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Abstract. Cutaneous melanoma is an aggressive cancer 
and its onset and growth are associated, through direct and 
indirect interactions, with the cancer microenvironment. The 
microenvironment comprises a dynamic complex of numerous 
types of cells (due to histogenesis) that constantly interact 
with each other through multiple cytokines and signaling 
proteins. Macrophages are one of the most thoroughly studied 
pleiotropic cells of the immune system. One of their major 
cytophysiological functions is their involvement in phagocy-
tosis. Previous studies examining the microenvironment of 
melanomas and tumor‑associated macrophages have revealed 
that they are involved in all stages of melanomagenesis. In the 
case of cancer initiation, they form an inflammatory micro-
environment and then suppress the anticancer activity of the 
immune system, stimulate angiogenesis, enhance migration 
and invasion of the cancer cells, and ultimately contribute to 
the metastatic process. The present review provides a detailed 

overview on the function of macrophages in the melanoma 
microenvironment.
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1. Introduction

Melanomas are a rare but aggressive cutaneous type of cancer 
in humans (1). At the dissemination stage in a majority of 
cases, the disease is resistant to treatment with cytostatics 
and radiotherapy (1). Therefore, the identification of novel 
molecular mechanisms involved in the melanomagenesis 
process and tumor progression have enabled the production of 
targeted therapies that yield notable effects (1). The basis for 
melanomagenesis is the accumulation of genetic disorders in 
the melanocyte (the most frequent ones include the following 
mutations: B‑Raf proto‑oncogene, serine/threonine kinase, 
N‑Ras proto‑oncogene, GTPase and phosphatase and tensin 
homolog) (1). However, only the interaction between micro-
environment elements and genetic changes in the melanocyte 
result in the ultimate transformation of a dysplastic melano-
cyte into a melanoma cell, and at further stages result in the 
local invasion and dissemination of the primary lesion (1). It is 
the microenvironment that is one of the key elements of cancer 
formation and is being studied at present.

A melanoma microenvironment is a markedly heterogenic 
population of cells that involves fibroblasts, macrophages, 
lymphocytes, other immune system cells, adipocytes and cells 
that form the structural elements of cutaneous blood vessels 
sunk in the extracellular matrix  (2). The aforementioned 
complex network of cellular associations are constantly inter-
acting through direct contact and active protein substances 
including secretory proteins (e.g., metalloproteinases or 
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osteonectin) and growth factors [e.g., transforming growth 
factor‑β (TGF‑β), Wnt, Hedgehog, epidermal growth factor 
(EGF), hepatocyte growth factor and platelet‑derived growth 
factor] (2‑5), and is accompanied by hypoxia (6).

The present review provides a detailed overview on the 
function of macrophages in the melanoma microenvironment.

2. General characteristics of macrophages

Clonal survival, malignant tumor heterogeneity and resistance to 
systemic treatment are the features of cancer that, in the light of 
a previous study, are largely shaped by the immune system (7).

Of all the cells of the immune system, it is the function of 
macrophages that has been explored most thoroughly. They 
are a group of cells that are known for their plasticity, which 
depends on signals from the external environment and thus 
their cytophysiological functions are widely varied  (8,9). 
There are numerous different propositions on how to divide 
macrophages. Depending on the immune response, there are 
three basic groups of macrophages: i) Classically activated 
macrophages i.e., those being an element of a cellular immune 
response, produced in the course of inflammatory reaction and 
formed primarily in response to the granulocyte‑macrophage 
colony‑stimulating factor (GM‑CSF), interferon‑γ and 
tumor necrosis factor (TNF)‑α, and themselves producing 
pro‑inflammatory cytokines [including interleukin (IL)‑12] 
and reactive forms of oxygen and carbon oxide; they destroy 
and remove pathogens and abnormal cells and activate other 
cells of the immune system, ii) wound‑healing macrophages 
which are induced by Il‑4 and produce growth factors and 
proangiogenic factors, and iii) regulatory macrophages which 
may be produced in response to the excessive release of gluco-
corticosteroids in stress situations, but which are also induced 
by the activation of toll‑like receptor (TLR) by, among others, 
the presence of immunoglobulin G complexes; they produce 
Il‑10 which functions as an immunosuppressant, reduces 
the production of pro‑inflammatory factors and inhibits the 
activity of cytotoxic lymphocytes T [resulting in the stimula-
tion of programmed death ligand‑1 (PD‑L1)], and thus limits 
the inflammatory reaction (8,9). There is also a fourth group 
of macrophages (trophic macrophages) which phenotypically 
have the features of macrophages from groups 2 and 3, and 
are involved in tissue development and the maintenance of 
homeostasis, regulated primarily by CSF‑1 (9).

