1 (CXCR1) and 2 (CXCR2) increase 
due to the inhibition of phosphatase and tensin homolog 
(PTEN) in prostate carcinoma  (51,52). Overexpression of 
CXCR1 and CXCR2 has been detected in prostate cancer 
tissue and promotes tumor progression by contributing to cell 
proliferation and angiogenesis (52). Furthermore, overexpres-
sion of IL‑8 and CXCR2 has been closely associated with 
tumor progression and metastasis in esophageal squamous 
cell carcinoma  (53). IL‑8 may induce tumor progression, 
metastasis and angiogenesis via CXCR2  (54). The role of 
microRNA‑200 in inhibiting angiogenesis via downregulation 
of IL‑8 and CXCR1 in ovarian cancer cell lines has also been 
reported (55). The expression of CXCR1 and CXCR2 was not 
affected by chemotherapy in breast cancer where there was 
increased expression of IL‑8, thus CXCR may be desensitized 
prior to and following chemotherapy (56). IL‑8 and CXCL1 
can affect angiogenesis via endothelial CXCR2 receptors (57). 
In summary, IL‑8 and its receptors are closely associated with 
tumor progression, angiogenesis and metastasis, which may 
promote EMT in tumor cells.

Blocking IL‑8 signaling is a potential strategy to inhibit 
EMT and thus reduce tumor progression, metastasis and 
angiogenesis, which may lead to improvements in 5‑year 
disease‑free survival and overall survival rates (11). There is 
increased expression of IL‑8 in the tumor microenvironment. 
IL‑8 secretion may be mediated via fibroblasts, endothe-
lial cells and immune cells, which may promote EMT in 
cancer (11).

4. Signaling pathways associated with IL‑8

The p38/Jun N‑terminal kinase (JNK)‑activating transcrip-
tion factor‑2 (ATF‑2) signaling pathway serves a vital role 
in cell invasion and EMT, which is mediated by autocrine 
IL‑8 in A549 lung cancer cells (2). Previous studies have 
demonstrated that ATF‑2 is able to promote tumorigenesis, 
and has been observed to be upregulated in various types 
of carcinoma, including mouse skin tumors  (58), human 
neuroblastoma (59) and prostatic neoplasia  (60). Notably, 
ATF‑2 can be activated by IL‑8 transcription (61). IL‑8 is 
able to induce the JNK/p38‑ATF‑2 signaling pathway and 
promote invasion in A549 lung cancer cells (2). Furthermore, 
ATF‑2 is a potential therapeutic target for inhibiting tumor 
metastasis (2).

The PI3K/AKT signaling pathway has an important 
role in promoting cell proliferation and survival. Inhibiting 
the AKT signaling pathway can lead to a decrease in cell 
motility, which is induced by IL‑8 stimulation. AKT is an 
important signaling pathway for modulating IL‑8‑induced 
cell motility and invasion (62). PTEN can result in dysregu-
lation of the PI3K/AKT signaling axis in pancreatic ductal 
adenocarcinoma (63). Furthermore, loss of PTEN induces 
the upregulation of IL‑8 signaling in prostate carcinoma (51). 
A previous study has demonstrated that there is high expres-
sion of phosphorylated AKT when cells are treated with 
recombinant human netrin‑1 in a human hepatocellular 
carcinoma cell line  (64). The role of AKT in activating 
nuclear factor (NF)‑κB signaling has been well estab-
lished (65). Additionally, the NF‑κB signaling pathway has 
been associated with IL‑8, which has an important function 
in regulating tumor invasion (66). Therefore, cell motility 
can be promoted by IL‑8 via the AKT signaling pathway. It 
has also been reported that AKT signaling can lead to EMT 
in breast cancer cells (67).

Several signaling pathways have been associated with 
EMT, including the PI3K and Wnt signaling pathways (68). 
The Wnt signaling pathway can be activated via overexpres-
sion of IL‑8 (69). Previous studies have also indicated that the 
Wnt signaling pathway serves an important role in mediating 
cell‑cell adhesion and beta‑catenin self‑phosphorylation in 
tumor cells  (70,71). Therefore, the PI3K/AKT, NF‑κB and 
Wnt signaling pathways are closely associated with IL‑8 and 
EMT (62,72). The signaling pathways and factors associated 
with EMT in tumor cell proliferation, metastasis, invasion and 
angiogenesis are displayed in Table I (11,12,14,73‑83).

