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Abstract. The present study aimed to screen potential genes 
implicated in epithelial ovarian cancer (EOC) and to further 
understand the molecular pathogenesis of EOC. In order to 
do this, datasets GSE14407 (containing 12 human ovarian 
cancer epithelia samples and 12 normal epithelia samples) and 
GSE29220 (containing 11 salivary transcriptomes from ovarian 
cancer patients with serous papillary adenocarcinoma and 11 
matched controls) were obtained from the Gene Expression 
Omnibus. Differentially expressed genes (DEGs) within these 
datasets were screened using the Linear Models for Microarray 
Data package, and potential gene functions were predicted by 
functional and pathway enrichment analyses. Additionally, 
module analysis of protein‑protein interaction networks was 
performed using MCODE software in Cytoscape. The poten-
tial microRNAs (miRNAs/miRs) and transcription factors 
(TFs) regulating DEGs were also analyzed, and the integrated 
TF‑DEG and miRNA‑DEG regulatory networks were visual-
ized with Cytoscape. In total, 31 upregulated DEGs and 64 
downregulated DEGs were screened. The upregulated DEGs, 
such as centromere protein F (CENPF) and ubiquitin like with 
PHD and ring finger domains 1 (UHRF1), were significantly 
associated with the cell cycle and were regulated by the TF 
nuclear transcription factor Y (NF‑Y). CENPF was modulated 
by miR‑373, and UHRF1 was regulated by miR‑146a. The 
downregulated DEGs, such as aldehyde dehydrogenase  1 
family member A2 (ALDH1A2), were distinctly involved in 
the response to estrogen stimulus and modulated by tumor 
protein 53 (TP53); protocadherin 9 (PCDH9) was regulated 
by TP53, miR‑92b‑3p and miR‑137. The DEGs, including 
CENPF, UHRF1, ALDH1A2 and PCDH9, and a set of gene 
regulators, including all NFY genes, TP53, miR‑373, miR‑146a, 

miR‑92b‑3p and miR‑137, may be involved in the pathogenesis 
of EOC.

Introduction

Epithelial ovarian cancer (EOC), the primary gynecological 
cause of oncological mortality, accounts for 4% of all cancer 
types in women (1). Despite medical and surgical advances, 
patients with advanced EOC continue to endure poor long‑term 
survival rates (2). This is largely a result of the limited under-
standing of the molecular mechanisms of EOC pathogenesis.

Recently, marked achievements in the investigation of 
molecular mechanisms of EOC have been made. In ovarian 
cancer cells, the Janus kinase 2/signal transducer and activator 
of transcription 3 pathway was found to be constitutively active 
and directly dependent on the activation of epidermal growth 
factor receptor (EGFR) or interleukin 6 receptor (IL‑6R) (3); 
this pathway is required to sustain EGF‑induced epithe-
lial‑mesenchymal transition‑associated phenotypes in ovarian 
cancer cells (4). A previous study also demonstrated that the 
Kirsten rat sarcoma 2 viral homolog (KRAS)‑V‑Raf murine 
sarcoma viral oncogene homolog B1 (BRAF)‑mitogen‑acti-
vated protein kinase kinase 1 (MEK)‑mitogen‑activated 
protein kinase 1 (MAPK) pathway has a key biological role 
in the development of serous EOC tumors, and activating 
mutations in KRAS or BRAF result in the constitutive activa-
tion of MAPK‑mediated signaling (5). Mutations in BRCA1/2 
are frequently identified in high‑grade serous ovarian cancer; 
these mutations sensitize EOC patients to the inhibition of poly 
(ADP‑ribose) polymerase‑1, increasing the number of patients 
who benefit (6). Furthermore, low expression of the microRNA 
(miRNA/miR) miR‑100 is associated with the shorter overall 
survival times of EOC patients; miR‑100 affects the growth 
of EOC cells by post‑transcriptionally regulating polo‑like 
kinase 1 expression (7). A previous study demonstrated that 
overexpression of miR‑193a and miR‑193b activates caspase 
3/7, leading to apoptotic cell death in EOC A2780 cells (8).

