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Abstract. Due to the high mortality rate and unsatisfactory 
treatment options available, hepatocellular carcinoma (HCC) 
remains one of the most common malignancies and a leading 
cause of cancer‑associated mortality. Novel therapeutic targets 
for HCC are urgently required. Advanced RNA sequencing 
technology enables the identification of considerable amounts 
of noncoding RNAs (ncRNAs), including small noncoding 
RNAs and long noncoding RNAs, which exhibit no 
protein‑coding activities. In this respect, ncRNAs and their 
regulatory processes are important factors in liver tumori-
genesis. The present review focuses on the characteristics 
and biological roles of ncRNAs in HCC. Potential therapeutic 
applications of ncRNAs in HCC are also evaluated.
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1. Introduction

Advanced RNA sequencing technology has facilitated the 
identification of substantial amounts of noncoding RNAs 

(ncRNAs). It was reported that up to 98% of the human 
genome encodes ncRNAs, which were previously consid-
ered to be transcriptional noise  (1‑3). Although they have 
no protein‑coding capacity, these RNAs directly function as 
structural, catalytic and regulatory RNAs. Previous studies 
have demonstrated their ability to serve a plethora of roles 
in a variety of molecular functions including the regulation 
of transcription, splicing, and translation, in addition to the 
maturation of other ncRNAs which have been extensively 
reviewed previously (4‑8). Small noncoding RNAs (sncRNAs), 
with a size of <200 nucleotides, were first identified by exog-
enous RNA interference (RNAi) in plants and nematodes, 
and were later found to exist endogenously (9). Currently, 
sncRNAs are classified as small interfering RNAs (siRNAs), 
microRNAs (miRNAs) and piwi‑interacting RNA (piRNAs), 
which mainly function as gene‑regulators in animals and 
plants by pairing to targeted genes and directing their 
post‑transcriptional repression  (10). Approximately 2,000 
ʻhigh confidenceʼ miRNAs have been reported in the human 
genome (miRBase 21, released July 3rd, 2014, http://www.
mirbase.org/). Beyond the sncRNAs, the pervasive transcrip-
tion of long noncoding RNAs (lncRNAs), with a size of >200 
nucleotides, has also been discovered. lncRNAs include long 
intergenic noncoding RNAs, natural antisense transcripts, 
transcribed ultra‑conserved regions and noncoding pseudo-
genes. Although the amount of lncRNAs is far greater than 
that of coding RNAs in mammals (11), the functions of the 
majority of lncRNAs remain unknown (12). Comprehensive 
analysis of published studies revealed three main modes of 
lncRNA‑mediated regulation: i) Guiding the protein to a 
specific genomic region for gene regulation; ii) acting as the 
scaffold for the formation of functioning protein complex; 
and iii)  competing with other factors for binding to the 
protein (13). An increasing amount of evidence demonstrates 
that ncRNAs play various biological roles in a wide range 
of cellular activities, including cellular function, pathways, 
motility, structure and stem cell biology (14,15). For example, 
it was reported that the lncRNA HOTTIP promoted cell 
proliferation and migration via activating the Wnt/β‑catenin 
pathway  (16). ncRNAs also serve regulatory functions in 
diverse pathological processes, including a number of malig-
nancies (17‑19). Due to the lack of studies on the majority of 
types of ncRNAs in HCC, the current review will focus on 
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piRNA, miRNA and lncRNA, which have been extensively 
investigated in the pathogenesis of HCC.

2. sncRNAs in HCC

miRNAs in HCC. miRNAs are small molecules of ~22 nucleo-
tides in length, that are able to regulate gene expression by 
inhibiting target mRNA translation or by inducing mRNA 
degradation through partial or complementary binding to 
the 3'‑untranslated regions of target genes (10,20). miRNAs 
are involved in numerous biological processes, including 
embryonic development, differentiation, proliferation, apop-
tosis, invasion and autophagy (21‑24). Aberrant expression of 
miRNAs has been implicated in numerous diseases, including 
cancer (25). The roles of miRNAs in cancer can be oncogenic 
or tumor‑suppressive, as the regulatory targets of the miRNAs 
determine their effect on carcinogenesis.

Extensive data from previous studies describe the multiple 
roles of miRNAs in HCC. Decreased or silenced expression 
of tumor‑suppressive miRNAs have the potential to contribute 
to the pathogenesis of HCC through increasing the expression 
of their oncogenic targets. Previous studies have demonstrated 
that downregulation of tumor‑suppressive miRNAs, such 
as miR‑122a, miR‑34a, miR‑199a and miR‑200, can lead 
to the activation of expression of their oncogenic targets in 
HCC (26‑29). Meanwhile, the effect of increased oncogenic 
miRNAs, such as miR‑21, miR‑182 and miR‑221, may also 
lead to the suppression of anti‑oncogenes in HCC (30‑32).