According to another widely used and much simpler 
division, macrophages may be grouped as either activated 
macrophages (M1/activated) or alternatively activated 
macrophages (M2/trophic) (10). Within each of the groups, 
macrophage subpopulations are observed, which differ very 
little with regards to function and phenotype (8). This suggests 
that macrophages are best understood as a continuum of cells 
that smoothly transit from one subgroup to another (8,9).

Transcriptional profiling of resident macrophages revealed 
that the populations are characterized by a high transcriptional 
variety with minimal overlap, which indicates that there are 
numerous unique classes of macrophages (11). Heterogeneity 
of macrophage classes results in a wide range of their biolog-
ical functions (11). Macrophages are involved in almost all 
biological processes in an organism, and in addition to their 
involvement with the immune response to pathogens, they 

also serve a function in developmental, homeostatic and repair 
processes (11). Their repair function ensures proper embryo-
genesis, morphogenesis and organogenesis (11). It was revealed 
that the loss of macrophages results in a cluster of develop-
mental abnormalities (11). Macrophages are involved in the 
development of brain, bones, heart and vascular system (11). 
Additionally, they maintain metabolic homeostasis e.g., in 
the course of a bacterial infection, they promote resistance 
to insulin through pro‑inflammatory cytokines to decrease 
nutrient accumulation (11). Macrophages additionally regulate 
adipocyte responses to insulin (11).

Unfortunately, due to chronic irritation, the notable repair 
and homeostatic functions of macrophages are lost, which 
results in their involvement in the development of diseases (11).

3. Macrophages‑general function in carcinogenesis

Data concerning the function of macrophages in the first 
stage of initiation and promotion of transformed cancer cells 
is contradictory. A previous in vitro study confirmed that 
activated macrophages kill cancer cells (12), whereas other 
studies reveal that a decreased number of macrophages have 
no influence on the susceptibility of an organism to cancer; 
furthermore, in a number of cases, macrophages contribute to 
the eventual transformation of a given normotypic cell into a 
cancer cell (13,14). It appears that these differences are due 
to different macrophage phenotypes and consequently to the 
production of different cytokines (9,10).

A separate issue is that of a chronic inflammation, in which 
the activated macrophages serve key functions. It has been 
hypothesized that the reactive forms of nitrogen and oxygen 
produce a microenvironment that is conducive to mutagen-
esis (15). Free radicals damage the DNA of normal cells, and 
the genome loses stability and results in a transformation 
into cancer cells (15). Other notable stages in cancer progres-
sion include cancer cell invasion, angiogenesis, metastasis 
and suppression of adaptive anti‑tumor immunity  (7,9,16). 
Tumor‑associated macrophages (TAMs) are involved in these 
stages. TAMs are formed from monocytes circulating in 
the blood (16). With the help of multiple different cytokines 
including CSF‑1, C‑C motif chemokine ligand 2 (CCL‑2), 
IL‑34, vascular endothelial growth factor A (VEGFA) or 
C‑X‑C motif chemokine ligand 12 (CXCL12) produced by 
cancer cells as they infiltrate the tumor through the vessels (16). 
They accumulate in the invasive tumor edge, cancer 
cell/stromal border, central tumor mass, hypoxic/necrotic 
regions and perivascular areas (16). TAMs have features of 
a trophic macrophage phenotype (M2), which means that 
they may remodel the extracellular matrix and suppress the 
immune system  (8,14,17). TAMs produce other mediators 
and enzymes. Secreted Protein Acidic and Rich in Cystein, 
cathepsins and metalloproteinase (MMP) 2 and 9 produced 
by TAMs decompose the elements of the extracellular matrix, 
including type IV collagen, which is the basic element of the 
basal membrane, which enables and promotes invasion (9,11). 
Macrophages additionally regulate angiogenesis and are 
associated with the density of microvessels surrounding the 
tumor (16). Proangiogenic macrophages are characterized by 
the increased expression of tyrosine‑protein kinase receptor 
2 (TIE2) and the production of VEGF. Their proangiogenic 
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function is increased by angiopoietin‑2, produced by activated 
endothelial cells. Subsequently, the EGF‑CSF‑1 paracrine 
loop between macrophages and cancer cells with the CXCL12 
chemokine promotes the development of the tumor microenvi-
ronment of metastasis i.e., the micro‑anatomical site regulating 
the escape of cancer cells from the primary tumor (8,16).

