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Abstract. Thyroid cancer (TC) is the most common endocrine 
malignancy and its incidence continues to rise worldwide. 
Ionizing radiation exposure is the best established etiological 
factor. Heritability is high; however, despite valuable contribu-
tion from recent genome‑wide association studies, the current 
understanding of genetic susceptibility to TC remains limited. 
Several studies suggest that altered function or expression of 
the DNA mismatch repair (MMR) system may contribute 
to TC pathogenesis. Therefore, the present study aimed to 
evaluate the potential role of a panel of MMR single nucleo-
tide polymorphisms (SNPs) on the individual susceptibility 
to well‑differentiated TC (DTC). A case‑control study was 
performed involving 106 DTC patients and 212 age‑ and 
gender‑matched controls, who were all Caucasian Portuguese. 
Six SNPs present in distinct MMR genes (MLH1 rs1799977, 
MSH3 rs26279, MSH4 rs5745325, PMS1 rs5742933, MLH3 
rs175080 and MSH6 rs1042821) were genotyped through 
TaqMan® assays and genotype‑associated risk estimates were 
calculated. An increased risk was observed in MSH6 rs1042821 
variant homozygotes [adjusted odds ratio (OR)=3.42, 95% CI: 
1.04‑11.24, P=0.04, under the co‑dominant model; adjusted 
OR=3.84, 95%  CI: 1.18‑12.44, P=0.03, under the reces-
sive model]. The association was especially evident for the 
follicular histotype and female sex. The association was also 

apparent when MSH6 was analysed in combination with other 
MMR SNPs such as MSH3 rs26279. Interestingly, two other 
SNP combinations, both containing the MSH6 heterozygous 
genotype, were associated with a risk reduction, suggesting a 
protective effect for these genotype combinations. These data 
support the idea that MMR SNPs such as MSH6 rs1042821, 
alone or in combination, may contribute to DTC suscepti-
bility. This is coherent with the limited evidence available. 
Nevertheless, further studies are needed to validate these find-
ings and to establish the usefulness of these SNPs as genetic 
susceptibility biomarkers for DTC so that, in the near future, 
cancer prevention policies may be optimized under a personal-
ized medicine perspective.

Introduction

Despite accounting for only ~2% of all human cancers, thyroid 
cancer (TC) is the most common endocrine malignancy. Its 
incidence continues to rise worldwide, being one of the cancers 
with the highest incidence among adolescent and young adults 
(ages 15‑39 years) and three times more frequent in women 
than in men (1,2). TC is usually classified with respect to 
histological and clinical criteria: Papillary and follicular TC, 
representing 70‑80% and 10‑20% of cases, respectively, are 
the two most common varieties. Both tend to grow slowly 
and are often considered together as well‑differentiated TC 
(DTC) (1,3).

DTC is generally accepted as a multifactorial disease (3). 
Among the several risk factors suggested to contribute to DTC, 
exposure to ionizing radiation (IR) remains the best‑estab-
lished one (1,4). Heritability is high (familial risk is one of the 
highest among cancers not showing typical Mendelian inher-
itance), suggesting that genetic factors (most likely, multiple 
common low‑penetrance or rare moderate‑penetrance alleles) 
strongly contribute to DTC predisposition (5). Much effort has 
been made to identify such susceptibility variants. The most 
robust evidence is for markers at 9q22.33 (FOXE1), 14q13.3 
(NKX2‑1), 2q35 (DIRC3) and 8p12 (NRG1), as variants in 
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these regions have been repeatedly associated with DTC 
through several genome‑wide association studies (GWASs), 
confirmed in follow‑up studies and independently replicated 
across different populations (6‑12). Additional markers have 
recently been suggested  (8,10‑13)��������������������������    but still require confir-
mation and replication. Overall, the number of confirmed 
GWAS‑proposed DTC risk alleles is still very limited (14) and, 
more importantly, explains only a relatively small proportion 
of the estimated heritability of DTC (11,15,16).