5. Effects of IL‑8 on EMT in the tumor microenvironment

The cytokine IL‑8 is a potential therapeutic target for treating 
inflammatory diseases  (84,85) and inhibiting carcinoma 
angiogenesis (86). A previous study has demonstrated that 
IL‑8 mRNA expression has a role in EMT and tumor progres-
sion (87). In prostate carcinoma cells, increased expression 
of IL‑8 promotes cancer progression, but the expression of 
E‑cadherin is reduced. In addition, IL‑8 has an important role 
in cancer cell proliferation, invasion and metastasis (62). Cancer 
cells secrete IL‑8, and promote angiogenesis, cell prolifera-
tion, metastasis and invasion (62). Under hypoxic conditions, 
cancer cells are able to secrete IL‑8 (78). Additionally, the 
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expression of IL‑8 in various types of carcinoma tissues, 
including breast, colon, gastric, lung and ovarian cancer has 
also been reported (88). IL‑8 secretion is induced by TGFβ 
stimulation (79) and SNAIL overexpression (36), which can 
lead to EMT in colorectal cancer cells.

IL‑8 can induce and maintain the mesenchymal phenotype to 
facilitate metastatic carcinoma progression. Previous studies 
have reported that IL‑8 secreted by the tumor stroma is able 
to induce cell proliferation  (89), migration, invasion and 
EMT (11,79,90). These factors may enable cancer cells to evade 
apoptosis, and thus promote cell survival (91). IL‑8 is also able 
to induce angiogenesis (92‑94), and facilitate cancer progres-
sion and metastasis in melanoma and ovarian cancer (95,96). 
Increased serum levels of IL‑8 are associated with the risk of 
lung cancer, which precedes diagnosis (77). Furthermore, a 
previous study has demonstrated that the blockade of CXCR1 
with a CXCR1‑specific blocking antibody or repertaxin, the 
small‑molecule inhibitor of IL‑8, was able to inhibit angiogen-
esis, invasion, metastasis and tumor progression in xenograft 
tumor models (97,98). IL‑8 is able to promote cell migration, 
invasion, and metastasis (72). IL‑8 also serves a vital role in 
EMT and can regulate the tumor microenvironment (6). In 
summary, there are close associations between IL‑8 and EMT 
in cancer. A list of the signaling pathways and factors associ-
ated with IL‑8, including PI3K/AKT, NF‑κB, p38/ATF‑2, JNK, 
MMP and Wnt signaling pathways are displayed in Fig. 1.

Increased expression of IL‑8 in the tumor microenviron-
ment is associated with cell invasion and metastasis. IL‑8 may 

have an important role in ovarian cancer metastasis and induces 
EMT (99). Another study also reported the important role of a 
number of cytokines including IL‑8 in tumor metastasis (100). 

Table I. Epithelial‑mesenchymal transition in tumors is closely associated with several cytokines.

Factors	 Associated signaling pathways	 Associations with tumor 

IL‑8	 p38/JNK‑ATF‑2 (2)	 Induction of EMT (11)
	 PI3K/AKT (73)	 Angiogenesis (75)
	 NF‑κB (66,74)	 Promotion of cancer cell proliferation, 
		  invasion and metastasis (76)
	 Wnt (69)	 Lung cancer risk marker (77)
		  IL‑8 secretion by tumor cells (78)
		  Induced by TGFβ or SNAIL overexpression (36,79)
TGFβ	 Syk/Src‑AKT/ERK (30)	 Induction of EMT (12)
		  Inhibition of E‑cadherin (19)
		  Tumor cell migration (30)
MMP	 NF‑κB (80)	 Induction of EMT (14)
		  Tumor cell metastasis (31)
		  Cytoskeleton remodeling (32)
SNAIL	 PI3K (46)	 EMT progression (25)
	 GSK 3β (42)	 Changes in cytoskeleton (81)
		  Activation of IL‑8 (36)
VEGF	 PI3K/AKT (82)	 Promotion of EMT (2)
		  Angiogenesis (83)

ATF‑2, activating transcription factor‑2; EMT, epithelial‑mesenchymal transition; ERK, extracellular signal‑regulated kinase; GSK 3β, 
glycogen synthase kinase 3β; IL‑8, interleukin‑8; PI3K, phosphatidyl inositol 3‑kinase; JNK, Jun N‑terminal kinase; NF‑κB, nuclear factor‑κB; 
MMP, matrix metalloprotease; Syk, spleen associated tyrosine kinase; TGFβ, transforming growth factor β; VEGFR, vascular endothelial 
growth factor receptor. 

