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Abstract. The present study was conducted to investigate novel 
methylated targets in colorectal cancer (CRC). The mRNA 
expression profiles of GSE32323 in 17 cancer and non‑cancerous 
tissues from CRC patients, as well as expression profiles of 5 
CRC cell lines prior and subsequent to 5‑aza‑2'‑deoxycytidine 
(5‑aza‑dC) treatment, were obtained from the Gene Expression 
Omnibus database. The differentially expressed genes (DEGs) 
in 5 CRC cell lines prior and subsequent to 5‑aza‑dC treat-
ment were combined with the CRC‑specific gene expression 
profiling array data. Context likelihood of relatedness algo-
rithm was used to construct the co‑expression network of 
CRC‑specific gene expression profile. A sub‑network of identi-
fied reverse‑overlapped DEGs was selected and underwent 
Kyoto Encyclopedia of Genes and Genomes Pathway Analysis. 
A total of 6 reverse‑overlapped DEGs were identified. This 
present study verified fibulin 2 (FBLN2) and protein phos-
phatase 1 regulatory inhibitor subunit 14A (PPP1R14A) to be 
downregulated in the CRC tissue sample but upregulated in 
CRC cell lines following 5‑aza‑dC treatment. The identified 
reverse‑overlapped DEGs were enriched in tumor‑associated 
signaling pathways, including cellular tumor antigen p53, 
cell cycle and NOD‑like receptor (NLR) signaling pathway. 
A total of 2  silenced genes with abnormal methylation in 
CRC were identified, including FBLN2 and PPP1R14A. The 
reverse‑overlapped DEGs were enriched in p53, cell cycle and 
NLR signaling pathways, indicating that reverse‑overlapped 
DEGs, particularly FBLN2 and PPP1R14A, may be important 
tumor suppressors and that these reverse‑overlapped DEGs are 
inactivated by methylation in CRC.

Introduction

Colorectal cancer (CRC) is one of the most common types of 
cancer in men and women, with ~1.5 million new cases and 

~0.5 million mortalities having been reported in 2013 in the 
United States (1). In recent decades, the mortality caused by 
CRC has decreased dramatically owing to the great improve-
ment in early diagnosis and treatment  (2). However, CRC 
remains a prominent global health problem that may be attrib-
uted to the lack of comprehensive and systemic understanding 
of the underlying molecular mechanisms of carcinogenesis.

The accumulation of specific genetic and epigenetic 
changes is considered to be the main molecular mechanism of 
tumorigenesis, as it can provide a selective growth advantage 
of tumor cells over neighboring normal cells (3). Among the 
epigenetic changes, the abnormal methylation of promoter 
CpG islands leading to the transcriptional inactivation of 
tumor suppressors is considered to be a common mechanism 
in several human malignancies including CRC (4). Epigenetic 
masking may participate in the cancerous transformation of 
colorectal epithelium by affecting the expression of tumor 
suppressor genes  (4). Recent progress in CRC epigenetics 
studies indicated DNA methylation occurs in the early 
phase of cancer formation and in the premalignant phase of 
the adenoma‑carcinoma sequence (5). Thus, identifying the 
epigenetic alterations would be of great value in the early 
detection of cancers and cancer relapse, as well as in moni-
toring the response of cancers to therapies (6).

Epigenetically silenced genes by hypermethylation can be 
reactivated by 5‑aza‑2'‑deoxycytidine (5‑aza‑dC), which is able 
to inhibit DNA methylation (7). In addition, the re‑expression 
of silenced genes caused by 5‑aza‑dC has been demonstrated 
in various types of tumors in a dose‑ and duration‑dependent 
manner  (7). The application of 5‑aza‑dC in expression 
microarray analysis is considered to be a useful approach for 
identifying cancer‑associated methylated genes (8).

In order to elucidate silenced genes with abnormal meth-
ylation in CRC, Khamas et al (9) performed a genome‑wide 
expression screening in 5 CRC cell lines prior and subsequent 
to 5‑aza‑dC treatment, and subsequently combined the data 
with CRC‑specific gene expression profiling array. The gene 
expression data set established by Khamas  et  al  (9) was 
submitted to the Gene Expression Omnibus (GEO) with the 
accession number GSE32323. In the present study, the micro-
array was downloaded and analyzed to identify potential 
targets for 5‑aza‑dC by oligonucleotide microarray analysis. 
A co‑expression network of CRC‑specific gene expression 
profile was constructed using the context likelihood of relat-
edness (CLR) algorithm to identify the signaling pathways in 
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which these targets were involved, thus revealing the function 
of the selected identified genes.

