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Abstract. The aim of the present study was to analyze potential 
therapy targets for prostate cancer using integrated analysis of 
two gene expression profiles. First, gene expression profiles 
GSE38241 and GSE3933 were downloaded from the Gene 
Expression Omnibus database. Differentially expressed genes 
(DEGs) between prostate cancer and normal control samples 
were identified using the Linear Models for Microarray 
Data package. Pathway enrichment analysis of DEGs was 
performed using Gene Ontology and the Kyoto Encyclopedia 
of Genes and Genomes. Furthermore, protein‑protein interac-
tion (PPI) networks of DEGs were constructed, on the basis of 
the Search Tool for the Retrieval of Interacting Genes/Proteins 
database. The Molecular Complex Detection was utilized to 
perform module analysis of the PPI networks. In addition, 
transcriptional regulatory networks were constructed on 
the basis of the associations between transcription factors 
(TFs) and target genes. A total of 529 DEGs were identified, 
including 129 upregulated genes that were primarily associ-
ated with to the cell cycle. Additionally, 400 downregulated 
genes were identified, which were principally enriched in the 
pathways associated with vascular smooth muscle contrac-
tion and focal adhesion. Cell Division Cycle Associated 8, 
Cell Division Cycle 45, Ubiquitin Conjugating Enzyme E2 C 
and Thymidine Kinase 1 were identified as hub genes in the 
upregulated sub‑network. Furthermore, the upregulated TF 
E2F, and the downregulated TF Early Growth Response 1, 
were identified to be critical in the transcriptional regulatory 
networks. The identified DEGs and TFs may have critical roles 
in the progression of prostate cancer, and may be used as target 
molecules for treating prostate cancer.

Introduction

Prostate cancer is a malignancy that occurs in the prostate 
epithelial cells and it is the most common type of reproductive 
system cancer in males worldwide (1,2). Cancer statistics in 
2016 revealed that prostate cancer accounts for ~20% novel 
cancer cases in males in the USA (3). Radical prostatectomy is 
an effective treatment to improve patient survival time (4), but 
it is only suitable for ~10% of all cases (5). A number of other 
therapies, including radiotherapy, hormonal therapy, chemo-
therapy and immunotherapy, have been developed for prostate 
cancer treatment (6); however, there is limited information 
regarding the long‑term survival rate, and the mortality rate 
of patients with prostate cancer remains high (7). Therefore, 
investigations into novel treatment strategies for patients with 
prostate cancer are required.

Gene therapy and small molecule drugs are novel strategies 
for cancer treatment, and have received increasing attention 
over the past few decades (8). Recently, a number of studies 
have been conducted to reveal the underlying molecular 
mechanisms and identify treatment targets for prostate 
cancer (9‑20). Specific genes involved in the DNA damage 
response, including breast cancer 1, breast cancer 2 and 
tumor protein 53 genes, are mutated during the progression 
of prostate cancer (9‑11). A number of activated carcinogenic 
signaling pathways, including c‑Myc, protein kinase B and 
Ras, induce the replication and genomic instability of prostate 
cancer cells (12‑14). The histone‑lysine N‑methyltransferase 
gene is overexpressed in prostate cancer and may act as a ther-
apeutic target (15). Previous studies have primarily focused on 
a certain gene or pathway; therefore, it is necessary to explore 
the underlying molecular mechanisms and therapy targets for 
prostate cancer using other methods.

Identification and analysis of differentially expressed 
genes (DEGs) is an effective method to acquire multiple 
novel targets for the treatment of diseases (16,17). An expres-
sion profiling analysis for prostate cancer has been studied 
previously (18). In addition, DNA methylation alterations in 
prostate cancer have been analyzed using the gene expres-
sion profile GSE38241 (19), and clinically relevant subtypes, 
including subgroups I (the clinically least aggressive subclass) 
and subgroups II/III (clinically aggressive tumor subclasses), 
of prostate cancer have been studied using the gene expression 
profile GSE3933 (20). However, DEGs and their regulatory 
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factors between prostate cancer and normal samples were not 
analyzed as part of the present study.