Figure 1. IL‑8/IL‑8R axis. IL‑8 is able to induce EMT and promote tumor 
progression. There are important associations between IL‑8/IL‑8R and EMT 
in cancer patients. The IL‑8/IL‑8R signaling pathway is able to induce IL‑8 
overexpression, which is closely correlated with poor prognosis. ATF‑2, 
activating transcription factor‑2; CXCR1/2, IL‑8 receptor type 1/2; EMT, 
epithelial‑mesenchymal transition; ERK, extracellular signal‑regulated 
kinase; IL, interleukin; NF‑κB, nuclear factor‑κB; JNK, Jun N‑terminal 
kinase; MMP, matrix metalloprotease; PI3K, phosphatidyl inositol 3‑kinase; 
PTEN, phosphatase and tensin homolog; Syk, spleen associated tyrosine 
kinase; TGFβ, transforming growth factor β; VEGFR, vascular endothelial 
growth factor receptor; ZEB1, zinc finger e‑box binding homeobox 1.
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Furthermore, invasive tumor cells have increased expression 
of IL‑8 compared with non‑cancerous tissue cells (101). Tumor 
cells can promote cell motility when there is an increased 
expression of IL‑8 in the tumor microenvironment, thus 
promoting cancer cell migration and metastasis (102). The 
expression of the brachyury gene is positively associated with 
IL‑8 and negatively associated with E‑cadherin. This may 
lead to induction of EMT and tumor metastasis in primary 
lung cancer (103). Studies generally have reported that EMT 
can be induced by IL‑8, which promotes cancer metastasis 
and angiogenesis (6,11). However, IL‑8 secretion in the tumor 
microenvironment can also be induced by EMT.

6. Prognosis

Researchers have observed that IL‑8 serves an important role 
in the prognosis of several types of carcinoma, including breast, 
colorectal, lung, gastric and prostate cancer  (77,104‑108). 
Increased levels of IL‑8 and MMP‑3 are indicators of poor 
prognosis in triple‑negative breast carcinomas  (109). A 
study demonstrated that NF‑κB upregulates IL‑8, which led 
to tumor progression and poorer outcomes in a pancreatic 
cancer model (100). Brachyury mRNA is able to induce the 
secretion of IL‑8 and reduce the 5‑year disease‑free survival 
and overall survival rates  (103). Additionally, the levels 
of IL‑8 and its receptor may be employed as an indictor to 
predict prognosis and survival rate. Increased levels of IL‑8 
in ovarian, lung, renal and breast cancer have been reported, 
and this was associated with poor prognosis (55). Therefore, 
inhibiting IL‑8 may be a potential strategy to control cancer 
cell migration, invasion and metastasis. Furthermore, IL‑8 
is able to induce EMT and this leads to a poor outcome in 
hepatocellular cancer patients  (10). In summary, IL‑8 has 
an important association with EMT and prognosis in cancer 
patients.

7. Conclusion

EMT has an important role in the progression of cancer 
metastasis. Induction of EMT is closely associated with 
distant metastasis and cell invasion in tumor progression, 
and indicates a poor prognosis. A number of studies have 
reported that multiple factors can affect EMT in cancer, 
including IL‑6, IL‑8, VEGF, TGFβ, SNAIL, MMP, TNFα 
and TWIST (30,110,111), which can enhance cell motility and 
promote tumor metastasis. EMT in cancer cells involves loss of 
cell‑cell junctions and the acquisition of cell motility and inva-
sion factors. Multiple signaling pathways are closely associated 
with EMT in tumors, including TGFβ‑Syk/Src‑AKT/ERK, 
p38/JNK‑ATF‑2, PI3K/AKT, NF‑κB and Wnt signaling path-
ways (2,30,112‑114). Additionally, IL‑8 and its receptors have 
associations with EMT in cancer patients, thus blocking the 
IL‑8/IL‑8R axis may have be a potential strategy to improve 
prognosis for cancer patients.
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