TAMs modulate the immune reaction by enhancing the 
synthesis of TGF‑β and prostaglandin E2 (PGE2), in addition 
to reducing the synthesis of Il‑12, Il‑18 and the TLR signaling 
pathway, which results in the reduced activation of other 
cells of immune response (17). They markedly influence the 
cytotoxic lymphocytes T on which they exert a direct effect 
(by stimulating the synthesis of arginase and nitrogen oxide 
that inhibit the effect of cytotoxic T lymphocytes) and an 
indirect effect (through IL‑10 they stimulate monocytes to 
express the costimulatory molecule PD‑L1 which suppresses 
these lymphocytes, and through the CCL22 chemokine which 
affects the regulatory T lymphocytes that additionally inhibit 
them) (9,18).

Another notable issue is the function of macrophages in 
metastasis. Primary tumor cells produce chemoattractants 
(S100A8 and A9) for myeloid cells that settle on the tissues to 
prepare space for the colonization by cancer cells and create 
the pre‑metastatic niche (9). The settling cancer cells recruit 
macrophages from the surrounding myeloid cells and these 
in turn stimulate the growth and further dissemination of the 
primary tumor cells (9).

4. Macrophages in skin melanomas

The presence of macrophages in primary lesions was revealed 
in cutaneous melanomas (19), uveal melanomas (20,21) and 
sinonasal melanomas (22). In the case of cutaneous lesions, 
they are predominantly located in the primary foci, and to 
a lesser extent in metastatic foci (19). Elevated numbers of 
macrophages within a melanoma is markedly associated with 
poor prognosis (23).

Tumorigenesis and growth. Melanoma cells are able to produce 
multiple factors that modulate the activity of immune response 
cells. Autocrine factors stimulate melanoma cells to continue 
non‑controlled proliferation, and those with paracrine activity 
modulate the microenvironment in order for tumor growth 
and further invasion to be promoted (24). The most notable 
factors include GM‑CSF, CCL2, IL‑8/CXCL‑8, TGF‑β, IL‑1, 
IL‑6 and IL‑10, of which GM‑CSF and CCL2 have the highest 
impact on melanoma macrophages (25). GM‑CSF inhibits the 
cytotoxic effect of macrophages (25). However, presently avail-
able data from studies on the effect of CCL2 on macrophage 
recruitment is contradictory. The effect of CCL2 released by 
melanoma cells is dependent on the extent of its secretion (26). 
With a high concentration of CCL2, there is a substantial 
infiltration of the primary lesion by macrophages, primarily 
by M1, which aims to destroy the tumor (27). However, with 
the decreased concentration of CCL2, M2 macrophages 
accumulate and result in the promotion of tumor growth (27). 
Contrary to the aforementioned studies, it has been proven that 
the production of CCL2 by melanoma cells and the associated 
TAM recruitment results in enhanced angiogenesis (28) and 
are associated with a more advanced disease (29). It may be 

that the discrepant results are due to the two‑stage influence of 
CCL2 on tumor growth. It has been revealed that CCL2 and 
GM‑CSF drive angiogenesis firstly by stimulating the expres-
sion of hypoxia‑inducible factor‑1 α and hypoxia response 
element, and in turn these factors increase the expression of 
VEGF‑A (30). IL‑6 produced by melanoma cells additionally 
promotes the growth of TAMs, which at the subsequent stage 
induce IL‑10 expression that further drives the vicious circle 
of immunosuppression (25). IL‑10 produced by tumor cells 
induces the expression of the negative costimulatory molecule 
B7‑H4 identified on TAMs, which on contact with T cells 
inhibits their proliferation and cytokine release (25). B7‑H4 
was identified in melanoma cells and TAMs (31).