Accumulating evidence based on dysregulated miRNAs 
in HCC demonstrates the involvement of miRNAs in different 
stages of tumor progression  (33‑35). Previous studies also 
demonstrated that miRNA profiling enables the classification 
of various types of tumor including HCC (36), and that these 
profiles can act as signatures associated with diagnosis, prog-
nosis and response to drug treatment in cancer (36,37). Recently, 
circulating miRNAs were demonstrated to reflect different 
pathophysiological conditions of HCC, indicating that miRNAs 
may constitute promising and clinically useful biomarkers for 
this cancer type (38). Although vast quantities of miRNAs and 
their direct targets have been identified in HCC, the molecular 
mechanisms of interplay between miRNAs and their upstream 
regulators are still lacking. Previous studies identified that the 
expression levels of miRNAs are subject to transcriptional 
and post‑transcriptional regulation, with miR‑200, miR‑20a, 
miR‑106b and miR‑941 were reported to be epigenetically 
regulated in HCC (39‑41). Specific transcriptional factors, such 
as p53, heat shock transcription factor 1 and forkhead box D3, 
have been hypothesized to bind directly to miRNA promoters to 
regulate miRNA expression in liver cancer (42,43).

piRNAs in HCC. piRNAs are small molecules of 26‑31 
nucleotides in length and are the largest class of known 
sncRNA molecules expressed in animal cells (44,45). piRNAs 
interact with the PIWI subfamily of argonaute proteins to 
form functional RNA‑protein complexes  (46,47), which 
developed as a conserved defense mechanism to protect the 
genetic information of animal germ cells from the detrimental 
effects of molecular parasites, such as transposons  (48). 
piRNAs have been identified as regulators for the develop-
ment and maintenance of DNA integrity by transcriptional or 

post‑transcriptional gene silencing. Typically, such post‑tran-
scriptional gene silencing is sequence‑specific and is subject to 
catalytically active enzymes (49‑52). piRNAs can also direct 
gene regulation through chromatin modifications, including 
repressive histone marks and DNA methylation  (53‑55). It 
was also reported that piRNAs are involved in the epigenetic 
silencing of transposable elements (56).

PIWI proteins serve key roles in the biogenesis and func-
tions of piRNAs by directly binding to piRNAs (57). Previous 
reports elucidated the function of the piRNA/PIWI axis 
in various human cancer types  (58,59). PIWI proteins are 
reported to be aberrantly and ectopically expressed in many 
cancer types, including HCC (56,60‑62). In these studies, 
PIWI proteins were found to exert multiple functional roles 
in cancer, such as promoting cell proliferation, inhibiting cell 
apoptosis, facilitating cell migration and invasion, regulating 
genomic integrity and acting as potential biomarkers for 
cancer diagnosis and prognosis. Regarding the specific role 
of PIWI proteins in HCC, it was reported that the expression 
of PIWI proteins, including PIWIL1, was increased in HCC 
cells, with depletion of this protein culminating in decreased 
invasion and metastasis (62,63). Meanwhile, the presence of 
PIWI protein was also an independent risk factor affecting 
the overall survival and recurrence‑free survival of HCC 
patients (62).

In addition to the crucial role of PIWI proteins in tumori-
genesis, piRNAs also serve a vital role in this process. Certain 
piRNAs, such as tRNA‑derived RNA fragments, may be 
associated with PIWI proteins in cancer cells (64). At present, 
numerous piRNAs have been identified to be associated with 
cancer pathology, including human piRABC, piR‑Hep1, 
piR‑651, piR‑823, piR‑932, piR‑4987, piR‑20365, piR‑20485 
and piR‑20582. piRNAs are dysregulated in different cancer 
types, with functional investigations of these piRNAs 
demonstrating that these RNAs inhibited cell proliferation 
and colony formation, regulated cell cycle, promoted cell 
apoptosis, correlated well with clinical stages of patients, 
and decreased proangiogenic activity in cancer (60,65‑73). 
However, only a few studies have reported the role of piRNAs 
in HCC. piR‑Hep1 expression was upregulated in ~50% of 
hepatic tumors as compared with the corresponding adjacent 
tissues. Further studies identified that piR‑Hep1 inhibited 
cell viability, motility and invasiveness in HCC (70), which 
provided novel insights into this cancer type. However further 
study is necessary to determine the role of piRNAs in HCC.