Mult iple germ‑l ine single nucleotide polymor-
phisms (SNPs) within genes involved in critical cellular 
processes‑e.g., DNA repair, cell‑cycle control and apoptosis, 
intracellular signalling, endobiotic or xenobiotic metabolism, 
thyroid physiology‑have also been associated with DTC 
susceptibility through candidate‑gene association studies 
(CGASs) [reviewed in (5,17)]. While most of these findings 
have not been properly replicated, some could, as recently 
demonstrated (14), represent true associations with DTC. The 
identification of additional variants potentially involved in 
DTC susceptibility may explain part of the missing heritability 
of the disease and is therefore highly desirable. Considering 
the important role that DNA‑damaging agents such as IR play 
in DTC aetiology, DNA repair SNPs would be particularly 
interesting candidates. Many, across the main DNA repair 
pathways‑BER  (18,19), NER  (20,21), NHEJ  (22,23) and 
HR (24‑26)‑have already been associated with DTC. To our 
knowledge, DNA mismatch repair (MMR) SNPs have not yet 
been investigated.

The MMR pathway plays a crucial role in post‑replication 
repair: It recognizes base‑base mispairs and insertion/deletion 
loops that, in spite of the proofreading function of DNA 
polymerases, inescapably arise during replication. MMR thus 
prevents base substitutions or repeat sequence instability, 
greatly increasing DNA replication fidelity and safeguarding 
genomic integrity (27). MMR also participates, among other 
cellular processes (e.g., mitotic and meiotic recombination, 
immunoglobulin class switching), in the recognition of DNA 
damage induced by genotoxic chemicals, UV light, IR or 
oxidative stress (e.g., oxidative lesions, double strand breaks, 
pyrimidine dimers and inter‑strand crosslinks) and subse-
quent repair (in cooperation with other repair pathways) or 
damage‑induced cytotoxicity (downstream signalling for cell 
cycle arrest and apoptosis) (28‑30). MMR's role is therefore 
critical to carcinogenesis: loss of MMR (e.g., inactivating 
mutation) greatly increases the rate of spontaneous mutation, 
leading to a mutator phenotype, and results in microsatellite 
instability (MSI), a hallmark of MMR defects (27,29,31). Not 
surprisingly, heterozygous germline MMR mutations (e.g., 
MLH1, MSH2, MSH6 or PMS2) give rise to Lynch syndrome 
(LS), an autosomal dominant condition (hereditary nonpoly-
posis colorectal cancer, HNPCC) which strongly predisposes 
to early‑onset colorectal cancer (CRC) and several extraco-
lonic tumours, all typically presenting MSI. MMR mutations 
and epigenetic silencing (e.g., MLH1 promoter methylation) 
are also being increasingly implicated in a growing range of 
tumours (27,31,32).

Interestingly, MMR mutations are increasingly being 
detected in TC cases (33,34) [mutation frequency correlating 
with progression from papillary to more aggressive TC 
phenotypes (35)] and TC, despite not being part of the usual 

LS tumour spectrum, has been incidentally observed among 
LS patients (36‑40). The notion that MMR deficiency may 
contribute to TC pathogenesis and/or progression is biologi-
cally plausible since the MMR pathway is involved in the 
repair and damage response to IR‑induced lesions such as 
8‑oxoGuanine (29). Supplementary evidence (reviewed in (41) 
further supports this hypothesis: 1) MLH1 promoter methyla-
tion occurs in TC and is associated with lymph node metastasis 
and BRAF mutation; 2) High levels of MSI have been reported 
in DTC; and 3) altered MLH1, PMS1 and MSH2 expression 
has been reported in TC.

As such, it is possible that MMR pathway SNPs, through 
interference with DNA damage response and/or repair 
capacity in thyroid cells, could contribute to DTC suscep-
tibility. Since this hypothesis has not yet been explored, we 
undertook a hospital‑based case‑control study in a Caucasian 
Portuguese population, to evaluate the potential modifying 
role of a panel of SNPs in MMR genes on the individual 
susceptibility to non‑familial DTC. Identifying SNPs which 
may serve as DTC susceptibility biomarkers may contribute 
to the identification of individuals who are at increased risk 
for DTC and, eventually, the optimization of cancer preven-
tion procedures.

Materials and methods

Ethical statement. This study was approved by the local 
ethics committees of the involved institutions and carried 
out in compliance with the Helsinki Declaration. At recruit-
ment, written informed consent was obtained from each study 
subject and anonymity was guaranteed.