Immune suppression. IL‑10 and TGFβ are produced by 
TAMs, which inhibit the differentiation of bone marrow cells 
into dendritic cells, determining their further differentiation 
into TAMs  (25). Furthermore, the combination of factors 
produced by melanoma‑associated macrophages induce the 
activity of the myeloid‑derived suppressor cells that addition-
ally inhibit the response of the immune system (32). It should 
be noted that within TAMs, similar to melanoma cells, there 
is a high expression of PD‑L1 that helps TAM and regulatory 
T lymphocytes to form an immunosuppressive microenviron-
ment (33,34) (Fig. 1A).

The signal transducer and activator of transcription 3 
(STAT3) has been identified as the master regulator of a 
number of the aforementioned factors. STAT3 is a pro‑tumor-
igenic transcription factor. In melanoma, it regulates all facets 
of the immune response and promotes production of M2 
macrophages (25,35). In melanoma, inhibition of the STAT3 
pathway results in the increase of inhibition and pro‑apoptotic 
effects against malignant tumor cells. Additionally, the 
improved recognition of malignant tumor cells by the immune 
system has been revealed, in addition to improved responses 
to the anti‑tumor cytokine interferon‑α (INF‑α) as a result of 
STAT3 inhibition (35).

Tumor microenvironment modulation. Molecular signals 
regulating the specific dialogue between melanoma cells and 
their microenvironment remain unknown. Kinases associated 
with the membrane lipids of melanoma cells additionally affect 
the macrophages which form the microenvironment of mela-
noma. Emerging reports demonstrate that the key function of 
sphingosine 1‑kinase (S1K) is that it produces a bioactive lipid 
called lipid sphingosine 1‑phosphate (23). Lower expression 
of S1K results in the reduction of the number of M2 macro-
phages and increase of the number of M1 macrophages (23), 
which may be due to the inhibition of cancer progression. This 
hypothesis, however, requires further study.

Macrophages also modulate the tumor microenviron-
ment through the production of various proteins, enzymes 
and oxides, thus promoting proliferation, tumor growth and 
invasion (Fig. 1B) (9,36). Melanoma‑associated macrophages 
have been revealed to have a distorted balance between the 
production of inducible nitric oxide synthase (iNOS) and argi-
nase (36). Macrophages use arginine to produce NO by iNOS, 
or to produce ornithine through arginase activity (36). NO is 
primarily cytotoxic and ornithine production promotes the 
proliferation of tumor cells (36). It has been demonstrated that 
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in clinically less advanced melanomas, iNOS is more active 
compared with arginase, and this is stimulated by contact with 
melanoma cells (36). In the case of more advanced primary 
lesions, a significant reduction in the number of macrophages 
with a higher percentage of iNOS has been observed (36). It is 
notable that NO released by macrophages possesses anticancer 
properties only in the presence of INFγ produced by natural 
killer cells (36).

Melanoma‑associated macrophages are characterized by 
expression of pro‑inflammatory protein cyclooxygenase‑2 
(COX‑2). The percentage of COXs‑positive TAMs is highest in 
in situ and in thin melanomas, and lower in highly advanced 
and metastatic melanomas. It has been demonstrated that the 
expression of this thoroughly studied mediator of inflammation 
is a marker of melanoma progression (19). Macrophages stimu-
lated by osteopontin from the melanoma microenvironment 
start to synthesize the COX‑2 protein (37). α9β1 integrin on 
macrophages is the receptor for osteopontin, which stimulates 
COX‑2 expression in macrophages through the ERK and p38 
pathways (37). In addition to maintaining inflammation, COX‑2 

additionally promotes melanoma cell migration and angiogen-
esis through the COX‑2 dependent production of PGE2 (37). 
Osteopontin combined with PGE2 substantially increases 
the influence on angiogenesis by enhancing the expression 
of MMP‑9  (36). Another study revealed that the increased 
expression of COX‑2 in melanoma tumor types is associated 
with increased VEGF expression, density of micro vessels and 
inflammatory infiltration formed of macrophages (37,38).