Materials and methods

Affymetrix microarray data. Transcriptional profile of 
GSE32323  (9) was extracted from the GEO database 
(http://www.ncbi.nlm.nih.gov/geo/), which was based on 
the platform of Affymetrix Human Genome U133 Plus 2.0 
Array. A total of 44 chips were available for further analysis, 
including 17 pairs of cancer and non‑cancerous tissues from 
CRC patients, and expression profiles of 5 CRC cell lines.

Data preprocessing. The raw probe‑level data in CEL files 
were initially converted into expression measures. Robust 
multiarray average background correction, quantile normaliza-
tion and probe summarization were subsequently performed in 
the R (version: 3.0.3, March, 2014) affy package (http://www.
bioconductor.org/packages/release/bioc/html/affy.html) (10), 
and the processed expression matrixes were acquired. For 
each sample, the expression values of all probes for a given 
gene were expressed as a single value by taking an average of 
the values.

Differentially expressed genes (DEGs) analysis. The 
limma  (11) package (http://www.bioconductor.org/pack-
ages/2.9/bioc/html/limma.html) in R was used to identify 
DEGs in the present study. The following thresholds were set for 
filtering DEGs: |log2 fold‑change (FC)|>1.0 and P‑value<0.05. 
The original P‑values were adjusted using Benjamini‑Hochberg 
procedure to correct for multiple comparisons. For CRC cell 
lines, gene differential expression was calculated from each 
sample prior and subsequent to 5‑aza‑dC treatment. Only DEGs 
with co‑upregulated or co‑downregulated expression in ≥3 cell 
lines were selected and grouped as ‘DEG1’. For CRC tissues, 
DEGs in CRC tissue samples compared to non‑cancerous 
tissue were identified and grouped as ‘DEG2’. A comparison 
was subsequently performed between ‘DEG1’ and ‘DEG2’. The 
DEGs that simultaneously upregulated in ‘DEG1’ and downreg-
ulated in ‘DEG2’, or simultaneously downregulated in ‘DEG1’ 
and upregulated in ‘DEG2’ were defined as reverse‑overlapped 
DEGs, and were screened for further analysis.

Co‑expression network inference and analysis. To iden-
tify interactions between genes, the CLR algorithm was 
used to construct the co‑expression network (DEG2.CEN) 
in the CRC tissue samples. The CLR threshold was set 
as 2.5. The sub‑network (roDEG.CEN) that associated with 
reverse‑overlapped DEGs was selected from DEG2.CEN by 
employing the package MINET (http://www.bioconductor.
org/packages/3.4/bioc/html/minet.html) (12) implemented in 
R/Bioconductor (version: 3.4; http://www.bioconductor.org/) 
and subsequently visualized using Cytoscape (version 3.4.0; 
http://www.cytoscape.org/) (13).

The CLR algorithm (14) is an extension of the relevance 
network approach, which increases the contrast between 
physical interactions and indirect associations and takes into 
account the context of each interaction and association. Links 
are assigned based on the mutual information (MI) that can 
accommodate non‑linear associations between pair‑wise gene 

expression patterns. The most probable interactions are those 
whose MI scores stand significantly above the background 
distribution of MI scores. The MI for two discrete random 
variables X and Y is defined as:

where xi, yj represent ith and jth expression level of X and 
Y, respectively. P(xi) and P(yj) are the marginal probability 
distributions. P(xi, yj) is the joint distribution that the expres-
sion levels of X and Y are xi and yj, respectively (14).

Pathway enrichment analysis. The Database for Annotation 
Visualization and Integrated Discovery  (15) provides a 
comprehensive set of functional annotation tools to elucidate 
biological meaning behind large lists of genes or proteins. 
Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis 
was performed in the present study for functional pathway 
enrichment of reverse‑overlapped DEGs with P<0.05 selected 
as a cut‑off criterion. In addition, the enriched functional 
pathways of reverse‑overlapped DEGs and roDEG.CEN 
were integrated. Thus, a reverse‑overlappedDEG would be 
correlated with a particular enriched functional pathway if the 
neighboring genes of this particular reverse‑overlapped DEG 
were involved.

Results

Identification of DEGs. For database GSE32323 (|log2 FC|>1.0; 
P<0.05), a total of 59 DEG1 s in five CRC cell lines prior and 
subsequent to 5‑aza‑dC treatment, including 48 upregulated 
and 11 downregulated genes, were identified. A total of 
1,341 DEG2 s with 675 upregulated and 666 downregulated 
genes were selected when CRC and normal tissue samples 
were compared. Following comparing between the ‘DEG1’ 
and ‘DEG2’ groups, 10 reverse‑overlapped DEGs were 
selected (Table I). Among the identified reverse‑overlapped 
DEGs, 6 genes [amine oxidase, copper containing 3, fibulin‑2 
(FBLN2), uridine phosphorylase 1, cysteine‑rich protein 1, 
protein phosphatase 1, regulatory inhibitor subunit 14A 
(PPP1R14A; CPI‑17) and heat shock 70 kDa protein 2] were 
downregulated in CRC tissue sample, but upregulated in CRC 
cell lines following treatment with 5‑aza‑dC.