Targeting sncRNAs in HCC therapy
sncRNAs antagonism for HCC therapy. In conditions where 
miRNAs or piRNAs act as oncogenes in cancer, strategies 
involving the antagonism of miRNA or piRNA activity are 
desirable. Two broad categories of molecules can be applied to 
block sncRNAs: i) Oligonucleotide miRNA/piRNA inhibitors; 
and ii) RNA sponges containing the RNA oligonucleotides 
complimentary to the target miRNAs or piRNAs.

Nucleic acid inhibitors can inhibit endogenous miRNAs or 
piRNAs that exhibit tumor‑promoting functions in cancer. An 
miR‑122 inhibitor has been tested in phase 2a clinical trials 
for treating patients with hepatitis C virus (HCV) infection. 
This provides a promising prospect for using antagonists 
of sncRNAs in liver disease therapy  (74). Antagonists are 
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typically chemically modified to bind to the target sncRNAs 
with high affinity. The functions of sncRNAs can be impeded 
or silenced by these antagonists due to antagonist sncRNA 
duplexes being unable to incorporate into the RNA‑induced 
silencing complex as a result of high RNA duplex stability. 
Currently, the majority of advanced anti‑miRNA therapies are 
in the preclinical stage; however, further studies are required 
to confirm their efficacy in cancer therapy. piRNA antagonists 
have also been reported in different cancer types (69). For 
example it was reported that piR‑651 antagonists could induce 
cell cycle arrest in gastric cancer cells  (69). Nevertheless, 
at present there are no studies reporting the use of piRNA 
antagonists in the treatment of HCC.

In addition to the nucleic acid inhibitors of miRNAs, 
researchers recently discovered that certain small molecules 
can also inhibit the expression of specific miRNAs in 
different cancer types; for example, inhibitors of miR‑122 
can inhibit HCV replication in liver cells (75). Additionally, 
a small molecule inhibitor of miR‑525 was screened from a 
compound library, and it was revealed that this could inhibit 
the production of mature miR‑525, upregulate the downstream 
protein ZNF395, and inhibit invasion of HCC cells (76). A 
powerful online database, The Connectivity Map, which 
uses gene‑expression signatures to connect small molecules, 
genes, and disease (77,78), has provided a novel way to iden-
tify potential modulators of sncRNAs for cancer therapy. 
The gene‑expression profiles following the gain or loss of 
sncRNAs in cancer cells may be used to compare with the 
gene‑expression profiles obtained from cells following treat-
ment with different compounds.

sncRNA replacement for HCC therapy. Conversely, the loss of 
sncRNAs can be reversed via utilizing RNA mimics to correct 
RNA deficiency. To improve their endogenous protective 
mechanisms, RNA mimics have their own strands resembling 
the sequences of the respective targets. As miRNA mimics may 
exhibit similar functions to tumor‑suppressive small ncRNAs 
in cancer cells, they are potential anti‑cancer therapeutics. It 
is reported that the delivery of miR‑26a mimics can inhibit 
tumor progression in a murine HCC model (79). Fang et al (80) 
also reported that miR‑188‑5p mimics suppressed HCC cell 
proliferation and metastasis in  vitro and in  vivo. Another 
previous study identified that miR‑95a mimics inhibit HCC 
growth (81). In addition, a piRNA mimic of piR‑015520 was 
demonstrated to repress the expression of its target gene, mela-
tonin receptor 1A (82). As such, the therapeutic effects involve 
the reactivation of pathways unfavorable to cancer cells.

In addition to the nucleic acid approach to sncRNA replace-
ment (i.e., sncRNA mimics), certain small molecules have also 
been identified to activate the expression of sncRNAs in cancer. 
Various studies have screened small molecules that induce 
sncRNA expression in liver cancer. In HCC, Young et al (75) 
discovered that a small molecule may upregulate miR‑122 
in HCC cells, and subsequently upregulate caspase expres-
sion, culminating in apoptosis and reduced cell viability. 
Additionally, by screening from a nature products library, 
our previous study identified a small molecule named Rubone 
that may activate tumor‑suppressive miR‑34a expression 
in HCC cells (27). It was identified that miR‑34a activation 
could increase miR‑34a promoter activity via increasing p53 

occupancy on the miR‑34a promoter in wild type and mutant 
p53. Furthermore, our study demonstrated that a miR‑34a 
activator significantly inhibited HCC cell growth and tumor 
growth by silencing the downstream oncogenic targets of this 
miRNA (27). However, small molecules that can modulate 
piRNA expression are still lacking. miRNA‑based anti‑HCC 
therapy has great potential, as reports have demonstrated that 
few adverse reactions would be caused in normal tissues when 
administered with an miRNA‑based agent. The Connectivity 
Map tool may also be used to screen the activators of 
sncRNAs; for example, when gene expression profiles exhibit 
a high similarity following compound treatment or sncRNA 
overexpression, this indicates that the compound may be an 
activator of the corresponding sncRNA.