Ovarian surface epithelia cells have long been hypoth-
esized to be crucial progenitors of serous EOC (9). In 2009, 
Bowen et al (10) revealed that differentially expressed genes 
(DEGs) of human ovarian surface epithelial cells are impli-
cated in the cell‑cycle pathway, as well as the WNT, hedgehog 
and retinoid pathways, which had previously been implicated 
in the development of EOC. In 2012, Lee et al (11) observed 
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that the presence of a combination of five genes (1‑acylglyc-
erol‑3‑phosphate O‑acyltransferase 1, β‑2‑microglobulin, 
immediate early response 3, interleukin 1 β and brain abun-
dant membrane attached signal protein 1) in the saliva had the 
robust ability to detect ovarian cancer, based on the highest area 
under the curve value from a receiver operating characteristic 
plot. The study by Lee et al (11) demonstrated that RNA signa-
tures in saliva acted as biomarkers for the detection of ovarian 
cancer with high specificity and sensitivity; however, the study 
only used a single sample source in its analysis and did not 
investigate regulatory mechanisms involving transcription 
factors (TFs) or miRNAs. Therefore, more potential molecular 
mechanisms of EOC pathogenesis must be revealed.

In the present study, two gene expression profile datasets, 
GSE14407 deposited by Bowen et al (10) and GSE29220 depos-
ited by Lee et al (11), were combined to identify potential key 
genes and their regulators associated with the pathogenesis of 
EOC. DEGs between EOC and control samples were screened 
for, and their functions were analyzed using Gene Ontology 
(GO) functional analysis and pathway enrichment analysis. A 
protein‑protein interaction (PPI) network was the constructed 
for these DEGs. Functional enrichment analysis of genes in 
the PPI network modules was also performed, and potential 
regulatory TFs and miRNAs of these DEGs were predicted. 
This microarray analysis may be conducive to providing novel 
information for the study of EOC pathogenesis and could 
provide potential biomarkers for the therapy of EOC.

Materials and methods

Affymetrix microarray data. The gene expression profile data 
of GSE14407 (10) and GSE29220 (11) were obtained from 
the Gene Expression Omnibus (GEO, http://www.ncbi.nlm 
.nih.gov/geo/) database, which was based on the platform of 
the GPL570 [HG‑U133_Plus_2] Affymetrix Human Genome 
U133 Plus 2.0 Array (Affymetrix, Inc., Santa Clara, CA, USA). 
The GSE14407 dataset contains 12 samples of epithelial cells 
from patients with serous papillary ovarian adenocarcinomas 
and 12 normal human ovarian surface epithelial cell samples. 
GSE29220 contains 11 salivary transcriptomes from ovarian 
cancer patients with serous papillary adenocarcinoma and 
11 matched controls.

CEL files and probe annotation files were downloaded and 
the two datasets were combined into one matrix expression 
profile. The batch deviation (12) in the gene expression data of 
all samples was wiped out by ComBat order in the surrogate 
variable analysis package in R (version 3.22.0; http://www 
.bioconductor.org/packages/release/bioc/html/sva.html) (13). 
The data were then preprocessed using background correc-
tion, quantile normalization and expression calculation using 
the preprocessCore package in R (version 1.36.0; http://www 
.bioconductor.org/packages/release/bioc/html/preprocess-
Core.html) (14). Afterwards, probe IDs were translated into 
gene symbols. If one gene symbol was matched by multiple 
probe IDs, the mean expression value was selected as the 
expression level of the gene.

DEG screening. Genes that differed significantly in their 
expression in EOC samples were identified by the Linear 
Models for Microarray Data package (version 3.30.13; 

http://www.bioconductor.org/packages/release/bioc/html/
limma.html)  (15). The raw P‑value was adjusted using the 
Benjamini‑Hochberg method (16) and only the genes with 
a |log2Fold change|>1 and an adjusted P‑value <0.05 were 
identified as DEGs in ovarian cancer samples.

GO functional and pathway enrichment analyses. The 
screened DEGs were submitted to the Database for Annota-
tion, Visualization and Integrated Discovery (DAVID) (17) for 
GO functional analysis and Kyoto Encyclopedia of Genes and 
Genomes (18) pathway enrichment analysis, with a cut‑off of 
P<0.05.

PPI network construction. The Search Tool for the Retrieval 
of Interacting Genes (http://string‑db.org/) (19) was used to 
analyze the PPIs for DEGs by calculating their combined score; 
a score >0.4 was chosen as the cut‑off point. PPI networks of 
upregulated and downregulated DEGs were then visualized 
by Cytoscape (version 3.4.0; http://cytoscape.org/) (20). Hub 
proteins (the essential proteins in PPI networks, which have 
higher degrees) (21) were screened by counting the degree of 
connectivity of each node in the network. In the network, a 
node represents a protein (gene) and lines represent the inter-
actions of the proteins. The ‘degree’ of each node refers to the 
number of nodes that interact with this node. The larger the 
degree is, the closer the connections with other nodes are.