In the present study, the expression‑profiling data 
GSE38241 and GSE3933 were integrated to identify DEGs 
between prostate cancer samples and normal samples. The 
functions of DEGs were analyzed using Gene Ontology (GO) 
and the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analysis. Furthermore, protein‑protein interactions 
(PPIs) of DEGs were investigated and hub genes, genes identi-
fied to be key genes, in the PPI network were identified. In 
addition, transcriptional regulatory networks were constructed 
on the basis of the associations between transcription factors 
(TFs) and DEGs. The results of the present study may identify 
the underlying molecular mechanisms of prostate cancer and 
provide targets for the treatment of prostate cancer.

Materials and methods

mRNA expression profiles of prostate cancer. The datasets 
of prostate cancer gene expression profiling by array with 
large sample size and high data quality were searched in 
the Gene Expression Omnibus database (www.ncbi.nlm.

nih.gov/geo). Prostate cancer and normal control samples 
were included in the eligible dataset, and samples were not 
treated by additional treatments such as drugs and radiation. 
As a result, two prostate cancer expression profiling datasets 
were chosen for analysis, GSE38241 (18) and GSE3933 (19). 
Data of 39  samples (18 prostate cancer samples and 21 
normal samples) in GSE38241 were produced using plat-
form GPL4133 Agilent‑014850 Whole Human Genome 
Microarray 4x44K G4112F. Data of 112 samples in GSE3933 
were produced using three platforms, consisting of GPL2695 
SHBB (26 samples), GPL3044 SHCQ (45 samples) and 
GPL3289 SHBW (41 samples). In the dataset GSE3933, 
only the data of 45 samples (29 prostate cancer samples and 
16 normal samples) obtained from platform GPL3044 were 
selected for additional analysis, since gene probes detected 
by platform GPL3044 overlapped more with those from 
platform GPL4133. Data and probe annotation files were 
downloaded for analysis.

Data preprocessing. Subsequent to obtaining the raw data, probe 
IDs of the matrix data were first translated into corresponding 
gene symbols. If one gene symbol was matched by a number 

Figure 1. Box plots of the expression profiles. Green box represents the 37 normal samples; yellow box represents the 47 prostate cancer samples. The black line 
in each box represents the median of data, the distribution of which determines the standardization degree. An excellent degree of standardization is indicated 
when there is little variation in the median values. (A) Box plots of the expression profiles prior to standardization. (B) Box plots of the expression profiles 
following the removal of the batch error. (C) Box plots of the expression profiles following standardization.
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of probe IDs, the mean expression value was selected as the 
expression level of this gene. In order to obtain reliable results, 
only the common genes in the two datasets were selected for 
the following analysis. During the process of merging the two 
different datasets, batch errors (21) were removed using the 
ComBat command of sva package in R language (http://www 
.bioconductor.org/packages/release/bioc/html/sva.html 
version 3.5) (22). Subsequently, quantile normalization of genes 
was performed by preprocessCore package in R (http://www 
.bioconductor.org/packages/release/bioc/html/preprocess-

Core.html; version 1.38.1) and an expression profile matrix 
was generated consisting of 12,621 genes.

Ident if ica t ion of  DEGs. The l inea r models for 
microarray data package (http://www.bioconductor.org/pack-
ages/release/bioc/html/limma.html; version 3.22.7)  (23), a 
widely‑used tool for the identification of DEGs, was applied 
to identify DEGs between prostate cancer samples and normal 
samples. The raw P‑value for each gene was calculated and 
subsequently adjusted into the false discovery rate (FDR) using 

Table I. Top 5 most significant upregulated and downregulated DEGs from GO analysis across 3 categories including BP, CC 
and MM.