3. lncRNAs in HCC

Functional role of lncRNAs in HCC. The primary role of 
lncRNAs is to act as an adaptor that can mediate interac-
tions between DNA, proteins and other RNAs (83). Previous 
mechanistic investigations revealed that lncRNAs exert their 
functional roles predominantly in two ways. First, they can 
bind directly to DNA or other RNA molecules (84). Second, 
lncRNAs may form secondary structures that function as 
binding sites for proteins or small molecules  (85,86). The 
aforementioned properties of lncRNAs may enable a much 
broader range of functions than with sncRNAs. Additionally, 
the increased number of binding sites that lncRNAs contain 
may allow more functional interactions when compared with 
sncRNAs. Studies have demonstrated that lncRNAs serve 
critical roles in cellular processes, with specific lncRNAs 
possessing the ability to modulate cancer epigenomes and 
contribute to different pathological conditions, such as 
proliferation, apoptosis, metastasis, migration and epithe-
lial‑to‑mesenchymal transition (EMT) (87‑90). Consequently, 
comprehension of the molecular mechanisms of lncRNAs 
in tumor development and progression may provide a novel 
avenue in cancer therapy.

The roles of lncRNAs in HCC have been reported in 
recent publications (91‑94). In these studies, the upregulated 
lncRNAs [including hepatocellular carcinoma upregulated 
long non‑coding RNA (HULC); H19; PCBP2 overlapping 
transcript 1/transcribed ultra conserved region 338; metas-
tasis‑associated lung adenocarcinoma transcript 1 (MALAT1); 
HOX transcript antisense RNA (HOTAIR); HOXA distal 
transcript antisense RNA (HOTTIP); hepatocellular carci-
noma upregulated EZH2‑associated long non‑coding RNA 
(HEIH); ribosomal oxygenase 2/mineral dust‑induced gene; 
plasmacytoma variant translocation 1 (PVT1); long intergenic 
non‑protein coding RNA 974 (LINC00974); ubiquitin‑fold 
modifier conjugating enzyme 1 (UFC1); PCNA antisense 
RNA 1; urothelial cancer‑associated 1; colon cancer‑associated 
transcript 1 (CCAT1); neutral amino acid transporter B (ATB); 
and upregulated in hepatocellular carcinoma (URHC)], in 
addition to the downregulated lncRNAs [including maternally 
expressed 3 (MEG3/GTL2); phosphatase and tensin homolog 
pseudogene 1 (PTENP1); long intergenic non‑protein coding 
RNA 1018 (LINC01018/SRHC); and methallothionein 1D 
pseudogene (MT1DP)], are summarized in detail. In these 
studies, the lncRNAs in HCC were also divided into two 
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groups: i) lncRNAs associated with tumor growth and prolif-
eration (such as PTENP1, MEG3, CCAT1, ZNRD1 antisense 
RNA 1, UFC1, lncRNA‑hPVT1 and HULC); and ii) lncRNAs 
associated with metastasis and prognosis (such as H19, 
MALAT1, HOTAIR, HOTTIP, HEIH, ATB and lncRNA‑p21). 
Tang et al  (95) discovered novel lncRNAs associated with 
HCC that have also been identified to have multiple functions; 
for example LINC00974 can activate the transforming growth 
factor‑β and Notch signaling pathways, which promote the 
invasion and proliferation of HCC. High levels of URHC can 
inhibit tumor growth via activation of tumor‑suppressive gene 
expression in HCC (96,97). SRHC inhibited cell proliferation 
and promoted cell differentiation in HCC (98). MT1DP has 
demonstrated an ability to inhibit the transformative pheno-
type of liver cancer cells and cell proliferation (99). However, 
more preclinical models of HCC are required to provide more 
support for the clinical applications of lncRNAs.