Screening and analysis of relevant network modules. On the 
basis of MCODE analysis (22) of original PPI networks, the 
network modules were obtained with a cut‑off criterion of 
an MCODE score of >5. In order to achieve a better under-
standing of the function of genes in modules at the molecular 
level, functional annotation was performed using DAVID and 
the functional enrichment network was visualized using the 
plug‑in enrichment map in Cytoscape (version 3.4.0; http://
cytoscape.org/) (23).

Construction of integrated TF‑DEG regulatory network and 
miRNA‑DEG regulatory network. The University of California 
Santa Cruz database (http://genome.ucsc.edu/) (24) was used 
to obtain information on the associations between DEGs and 
related TFs. The integrated regulatory networks containing 
TFs with the 5 highest degrees and their corresponding 
upregulated or downregulated DEGs were then respectively 
visualized by Cytoscape (version 3.4.0, http://cytoscape.org/).

The common miRNAs predicted to be expressed by the 
databases of miRecords (http://c1.accurascience.com/miRe-
cords/) (25), TarBase (http://diana.imis.athena‑innovation.gr/
DianaTools/index.php?r=tarbase/index) (26) and TargetScan 
(http://www.targetscan.org/)  (27) were selected for the 
DEGs. Subsequently, the upregulated and downregulated 
miRNA‑DEG regulatory networks were respectively visual-
ized using Cytoscape (version 3.4.0, http://cytoscape.org/).

Results

Identification of DEGs. After data preprocessing, 20,927 
probes were obtained. On the basis of the cut‑off criteria, 
95 DEGs, including 31 upregulated DEGs and 64 downregu-
lated DEGs, were screened.
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Enrichment analysis of upregulated and downregulated 
DEGs. To reveal the functions of DEGs, GO functional and 
pathway enrichment analyses were conducted. Upregulated 
DEGs, including non‑SMC condensin I complex subunit H, 
BUB1 mitotic checkpoint serine/threonine kinase B, CENPF 
and baculoviral IAP repeat containing 5 (BIRC5), were 
significantly enriched in the following functional terms: M 
phase (P=1.56x10‑6), mitosis (P=2.36x10‑6), microtubule cyto-
skeleton (P=1.78x10‑5), chromosome (P=4.44x10‑5) and ATP 
binding (P=2.58x10‑2) (Table I). Meanwhile, several DEGs 
in the Wnt signaling pathway (SRY‑box 17, frizzled class 
receptor 2 and Wnt family member 7a) were clearly enriched 
(P=1.6678x10‑2) (Table II).

Downregulated DEGs, such as ALDH1A2 and growth 
hormone receptor (GHR), were distinctly involved in the 
estrogen stimulus response (P=4.73x10‑4); these DEGs, 
including SPARC/osteonectin, cwcv and kazal like domains 
proteoglycan 1 (SPOCK1) and GHR, were primarily associ-
ated with the extracellular region (P=1.241x10‑3), and DEGs 
(e.g., PCDH9 and SPOCK1) were associated with calcium ion 
binding (P=1.2652x10‑2) (Table I). ALDH1A3 and ADH1C were 
markedly enriched in three pathways, including drug metabo-
lism (P=3.51x10‑4), tyrosine metabolism (P=4.571x10‑3) and 

metabolism of xenobiotics by cytochrome P450 (P=8.375x10‑3)  
(Table II).

Analysis of network module in PPI network. To investigate 
the interactions of DEGs further, PPIs of upregulated and 
downregulated DEGs were respectively analyzed and the 
PPI network modules were then screened. On the basis of the 
analysis of PPI networks for upregulated and downregulated 
DEGs, only one significant network module for upregulated 
DEGs was screened. The DEGs UHRF1 and CENPF interacted 
with each other (Fig. 1A). To investigate the functions of genes 
in the network module, functional enrichment analysis for the 
upregulated module was performed. The genes in the module 
were primarily enriched in cell proliferation functions. A set 
of DEGs, including UHRF1 and CENPF, mainly participated 
in the cell cycle, mitosis and ATP binding (Fig. 1B).

Analysis of the integrated TF‑DEG regulatory networks. 
To investigate regulators that modulated the DEGs in EOC 
further, the TFs that regulated upregulated and downregulated 
DEGs were analyzed, and TF‑DEG regulatory networks were 
constructed. In the upregulated regulatory network, expres-
sion of CENPF was regulated by the TFs NFY; UHRF1 was 

Figure 1. Networks for upregulated genes. (A) The network module for upregulated genes. Each node represents a gene. (B) Functional enrichment network 
for the upregulated module. Each node represents a functional term for upregulated genes; the width of each line represents the degree of overlap of the gene 
sets of the two terms at the ends.