Co‑expression network of DEGs. The co‑expression network 
of DEGs (DEG2.CEN) was constructed by employing the 
CLR algorithm. The co‑expression network was based on the 
DEG2 expression profile in the CRC tissue samples and the 
sub‑network (roDEG.CEN) that correlated with the identified 
reverse‑overlapped DEGs (Fig. 1). There were 374 nodes and 
567 edges in roDEG.CEN. The number of edges emerging 
from a node was set as the degree of a DEG, as shown in 
Table I.

Functional pathway analysis of network. Following inte-
grating the roDEG.CEN with the enriched functional pathway, 
the downregulated genes were enriched in the drug metabo-
lism pathway, while the upregulated genes were enriched in 
the cellular tumor antigen p53, cell cycle, oocyte meiosis and 
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Table I. The characteristics of identified reverse‑overlapped differentially expressed genes.

Gene	 EntrezID	 Name	 aDE_State	 Degree

AOC3	 8,639	 Amine oxidase, copper containing 3	 down	 76
FBLN2	 2,199	 Fibulin 2	 down	 66
UPP1	 7,378	 Uridine phosphorylase 1	 down	 64
MIPEP	 4,285	 Mitochondrial intermediate peptidase	 up	 63
RRM2	 6,241	 Ribonucleotide reductase M2	 up	 59
KIF11	 3,832	 Kinesin family member 11	 up	 54
PPP1R14A	 94,274	 Protein phosphatase 1, regulatory inhibitor subunit 14A	 down	 54
HSPA2	 3,306	 Heat shock 70 kDa protein 2	 down	 47
SLC12A2	 6,558	 Solute carrier family 12 (sodium/potassium/chloride transporter), member 2	 up	 45
CRIP1	 1,396	 Cysteine‑rich protein 1 (intestinal)	 down	 39

aDE_State, differential expression state in colorectal cancer tissue. Up, upregulated; down, downregulated, Degree, the number of edges for a 
differentially expressed genes in the co‑expression network.

Figure 1. Co‑expression network of reverse‑overlapped differentially expressed genes in colorectal cancer. Red nodes represent the upregulated genes and 
green nodes represent the downregulated genes. Triangle nodes represent reverse‑overlapped genes; circle nodes represent the differentially expressed genes.
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nucleotide‑binding oligomerization domain‑like receptors 
(NLR) signaling pathways (Fig. 2).

Discussion

Significant progress has been achieved in the diagnosis and 
treatment of CRC. However, CRC remains the third most 
common cancer worldwide  (16). In the present study, the 
mRNA expression profile of GSE32323 was downloaded and 
DEGs were analyzed. The DEGs in 5 CRC cell lines prior 
and subsequent to 5‑aza‑dC treatment were combined with 
the CRC‑specific gene expression profiling array. A total of 6 
reverse‑overlapped DEGs were obtained. These reverse‑over-
lapped DEGs were downregulated in the CRC tissue samples 
but upregulated in CRC cell lines following 5‑aza‑dC treat-
ment. The CLR algorithm was employed to construct a 
co‑expression network of CRC‑specific gene expression profile 
and the sub‑network that correlated with reverse‑overlapped 
DEGs was selected. Furthermore, functional pathway analysis 
identified the reverse‑overlapped DEGs enriched in a number 
of critical cellular pathways, including p53, cell cycle and the 
NLR signaling pathway.

The 6 reverse‑overlapped DEGs identified in the present 
study were involved in a variety of cellular functions. Among 
them, two genes (FBLN2 and PPP1R14A) have been previously 
reported to be hypermethylated (17,18). FBLN2, an extracel-
lular matrix (ECM) protein, is recognized as a multifunctional 
binding protein (19). Due to its ability to mediate interactions 
between diverse ECM components, FBLN2 plays an impor-
tant role in the maintenance of extracellular structures such 
as the basement membranes, as well as contacts between cells 
and ECM (20,21). FBLN2 has also been reported to have the 

opposite effects in pathological conditions including cancer. 
The pro‑tumor effects of FBLN2 were demonstrated in 
pancreatic cancer cells (22); however, an increasing number 
of studies indicate that FBLN2 may act as an anti‑angiogenic 
factor in various types of cancer, including nasopharyngeal 
carcinoma (18,23,24), as well as an anti‑tumor factor in breast 
cancer cells  (25). In addition, FBLN2 has been previously 
demonstrated to be epigenetically silenced in B cell acute 
lymphoblastic leukemia (26) and methylated in breast and 
other epithelial cancer types (27). In the present study, FBLN2 
was downregulated in the CRC tissue sample but upregulated 
in CRC cell lines following treatment with 5‑aza‑dC.