A, Upregulated DEGs

ID	 Term	 Count	 P‑value

GOTERM_BP_FAT	 GO:0000279‑M phase	 27	 1.68x10‑20

GOTERM_BP_FAT	 GO:0022403‑cell cycle phase	 29	 2.93x10‑20

GOTERM_BP_FAT	 GO:0000280‑nuclear division	 22	 2.64x10‑18

GOTERM_BP_FAT	 GO:0007067‑mitosis	 22	 2.64x10‑18

GOTERM_BP_FAT	 GO:0000087‑M phase of mitotic cell cycle	 22	 3.84x10‑18

GOTERM_CC_FAT	 GO:0005819‑spindle	 10	 4.39x10‑7

GOTERM_CC_FAT	 GO:0000775‑chromosome, centromeric region	 9	 1.34x10‑6

GOTERM_CC_FAT	 GO:0000793‑condensed chromosome	 9	 1.81x10‑6

GOTERM_CC_FAT	 GO:0000777‑condensed chromosome kinetochore	 7	 1.93x10‑6

GOTERM_CC_FAT	 GO:0000779‑condensed chromosome, centromeric region	 7	 4.16x10‑6

GOTERM_MF_FAT	 GO:0005524‑ATP binding	 27	 1.39x10‑5

GOTERM_MF_FAT	 GO:0030554‑adenyl nucleotide binding	 28	 1.49x10‑5

GOTERM_MF_FAT	 GO:0032559‑adenyl ribonucleotide binding	 27	 1.76x10‑5

GOTERM_MF_FAT	 GO:0001883‑purine nucleoside binding	 28	 1.97x10‑5

GOTERM_MF_FAT	 GO:0001882‑nucleoside binding	 28	 2.23x10‑5

B, Downregulated DEGs

ID	 Term	 Count	 P‑value

GOTERM_BP_FAT	 GO:0007517‑muscle organ development	 23	 2.94x10‑9

GOTERM_BP_FAT	 GO:0008285‑negative regulation of cell proliferation	 27	 2.35x10‑7

GOTERM_BP_FAT	 GO:0007155‑cell adhesion	 39	 6.17x10‑7

GOTERM_BP_FAT	 GO:0022610‑biological adhesion	 39	 6.27x10‑7

GOTERM_BP_FAT	 GO:0003012‑muscle system process	 16	 7.10x10‑6

GOTERM_CC_FAT	 GO:0044421‑extracellular region part	 59	 2.25x10‑12

GOTERM_CC_FAT	 GO:0005576‑extracellular region	 90	 4.38x10‑11

GOTERM_CC_FAT	 GO:0031012‑extracellular matrix	 29	 3.94x10‑9

GOTERM_CC_FAT	 GO:0005578‑proteinaceous extracellular matrix	 26	 5.96x10‑8

GOTERM_CC_FAT	 GO:0043292‑contractile fiber	 16	 8.23x10‑8

GOTERM_MF_FAT	 GO:0046870‑cadmium ion binding	 7	 3.11x10‑8

GOTERM_MF_FAT	 GO:0003779‑actin binding	 27	 5.32x10‑8

GOTERM_MF_FAT	 GO:0008092‑cytoskeletal protein binding	 34	 9.74x10‑8

GOTERM_MF_FAT	 GO:0005507‑copper ion binding	 12	 5.45x10‑7

GOTERM_MF_FAT	 GO:0005198‑structural molecule activity	 33	 3.76x10‑5

DEGs, differentially expressed genes; count, number of DEGs; BP, biological process; CC, cell component; MF, molecule function; ATP, 
adenosine 5'‑phosphate; GO, Gene Ontology.
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the Benjamini‑Hochberg method (24). Only the genes that met 
the threshold criteria of |log2 fold change| >1 and FDR<0.05 
were identified as DEGs.

Functional enrichment analysis of DEGs. In order to inves-
tigate the signaling pathways and biological processes which 
may be involved in the progression of prostate cancer, GO (25) 
and KEGG (26) enrichment analysis were performed using 
the Database for Annotation, Visualization and Integrated 
Discovery  (27,28). This provided a number of functional 
annotation tools to reveal the biological function of genes. 
Functional terms with P<0.05 were considered to indicate a 
statistically significant difference.

PPI networks and module analysis. PPIs of DEGs were 
searched in the Search Tool for the Retrieval of Interacting 
Genes/Proteins database  (29), which integrates a number 
of known and predicted associations between proteins. The 
PPI network was visualized using Cytoscape (30), an open 
source software for integrating biomolecular networks. In 
the network, ‘node’ represents a gene or protein, and ‘line' 
represents an interaction between two nodes. The degree 
of each node is equal to the number of nodes that the node 
interacted with. The node degree represents its topological 
importance; the higher the degree, the more important the 
node is (31). Hub genes were identified on the basis of the 
degree of genes in the PPI network. Molecular Complex 
Detection (MCODE)  (32) is a tool used to determine the 
dense connections in large PPI networks, which may repre-
sent molecular complexes. In the present study, MCODE was 
utilized to screen the modules from the PPI network with a 
network aggregation score >10.