Table II. Pathway enrichment analysis of upregulated and downregulated differently expressed genes.

Category	 Term	 Count	 P‑value	 Genes

Upregulated	 hsa04310: Wnt signaling pathway	 3	 1.67x10‑2	 SOX17, FZD2, WNT7A
Downregulated	 hsa00982: Drug metabolism	 4	 3.51x10‑4	 GSTM3, ALDH1A3, AOX1, ADH1C 
	 hsa00350: Tyrosine metabolism	 3	 4.57x10‑3	 ALDH1A3, AOX1, ADH1C
	 hsa00980: Metabolism of	 3	 8.36x10‑3	 GSTM3, ALDH1A3, ADH1C
	 xenobiotics by cytochrome P450
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Figure 2. Integrated TF‑DEG regulatory networks for upregulated and downregulated genes. (A) The TF‑DEG regulatory network for upregulated genes. 
(B) The integrated TF‑DEG regulatory network for downregulated genes. Red nodes represent upregulated genes; green nodes represent downregulated genes; 
blue nodes represent TFs with the 5 highest degrees. TF, transcription factor; DEG, differentially expressed gene.

modulated by all E2F genes and NFY; Zic family member 1 
(ZIC1) was targeted by E2F and NFY (Fig. 2A). In the down-
regulated regulatory network, ALDH1A2 and PCDH9 were 
regulated by TP53. PCDH9 was also regulated by E2F, E2F1 
and NFY (Fig. 2B).

Analysis of the integrated miRNA‑DEG regulatory network. 
To investigate the associations between DEGs and miRNAs 
further, miRNA‑DEG regulatory networks were constructed. 
In the upregulated regulatory network, the gene ZIC1 was 
regulated by seven miRNAs, including miR‑543, miR‑23c, 
miR‑23a‑3p and miR‑514a‑3p. Gene UHRF1 was regulated 
by miR‑146a and miR‑124. Expression of the DEGs BIRC5, 
CENPF, denticleless E3 ubiquitin protein ligase homolog and 
minichromosome maintenance 10 replication initiation factor 
were modulated by miR‑203, miR‑373, miR‑215 and miR‑146a, 
respectively (Fig. 3A).

In the downregulated regulatory network, DEGs, such as 
zinc finger protein, FOG family member 2 and neurobeachin, 
were primarily regulated by miRNAs, including miR‑300 and 
miR‑153; PCDH17 was primarily modulated by miRNAs, 
including miR‑30a‑5p, miR‑30b‑5p and miR‑30d‑5p; and 
PCDH9 was regulated by multiple miRNAs, including 
miR‑32‑5p, miR‑137 and miR‑92a‑3p (Fig. 3B).

Discussion

EOC is the leading cause of mortality in gynecological malig-
nancies (1). In the present study, using the combined analysis 
of two microarray datasets, 31 genes were identified as being 
markedly upregulated and 64 downregulated in EOC samples 
compared with healthy controls.

According to the functional analysis of upregulated module 
genes, a series of DEGs, including CENPF and UHRF1, 
were primarily enriched in the cell cycle. CENPF encodes 
a protein that associates with the centromere‑kinetochore 