Another microenvironment protein that promotes mela-
noma growth is renalase. This flavoprotein, that functions 
as cell survival factor, is identified in melanoma cells and 
cluster of differentiation 163‑positive TAMs (39). Renalase 
activates the phosphoinositide 3‑kinase/protein kinase B and 
mitogen‑activated protein kinase signaling pathways which are 
two of the most important signaling pathways of the epithelial 
mesenchymal transition (EMT) (4,39). Attenuation of renalase 
expression reduces melanoma cell survival and inhibits tumor 
growth (39), which may suggest a potential novel target of 
molecular targeted anticancer therapies.

TAMs additionally produces protease‑like proteins which 
promote melanoma invasion (9,24,40). It has been demon-
strated that melanoma‑associated macrophages synthesize 
large amounts of MMP‑9 and urokinase‑type plasminogen 
activator receptor (uPAR) as a result of direct contact with 
melanoma cells (40). MMP‑9 decomposes collagen IV, which 
is main component of the basement membrane, and addition-
ally decomposes latent TGF‑β complexes, which further 
intensifies the EMT (2,40). uPAR is an element of the plasmin-
ogen activation system and is involved in multiple proteolytic 
processes that result in the reorganization and degradation of 
the extracellular matrix (40).

Angiogenesis. Melanoma‑associated macrophages are addition-
ally involved in the indirect promotion of angiogenesis (Fig. 1C) 
as they release TNF‑α and IL‑1α. In response to stimulation 
with these cytokines, melanoma cells produce angiogenic 
factors, including IL‑8, VEGF, TIE2 and CD31, which results in 
neoangiogenesis (29,41). Furthermore, the proangiogenic factor 
released by pericytes‑milk fat globule‑epidermal growth factor 
8 stimulates the polarization of M2 macrophages, suggesting 
that they also increase tumor angiogenesis (42).

Hypoxia is yet another element of the microenvironment 
notably associated with and affecting TAMs (43). Hypoxia 
within the tumor drives TAM accumulation in the melanoma 
microenvironment (43). Signals connecting TAM recruitment 
with hypoxia have yet to be elucidated. It has been confirmed 
that high‑mobility group box 1 (HMGB1) protein is released 
by melanoma cells under hypoxic conditions and promotes 
the accumulation of M2 macrophages and the production 
of immunosuppressive IL‑10 surrounding the tumor  (43). 
HMGB1 stimulates macrophages to produce IL‑10, affecting 
the receptor for advanced glycation end products, thereby 
inducing an inflammatory response (43).

5. Interactions of macrophages with melanoma cells

Interactions of M2 macrophages with the subpopulations of 
melanoma cells are not well‑known. Studies on mice with 
spontaneous melanoma have revealed that CD34 tumor‑initi-
ating cells (TICs) and stem‑like cells, i.e., the cells that initiate 

Figure 1. In response to cytokines produced by cancer cells, macrophages 
transform into TAMs. (A) TAMs modulate the immune reaction, (B) are 
able to remodel the extracellular matrix (C) promote angiogenesis and 
(D) contribute to melanoma dissemination. TAM, tumor‑associated macro-
phage; IL, interleukin; CCL, C‑C motif chemokine ligand; GM‑CSF, 
granulocyte‑macrophage colony‑stimulating factor; MMP9 matrix metallo-
proteinase 9; VEGF, vascular endothelial growth factor; uPar, urokinase‑type 
plasminogen activator receptor; COX, cyclooxygenase; TNF‑α, tumor 
necrosis factor‑α; TIE2, tyrosine‑protein kinase receptor 2.



ONCOLOGY LETTERS  15:  5399-5404,  2018 5403

tumor growth and determine certain features of a tumor, 
including chemoresistance, are M2 macrophage dependent, 
and the precise survival and proliferation of TICs are depen-
dent on TAMs (44). Furthermore, TICs are stimulated in the 
presence of TAMs to form melanospheres i.e., non‑adherent 
colonies of melanoma cells (44). It has been demonstrated 
that CD34‑ TIC stimulation by TAMs is associated with 
melanoma progression in vivo (44). The results additionally 
include a notable observation concerning how chemotherapy 
was used to treat melanoma (cisplatin, temozolamide), as it 
was demonstrated that chemotherapy drives TAM recruitment 
in the tumor, stimulates the growth of TAM‑responsive TICs, 
and that TAMs themselves protect TICs against chemotherapy 
effects (44). It was demonstrated that on the molecular level, 
the simulation of TICs was a result of TAM‑derived TGF‑β 
and polyamines (44,45). The function of TAM‑derived TGF‑β 
is to autoregulate and stimulate arginase, which results in the 
production of polyamines (which serve key functions in the 
growth and differentiation of cancer cells) (44,45).