Constructing the transcriptional regulatory networks. TFs 
targeting DEGs were identified from DEGs on the basis of 
information in the TRANSFAC database (http://gene‑regula-
tion.com/pub/databases.html; version 7.0) (33), which provided 
data on eukaryotic transcription factors, consensus binding 
sequences (positional weight matrices), experimentally proven 
binding sites and regulated genes. Transcription regulatory 
networks were visualized using Cytoscape, as aforementioned, 
in order to observe the interactions between TFs and target 
DEGs.

Results

Identified DEGs. Prior to normalization, the medians of gene 
expression in each sample were markedly distinct (Fig. 1A). 
However, the medians became consistent and were at a similar 
level following normalization (Fig. 1B and C), suggesting that 
the normalization process was successful and the normalized 
data may be used for additional analysis.

On the basis of the threshold criteria, a total of 529 DEGs 
were obtained, including 129 upregulated and 400 downregu-
lated genes in prostate cancer samples, compared with normal 
samples.

Enrichment analysis of DEGs. To reveal the biological 
functions of DEGs, GO and KEGG pathway enrichment 

Figure 2. Networks of upregulated genes. (A)  Protein‑protein interac-
tion network of upregulated genes. (B) Sub‑network extracted from the 
protein‑protein interaction network of upregulated genes.

Table  II. KEGG pathway analysis of the upregulated and 
downregulated differentially expressed genes.

A, Upregulated genes

Pathway term	 Count	 P‑value

hsa04110: Cell cycle	 7	 3.79x10‑4

hsa04114: Oocyte meiosis	 5	 1.04x10‑2

hsa00983: Drug metabolism	 3	 4.45x10‑2

B, Downregulated genes		

Pathway term	 Count	 P‑value

hsa04270: Vascular smooth	 15	 2.66x10‑7

muscle contraction
hsa04510: Focal adhesion	 16	 6.41x10‑5

hsa00982: Drug metabolism	 9	 8.87x10‑5

hsa05414: Dilated cardiomyopathy	 9	 1.35x10‑3

hsa00980: Metabolism of	 7	 2.70x10‑3

xenobiotics by cytochrome P450

Count, number of differentially expressed genes; KEGG, Kyoto 
Encyclopedia of Genes and Genomes; hsa, human.
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analyses were performed for the up‑ and downregulated 
genes. Upregulated genes were primarily enriched in cell 
cycle‑associated GO terms, including cell cycle phase, spindle 
and adenosine 5'‑phosphate binding (Table I). Downregulated 
genes were identified to be significantly involved in a set of 
GO terms including muscle organ development, negative regu-
lation of cell proliferation and cell adhesion (Table I).

According to KEGG pathway enrichment analysis, upreg-
ulated genes were significantly associated with cell cycle and 
oocyte meiosis signaling pathways (Table II). Downregulated 
DEGs were principally implicated in vascular smooth muscle 
and focal adhesion signaling pathways (Table II).

PPI networks construction and MCODE analysis. To 
investigate interactions between the DEGs, PPI networks for 
the DEGs were constructed. There were 69 nodes and 180 
edges in the PPI network of the upregulated genes (Fig. 2A). 
According to the degrees of nodes, four genes were selected 

as the hub nodes of the PPI network, cell division cycle asso-
ciated 8 (CDCA8), cell division cycle associated 5 (CDCA5, 
ubiquitin‑conjugating enzyme E2C (UBE2C) and thymidine 
kinase 1 (TK1). These four DEGs interacted with >45 nodes in 
the PPI network, suggesting the four DEGs served crucial roles 
in the PPI network. One sub‑network was selected from the 
upregulated PPI network (network aggregation score, 19.366), 
containing 41 nodes and 794 edges (Fig. 2B). Enrichment 
analysis of genes in the sub‑network revealed that genes in the 
sub‑network were primarily associated with cell cycle and cell 
division (Tables III and IV). Furthermore, 257 nodes and 594 
edges were included in the PPI network of the downregulated 
genes (Fig. 3). However, no significant module was screened 
with the threshold of network aggregation score >10.