complex, which is part of the nuclear matrix during the G2 
phase of interphase (28). The kinetochore is a large complex 
of proteins and associated centromeric DNA that is essential 
in mitosis (29). CENPF encodes centromere protein F, which 
drives ovarian cancer growth through regulation of the cell 
cycle (30). It has been reported that CENPF is differentially 
expressed in EOC cells upon the overexpression or knock-
down of downstream of tyrosine kinase 1 (31). Furthermore, 
a recent study has reported that overexpression of CENPK, 
a homolog of CENPF, is associated with poorer patient 
survival (32). UHRF1 encodes a member of a subfamily of 
RING‑finger type E3 ubiquitin ligases, which can promote 
G1/S transition by binding to specific DNA sequences and 
recruiting a histone deacetylase to regulate gene expres-
sion  (33). UHRF1 is required for tumor cell proliferation 
and acts as a dominant effector of cell growth (34). A recent 
study showed that expression of UHRF1 is higher in ovarian 
cancer tissue than that in adjacent healthy tissues  (35), 
which is consistent with the results of the present study. This 
suggests that the genes associated with the cell cycle, such 
as CENPF and UHRF1, may play key roles in the process of 
EOC. Furthermore, CENPF and UHRF1 were predicted to 
be regulated by the transcription factor NF‑Y. NFYA, NFYB 
and NFYC encode NF‑Y, a heterotrimeric protein composed 
of three subunits, NF‑YA, NF‑YB and NF‑YC (36). The NF‑Y 
complex supports the basal transcription of regulatory genes 
that are responsible for cell‑cycle progression, among which 
are mitotic cyclin complexes (37). A previous study showed 
that NF‑Y regulates mitosis‑associated genes, such as CENPF, 
in multiple cancer types (38). NF‑Y is a pivotal regulator of 
enhancer of zeste 2 polycomb repressive complex 2 subunit 
expression and is essential for EOC cell proliferation (39). In 
addition, CENPF was found to be regulated by miR‑373 in the 
present study. It has been reported that miR‑373 expression is 
downregulated in human EOC and that silencing of miR‑373 
expression leads to the increased migration and invasion of 
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EOC cells (40). In the present study, UHRF1 was modulated by 
miR‑146a. Another study showed that ovarian cancer patients 
with the C variant allele of miR‑146a may have high levels 
of mature miR‑146a (41). Changes in miR‑146a expression 
and/or binding have also been implicated in the metastatic 
and proliferative response associated with the development 
of ovarian cancer (41). Collectively, CENPF and UHRF1 may 
play pivotal roles in the cell cycle and migration in EOC, via 
the regulation of expression of NFY and miRNAs, including 
miR‑373 and miR‑146a.

With regard to the downregulated DEGs, ALDH1A2 and 
PCDH9 were regulated by the TF TP53. Genetic alterations 

to TP53 serve a vital role in ovarian cancer development and 
progression, as they promote ovarian cancer epithelial cell 
survival and proliferation  (42). However, wild‑type TP53 
is expressed in ovarian serous carcinomas, particularly in 
patients with high‑grade serous ovarian carcinomas  (43), 
who experience significantly shorter survival times and 
higher chemoresistance than those with mutated TP53 (44). 
ALDH1A2 encodes a member of the aldehyde dehydrogenase 
1 family, which converts retinaldehyde to retinoic acid, a 
known marker of lineage‑specific stem cells  (45). In the 
present study, ALDH1A2 was significantly associated with 
the estrogen stimulus response. Estrogen has been implicated 

Figure 3. Integrated miRNA‑DEG regulatory network for upregulated and downregulated genes. (A) The miRNA‑DEG regulatory network for upregulated 
genes. (B) The integrated miRNA‑DEG regulatory network for downregulated genes. Red nodes represent upregulated genes; green nodes represent down-
regulated genes; orange nodes represent miRNAs associated with genes. miRNA, microRNA; DEG, differentially expressed gene.
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in the etiology and progression of serous ovarian carcinoma 
by inducing the expression of genes targeted by canonical 
estrogen receptor α (46), which has been revealed to serve 
an important role in ovarian cancer development; its expres-
sion is a marker of better prognosis (47). PCDH9 encodes a 
member of the protocadherin family (and cadherin super-
family) of transmembrane proteins that contain cadherin 
domains  (48). Cadherins can modulate cell adhesion by 
trans‑homodimerization between their membrane‑distal EC1 
domains that extend from apposed cells and gather at intercel-
lular adherens junctions (49). Cell adhesion plays a notable 
role in cancer progression and metastasis (50). The intercel-
lular interactions between cancer cells and the endothelium 
determine the metastatic spread of the disease (50). PCDH9 
expression has been observed in ovarian cancer cells (51). 
In the present study, PCDH9 was also found to be regulated 
by miR‑92b‑3p and miR‑137. miR‑92b‑3p and miR‑137 have 
been reported to exhibit altered expression levels in ovarian 
tumor cells (52,53). Taken together, ALDH1A2 and PCDH9 
may be important in the progression of EOC through the 
regulation of TP53 or miR‑92b‑3p and miR‑137.

In conclusion, a set of 31 upregulated and 64 downregu-
lated genes (compared with healthy controls) were identified 
in EOC samples. Among them, upregulated genes that are 
associated with the cell cycle, including CENPF and UHRF1, 
and downregulated genes, including ALDH1A2 and PCDH9, 
may be implicated in the progress of EOC via the regulation 
of TFs, such as NFY and TP53, and miRNAs, such as miR‑373, 
miR‑146a, miR‑92b‑3p and miR‑137. The findings of the 
present study may contribute to a greater understanding of the 
pathogenesis of EOC; however, these results require future 
experimental confirmation.
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