Targeting lncRNAs in HCC therapy. Owing to the large 
amount of lncRNAs that have been implicated in HCC, these 
RNAs represent rational candidates for potential use in HCC 
therapy. According to previously published literature, in HCC, 
a greater number of upregulated lncRNAs than downregulated 
lncRNAs have been identified (94,100). Therapeutic strate-
gies that reduce the endogenous transcript levels of lncRNAs 
may have more favorable results for HCC therapy. Currently, 
RNAi‑based techniques are extensively used to inhibit 
lncRNAs in HCC cells. Du et al (101) reported that knock-
down of HULC and MALAT1 by RNAi‑based technique can 
inhibit HCC cell proliferation. It was also reported that using 
antisense oligonucleotides, which are short, single‑stranded 

DNAs or RNAs designed with antisense sequences of their 
target RNAs, could silence lncRNA function through degrada-
tion of lncRNA transcripts (102,103). For example, antisense 
oligonucleotides directed against insulin‑like growth factor‑II 
mRNAs could delay the progress of HCC (104). Hammerhead 
ribozyme (HamRz) is another method to silence lncRNAs in 
liver cancer via destabilizing the phosphodiester backbone 
of its targets (105). Previous research has demonstrated that 
targeting lncRNAs with HamRz, has anti‑cancer potential in 
different cancer types, including colorectal and lung (106). 
However, to date, there has been no research on the role of 
HamRz in HCC, which needs further study.

On the other hand, information on the secondary structure 
of lncRNAs can be utilized to screen potential modulators of 
this class of RNAs. The specificity and affinity of aptamers 
to the secondary structure of the target RNA are much higher 
than those of the complementary oligonucleotides  (107). 
Although aptamers were reported to modulate lncRNAs 
through secondary structure interaction (108,109), presently, 
there have been no studies examining this strategy in cancer 
therapy, which may be a novel direction for investigating 
modulators of lncRNAs in HCC.

Comparable to the strategy for screening the modulators of 
sncRNAs, small molecules also have the potential to modulate 
lncRNAs. Three compounds were identified to selectively 
modulate lncRNAs expression and subsequently repair various 
disorders in mice (110‑112). Previous research demonstrated 
the feasibility of using a high‑throughput screening method to 
identify modulators of lncRNAs (113). This could facilitate the 
development of a method utilizing small molecules to target 
lncRNAs that are dysregulated in HCC as a potential cancer 

Figure 1. Therapeutic strategies for HCC via targeting noncoding RNAs. HCC, hepatocellular carcinoma; piRNA, piwi‑interacting RNA; miRNA, microRNA; 
lncRNA, long noncoding RNA. 
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therapy. The Connectivity Map tool is another strategy to 
elucidate modulators of lncRNAs in future studies.

4. Conclusions

HCC continues to be one of the most common malignancies and 
is a leading cause of cancer‑associated fatalities due to its high 
mortality rate and the limited therapeutic options. Presently, 
sorafenib is the sole drug that has been approved for first‑line 
treatment of HCC (114‑116). Owing to recent failures of clinical 
trials undertaken to investigate novel drugs for HCC, the devel-
opment of more effective drugs is urgently required.

ncRNAs exert their genomic regulation via transcriptional, 
post‑transcriptional, and epigenetic modification, and the path-
ways that ncRNAs are involved in play crucial roles in HCC 
progression (Fig. 1). Various preclinical studies suggest that 
modulation of ncRNAs can elicit significant anti‑cancer effects. 
In previous studies, a large number of ncRNAs, including 
miRNAs and lncRNAs, have been identified and several ncRNAs 
have been investigated in HCC (117). However, no ncRNAs have 
yet entered into clinical practice, with the exception of several 
that have been investigated in phase I and II clinical trials. 
HCC therapeutic treatments based on the targeting ncRNAs 
require further assessment. In addition, efficient delivery of 
agents to the targeted ncRNAs in HCC therapy remains a 
crucial issue. Nucleic acid‑based drugs are well‑established 
agents in targeting ncRNAs; however, the delivery of this drug 
type remains challenging including low biological stability 
and the poor tissue penetrance and cellular uptake, making it 
hard to pursue (118,119). Meanwhile, nucleic acid‑based drugs 
are usually poor in terms of accessibility into cancer cells. 
Small molecules with low molecular weight typically possess 
superior biological effects; numerous commonly used potent 
anti‑cancer drugs, including erlotinib, gefitinib and sorafenib, 
are small molecules (120). Small molecules also show significant 
advantages for anti‑cancer drug development for the following 
reasons: i) A wide range of small molecules can be synthesized 
within a short time; ii) compounds can be easily screened for 
interactions with a target; and iii) they are orally bioavailable and 
cost‑effective (121). However, the safety of small molecule‑based 
drugs must be established and verified. Therefore, nucleic acid 
and small molecule‑based agents require further investigation 
in preclinical studies, and show promising potential as a drug of 
choice for HCC treatment in clinical practice.
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