Construction of the transcriptional regulatory networks. As 
an important regulatory element, TFs regulate the expression 
of certain genes  (34). In the present study, 14 upregulated 
genes were regulated by three upregulated TFs, and 10 genes 
[e.g. cell division cycle 6 (CDC6) and RAD51 recombinase 
(RAD51)] were regulated by E2F transcription factor 2 (E2F2) 
(Fig. 4A). Furthermore, six TFs were predicted to target the 
downregulated DEGs. Notably, early growth response 1 
(EGR1) regulated a number of downregulated genes and one 
TF, NK3 homeobox 1, in the downregulated transcriptional 
regulatory network (Fig. 4B).

Discussion

Prostate cancer is the most common type of reproduc-
tive system cancer in males (1,2), particularly in men over 
65 years of age. In the present study, analysis of GSE38241 
and GSE3933 gene expression profiles identified a total of 

Table III. Top 5 most significant genes within the sub‑network of upregulated genes from GO analysis of 3 categories including 
BP, CC and MM.

Category	 Term	 Count	 P‑value

GOTERM_BP_FAT	 GO:0000279‑M phase	 23	 4.23x10‑27

GOTERM_BP_FAT	 GO:0022403‑cell cycle phase	 24	 1.28x10‑26

GOTERM_BP_FAT	 GO:0007067‑mitosis	 20	 3.12x10‑25

GOTERM_BP_FAT	 GO:0000280‑nuclear division	 20	 3.12x10‑25

GOTERM_BP_FAT	 GO:0000087‑M phase of mitotic cell cycle	 20	 4.44x10‑25

GOTERM_CC_FAT	 GO:0005819‑spindle	 11	 4.94x10‑13

GOTERM_CC_FAT	 GO:0000775‑chromosome, centromeric region	 10	 4.83x10‑12

GOTERM_CC_FAT	 GO:0000777‑condensed chromosome kinetochore	 8	 3.94x10‑11

GOTERM_CC_FAT	 GO:0015630‑microtubule cytoskeleton	 14	 5.31x10‑11

GOTERM_CC_FAT	 GO:0000779‑condensed chromosome, centromeric region	 8	 1.01x10‑10

GOTERM_MF_FAT	 GO:0005524‑ATP binding	 13	 3.65x10‑5

GOTERM_MF_FAT	 GO:0032559‑adenyl ribonucleotide binding	 13	 4.17x10‑5

GOTERM_MF_FAT	 GO:0030554‑adenyl nucleotide binding	 13	 7.02x10‑5

GOTERM_MF_FAT	 GO:0001883‑purine nucleoside binding	 13	 8.15x10‑5

GOTERM_MF_FAT	 GO:0001882‑nucleoside binding	 13	 8.72x10‑5

Count, number of differentially expressed genes; GO, Gene Ontology; BP, biological process; CC, the cell component; MF, molecule function; 
count, number of differentially expressed genes; ATP, adenosine 5'‑phosphate.

Table  IV. KEGG pathway analysis of the sub‑network of 
upregulated genes.

Category	 Term	 Count	 P‑value

KEGG_	 hsa04110: 	 5	 1.48x10‑4

PATHWAY	 Cell cycle
KEGG_	 hsa04114: 	 4	 1.88x10‑3

PATHWAY	 Oocyte meiosis

Count, number of differentially expressed genes; KEGG, Kyoto 
Encyclopedia of Genes and Genomes; hsa, human.
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529 DEGs (129 up‑ and 400 downregulated DEGs) between 
the prostate cancer and normal samples. Integrative analysis 
of two microarray data enhanced the reliability of the present 
study. Enrichment analysis of the upregulated genes predicted 
the cell cycle to be the primary biological process in the GO 
function and the KEGG pathway analyses. In addition, focal 
adhesion pathway was identified as a significant pathway of 
downregulated genes. The results of the present study were 
consistent with those of previous studies, which demonstrated 
that the cell cycle and focal adhesion are required for the 
progression of cancer (35,36).