PPP1R14A was also identified to be methylated in 
CRC. Following treatment with 5‑aza‑dC, the expression of 
PPP1R14A increased significantly. PPP1R14A is a phosphory-
lation‑dependent inhibitory protein of smooth muscle myosin 
phosphatase activity (28), which has been reported to be an 
epigenetic biomarker in CRC (29). The PPP1R14A gene has 
also been reported to be associated with growth arrest and 
DNA damage  (30). Following treatment with anti‑cancer 
drugs, including Fluorouracil, PPP1R14A is upregulated (31). 
In addition, a previous study has demonstrated that PPP1R14A 
is aberrantly methylated in human esophageal squamous cell 
carcinoma  (18) and various types of B‑cell non‑Hodgkin 
lymphoma (32).

A co‑expression network based on the data of the 
CRC‑specific gene expression profile was constructed using 
the CLR algorithm and the sub‑network corresponding to 
reverse‑overlapped DEGs was selected. Bias from uneven 
conditions of sampling, upstream regulation and inter‑laboratory 
variations in microarray can make it difficult to infer network 
between genes  (14). CLR algorithm increases the contrast 

Figure 2. Sub‑network of associated Kyoto Encyclopedia of Genes and Genomes signaling pathways in colorectal cancer. Red triangle nodes represent upregu-
lated genes and green triangle nodes represent downregulated genes. Red rectangles represent upregulated gene‑enriched pathways and green rectangles 
represent downregulated gene‑enriched pathways. AOC3, amine oxidase, copper containing 3; FBLN2, fibulin 2; KIF11, kinesin family member 11; HSPA2, 
heat shock 70 kDa protein 2; MIPEP, mitochondrial intermediate peptidase; PPP1R14A, protein phosphatase 1, regulatory inhibitor subunit 14A; RRM2, 
ribonucleotide reductase M2; SLC12A2, solute carrier family 12 (sodium/potassium/chloride transporter), member 2; UPP1, uridine phosphorylase 1.
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between the physical interactions and the indirect associations 
by taking the context of each interaction and association into 
consideration, thus minimizing the bias from these factors (14). 
Therefore, the CLR algorithm is an attractive method to 
use for the identification of indirect links and for uncovering 
associations between genes within co‑regulated communities. 
The CLR algorithm estimates a likelihood of the MI score 
for a particular pair of genes by comparing the MI values for 
that particular pair of genes to a background distribution of 
MI values. The most probable interactions are those whose 
MI scores are significantly above the background distribution 
of MI scores (11). Following KEGG pathway enrichment, the 
reverse‑overlapped DEGs identified in the present study were 
demonstrated to be enriched in several pathways, including p53, 
cell cycle and NLR signaling pathways. As previously reported, 
p53, cell cycle and NLR receptor signaling pathways are closely 
associated with tumorigenesis and metastasis  (33‑35). The 
results of co‑expression network analysis indicated the identified 
reverse‑overlapped DEGs may be important tumor suppressors 
and are inactivated by methylation in CRC.

Compared to the previous study published by 
Khamas et al  (9), the criteria used for selecting DEGs in 
the present study were different. Khamas et al (9) selected 
probe sets from cell lines using a combination of two criteria: 
Upregulation of gene expression in ≥4 CRC cell lines and 
FC>1.6 in at least one cell line. In the present study, DEGs were 
selected if they were co‑upregulated or co‑downregulated in 
≥3 cell lines and at the same time FC>2 in at least one cell 
line. Due to the difference in threshold selection for DEGs, the 
identified genes in the present study were different from the 
previously published report (9). Furthermore, a co‑expression 
network was constructed using the CLR algorithm and the 
sub‑network correlated with the identified genes was selected. 
Pathway enrichment analysis was performed to reveal the 
function of identified genes.

There were a number of limitations in the present study. The 
expression of the identified targets (FBLN2 and PPP1R14A), 
as well as the association of the methylation status of these 
genes with the development of CRC, remains to be confirmed 
by future investigations.

In the present study, two silenced genes FBLN2 and 
PPP1R14A with abnormal methylation in CRC were identified. 
Furthermore, the co‑expression network of identified DEGs 
in the CRC tissue samples was constructed by employing 
the CLR algorithm and a sub‑network of reverse‑overlapped 
DEGs was selected. Functional pathway analysis indicated 
that the identified reverse‑overlapped DEGs were enriched 
in a number of pathways, including p53, cell cycle and NLR 
signaling pathway. The results of the present study may 
provide novel targets for the treatment of CRC.
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