Study subjects. A total of 318  participants, all of which 
Caucasian Portuguese, were enrolled in this study: 106 
histologically confirmed DTC patients subject to Iodine‑131 
treatment in the Department of Nuclear Medicine of the 
Portuguese Oncology Institute, Lisbon, Portugal and 212 age 
(±2 years) and gender‑matched controls (two for each case), 
selected from unrelated subjects who were seeking health-
care for non‑neoplasic pathology at São Francisco Xavier 
Hospital, Lisbon, Portugal. For controls, age at diagnosis was 
defined as the matched case age of diagnosis. The recruit-
ment of both patients and controls was based on previously 
described (21) inclusion and exclusion criteria. At recruit-
ment, a standard questionnaire was administered through 
face‑to‑face interviews by trained interviewers to obtain 
information on demographic characteristics (e.g., gender, age, 
occupation), family history of cancer, lifestyle habits (e.g., 
smoking, alcohol drinking) and IR exposure. According to 
the information collected, none of the study participants had 
been previously exposed to relevant (i.e. other than that from 
natural and standard diagnostic sources) levels of ionizing 
radiation (from therapeutic or occupational sources, e.g. none 
of the study participants worked or lived nearby a nuclear 
power plant). Detailed clinical and pathological investiga-
tion was also performed. For the purpose of smoking status, 
former smokers who gave up smoking either 2 years before 
DTC diagnosis or 2 years before their inclusion as controls 
were considered as non‑smokers. The participation rate was 
95% and blood samples were available for all subjects.



ONCOLOGY LETTERS  15:  6715-6726,  2018 6717

SNP selection. Using the publicly available NCBI SNP data-
base (http://www.ncbi.nlm.nih.gov/snp/, accessed February 15, 
2017), a comprehensive set of potentially functional SNPs 
covering the MMR pathway were selected for genotyping. 
In order to be eligible, SNPs had to i) alter the amino acid 
sequence (missense SNPs); ii) exhibit minor allele frequency 
(MAF) greater than 0.10; and iii) have been previously referred 
to in MEDLINE (https://www.ncbi.nlm.nih.gov/pubmed/, 
accessed February 15, 2017). A total of five SNPs, specifically, 
rs1799977 (MLH1), rs26279 (MSH3), rs5745325 (MSH4), 
rs175080 (MLH3) and rs1042821 (MSH6), fulfilled these 
criteria and were thus analysed. In addition, since no PMS1 
SNP fulfilled all of these criteria, rs5742933‑ a common 
(MAF >0.10) 5'UTR SNP which is located within the PMS1 
promoter region (potentially regulatory role on transcrip-
tion) and is the most frequently quoted PMS1 SNP‑ was also 
included in the study. Table I summarizes the genomic loca-
tion, base and amino acid exchange and MAF of the selected 
SNPs.

DNA extraction and genotyping. After informed consent, 
peripheral venous blood samples from each study subject were 
collected into 10 ml heparinised tubes and stored at ‑80˚C. 
Genomic DNA was extracted from these samples by using 
the commercially available QIAamp® DNA mini kit (Qiagen 
GmbH, Hilden, Germany) according to the manufacturer's 
protocols. DNA extracts were kept at ‑20˚C until analysis.

In order to assure uniformity in DNA content (2.5 ng/µl) 
prior to genotyping, DNA quantity was assessed fluorimetri-
cally in all samples using the Quant‑iT™ Picogreen® dsDNA 
Assay kit (Invitrogen; Thermo Fisher Scientific, Inc., Waltham, 
MA, USA) and a Zenyth 3100 plate reader (Anthos Labtec 
Instruments, Salzburg, Austria).

SNP genotyping was carried out using the Taqman® 
allelic discrimination assay on a 96‑well ABI 7300 Real Time 
PCR system (Applied Biosystems; Thermo Fisher Scientific, 
Inc.), following the manufacturer's instructions. Commercial 
pre‑designed assay primers and probes, purchased from 
Applied Biosystems; Thermo Fisher Scientific, Inc., were 
used for every SNP and are listed in Table I. The amplifica-
tion conditions consisted of an initial activation step (10 min, 
95˚C), followed by ≥40 amplification cycles of denaturation 
(15 sec, 92˚C) and annealing/extension (60 sec, 60˚C). The 

fluorescence intensity emitted by VIC and FAM dyes in 
each well was detected (60 sec) and analysed with Applied 
Biosystems sequence detection software (System SDS 
version 1.3.1).