Dissemination. Another function of melanoma‑associated 
macrophages is their involvement in dissemination 
(Fig. 1D) which is the main reason for cancer‑associated 
mortality (5,9,16). One of the most widely accepted hypoth-
eses for cancer cell dissemination is the EMT allowing 
cancer cells to acquire the ability to migrate (4,5). According 
to an alternative theory, macrophages are involved in the 
dissemination process. They are said to fuse with tumor cells 
creating a hybridoma [a macrophage with tumor cell fusion 
(MTF)] and then pass into the bloodstream (46). MTFs were 
identified in patients with cutaneous melanoma (46). The 
selected MTFs presented with features of macrophages and 
melanomas. Morphologically, MTFs were large cells with 
pseudopodia and lamellipodia. Expression of macrophage 
characteristic markers (CD14 and CD68) in addition to M2 
macrophage‑specific markers (CD163, CD204, CD206) were 
identified (46). Expression of characteristics of melanocytes 
[including activated leukocyte cell adhesion molecule, 
protein melan‑A and pro‑carcinogenic cytokine macro-
phage migration inhibitory factor (MIF)] were additionally 
demonstrated  (46). In one case MTFs possessed a B‑Raf 
proto‑oncogene, serine/threonine kinase mutation (44). These 
results suggest that macrophages are involved in melanoma 
dissemination through the formation of MTFs which may 
escape to the bloodstream and are able to settle in distant 
organs, and the released cytokines (including MIF) prepare 
niches to be colonized by the TICs  (46). Further studies 
demonstrated that the endothelial cells next to the mela-
noma produce an increased number of various chemokines 
including CCL21, CCL2 and CXCL8 (16,47). They result 
in the endothelium becoming permeable, melanoma cells 
expressing receptors for these chemokines intravasating, 
and then through the blood reaching the pre‑metastatic 
niches (16). It may be assumed that similarly to breast cancer, 
they form micro‑clots with blood platelets there and remain 
in the blood vessels (16). Pre‑metastatic niches are a reservoir 
of monocytes recruited from the circulatory system which 
then transform to metastatic associated macrophages (16). 
They promote metastatic cell survival by adhesion and 
survival signal (namely, CCL3) (16).

6. Conclusion

As presented in this review, macrophages serve a key func-
tion in the complex regulation of the network of interactions 
and associations between melanoma cells and multiple 
subpopulations of cells that form the tumor stroma. Improved 
knowledge of the macrophages, namely the identification 
of their phenotypes and their influence on promoting all 
stages of melanomagenesis, has altered our perception of 
the macrophages. They are no longer involved exclusively 
in phagocytosis and the specific clearance of dead cells, 
but they have become a notable and active element of 
melanomagenesis. Furthermore, the knowledge of signaling 
pathways, protein substances and their ligands paved the way 
for breakthrough targeted therapies against disseminated 
melanoma (e.g., using an anti‑PD‑L1 antibody) (12). Targeted 
therapies may be directly aimed at TAMs to eliminate them 
or modulate their activity, and alternatively they may be 
used to support the existing treatment methods. It has been 
revealed that activation of macrophages induces their activity 
against melanoma  (48). It may be achieved by adminis-
tering immunomodulatory substances including GM‑CSF, 
galectin‑9, vaccination with pathogens, nanoparticles (poly-
hydroxylated fullerenols) or blocking melanoma inhibition of 
macrophage migration by a macrophage inhibitory cytokine 
inhibitor (48). Another therapeutic strategy is to prevent the 
transformation of macrophages into TAMs. For this strategy, 
antibodies neutralizing Il‑4, Il‑10 or TGF‑β may be used (48). 
Finally, TAM‑targeted therapies are being studied. There are 
encouraging preclinical studies of inhibitor STAT‑3, janus 
kinase‑2 (35) or nanoparticles delivering small interfering 
RNA to TAMs  (49). Multifunctional TAMs appear to be 
an attractive anti‑melanoma target, which may complete 
other treatments as part of an effective and comprehensive 
anti‑melanoma strategy.
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