A total of four genes, consisting of CDCA8, CDCA5, 
UBE2C and TK1, exhibited a high degree of interaction in 
the upregulated PPI network. All four genes were involved in 
cell cycle‑associated biological processes and signaling path-
ways. In the sub‑network, CDCA8 interacted with pituitary 
tumor‑transforming gene‑1 (PTTG1), which was upregulated 
in prostate cancer. There is evidence that knockdown of 
PTTG1 suppresses the proliferation and invasive potential of 
prostate cancer cells (37). Therefore, it was hypothesized that 
CDCA8 may be used as a target for prostate cancer treatment, 

and that the interaction between CDCA8 and PTTG1 may 
have a role in the progression of prostate cancer. In addition, 
UBE2C belongs to the ubiquitin‑conjugating enzyme family 
and participates in the process of cell mitosis (38). A previous 
study identified that UBE2C, as an androgen receptor target 
gene, was involved in the progression of prostate cancer (39). 
Furthermore, serological TK1 protein concentration was 
used as a reliable marker for the risk assessment of pre/early 
cancerous progression  (40). However, to the best of our 
knowledge, there is no evidence that TK1 is a target for cancer 
treatment. It was hypothesized that CDCA8, CDCA5, UBE2C 
and TK1 may be associated with the progression of prostate 
cancer, and these genes were expected to be used as potential 
treatment targets for prostate cancer. Limited information is 
known about the roles and underlying molecular mechanisms 
of these four genes in prostate cancer; therefore, the present 
study may provide novel insights into the study of treatment 
targets for prostate cancer.

In addition to the hub genes in the PPI network, TFs targeting 
DEGs were identified on the basis of the transcriptional regu-
latory network analysis. TFs are well known to regulate the 

Figure 3. Protein‑protein interaction network of downregulated genes.
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Figure 4. Transcriptional regulatory networks. (A) Transcriptional regulatory network of the upregulated genes. Blue nodes represent transcription factors of 
the upregulated genes and red nodes represent upregulated genes. (B) Transcriptional regulatory network of the down‑regulated genes. Blue nodes represent 
transcription factors of the downregulated genes and yellow nodes represent downregulated genes.
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transcription of a number of genes involved in distinct signaling 
pathways and biological processes (34). In the present study, 
the upregulated TF, E2F2, and the downregulated TF EGR1 
regulated a number of DEGs. E2F2 regulates genes by binding 
the target sequence 5'‑TTTSSCGC‑3' (S=C/G)  (41). In the 
transcriptional regulatory network, DEGs, including CDC6 
and RAD51, which contain the aforementioned sequence, may 
be bound by E2F2 (42). CDC6 is a protein that is required 
for the initiation of DNA replication and has been previously 
identified to be deregulated in prostate cancer (43). RAD51, a 
protein that catalyzes DNA repair via homologous recombi-
nation, is highly expressed in cancer cells (44). Additionally, 
overexpression of E2F2 leads to uncontrolled proliferation of 
ovarian cancer cells (45) and EGR1 regulates gene expression 
by binding the target sequence 5'‑GCGC(G/T)GGGCG‑3' (46). 
The downregulated gene Dickkopf WNT Signaling Pathway 
Inhibitor 3 (DKK3) contained this sequence and was predicted 
to be regulated by EGR1. DKK3 promotes the prolifera-
tion and differentiation of fibroblasts and has a function in 
the pathogenic stromal remodeling of prostate cancer (47). 
Therefore, the TFs, E2F2 and EGR1, may have marked roles 
in the progression of prostate cancer.

The cell cycle signaling pathway may be closely associ-
ated with prostate cancer. A total of four genes (CDCA8, 
CDCA5, UBE2C and TK1) and two TFs (E2F2 and EGR1) 
were selected, and may have important roles in the progression 
of prostate cancer. The selected DEGs and TFs may be used as 
target genes for the treatment of prostate cancer and, although 
they were identified using bioinformatics, the specific roles 
and underlying molecular mechanisms in prostate cancer 
require further confirmation.
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