To assure accuracy of the genotyping and avoid variant 
misclassification, four negative controls (wells containing no 
DNA) were included in each plate. Genotyping of inconclusive 
samples was repeated. Also, for quality control, 10‑15% of 
the samples were randomly selected and run in duplicates. 
100% concordance between experiments was observed.

Statistical analysis. Prior to analysis, an exact probability 
test available in SNPStats software (42) was used to check 
whether genotype distributions for each studied SNP deviated 
significantly from Hardy‑Weinberg equilibrium (HWE).

Since all variables considered were categorical or 
categorized (e.g., age), descriptive statistics were presented as 
frequencies and percentages.

The distribution of demographic variables such as gender, 
age group and smoking status and of genotype frequen-
cies was compared between groups through Chi‑square or 
two‑sided Fisher's exact test for 2x2 or 2x3 contingency tables, 
respectively.

For all elected SNPs, genotype‑associated risk of DTC 
was estimated by binary logistic regression analysis and 
expressed as both crude and adjusted odds ratios (OR) and 
95% confidence intervals (CI). Risk estimates were calculated 
under codominant, dominant, recessive and log‑additive 
genetic models. Adjustment, when performed, included terms 
for gender (male/female), age group (<30, 30‑49, 50‑69 and 
≥70 years) and smoking habits (smokers/non‑smokers). The 
most common homozygous genotype, female gender, lower 
age group and non‑smoking status were taken as reference for 
the purpose of such calculations. The remaining information 
that was collected on demographic characteristics (e.g. occu-
pation), family history of cancer, lifestyle habits (e.g. alcohol 
drinking) and prior IR exposure was not suitable for rigorous 
quantitative transformation and, therefore, not included in the 
adjustment.

Stratified analysis according to histological type of 
tumour (papillary or follicular TC), gender and age was also 
performed. Additionally, we conducted a genotype interaction 
analysis (combination of alleles) in order to investigate the 

Table I. Selected SNPs and detailed information on the corresponding base and amino acid exchanges, MAF and TaqMan® assay 
used for genotyping.

Gene	 Location	 db SNP ID (rs no.)a	 Base change	 Aminoacid change	 MAF (%)a	 TaqMan® assay

MLH1	 3p22.2	 rs1799977	 A→G	 Ile219Val	 13.0	 C__1219076_20
MSH3	 5q14.1	 rs26279	 A→G	 Thr1045Ala	 28.0	 C__800002_1_
MSH4	 1p31.1	 rs5745325	 G→A	 Ala97Thr	 21.3	 C__3286081_10
PMS1	 2q32.2	 rs5742933	 G→C	‑ b	 21.9	 C__29329633_10
MLH3	 14q24.3	 rs175080	 G→A	 Pro844Leu	 36.4	 C__1082805_10
MSH6	 2p16.3	 rs1042821	 C→T	 Gly39Glu	 20.1	 C__8760558_10

aAccording to http://www.ncbi.nlm.nih.gov/projects/SNP/ (Accessed February 15, 2017). bSNP located on 5'UTR. MAF, minor allele frequency; 
SNP, single nucleotide polymorphism.
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combined effect of different pairs of SNPs on DTC risk. All 
possible combinations were analysed. For each pair of SNPs, 
the combination of the most common homozygous genotypes 
of each individual SNP was taken as the reference category. 
Paired genotypes with frequency <5% in the control group 
were pooled together.

Finally, the chromosomic location of the variants included 
in this study was compared to that of DTC markers previ-
ously reported in GWAS. Linkage disequilibrium between 
co‑localized variants in European populations was verified 
in silico through the use of LDLink (43), a publicly available 
web‑based application that uses Phase 3 haplotype data from 
the 1,000 Genomes Project to calculate pairwise LD between 
user‑input variants in different population groups.

This was a ‘proof of concept’ study to ascertain whether 
MMR variants might be linked to DTC. Bonferroni adjust-
ment was not used because it is too conservative. Also, the 
complement of the false negative rate β to compute the power 
of a test (1‑β) was not taken into account at this stage since 
further studies with more patients and controls should be 
undertaken to change over this preliminary study into a confir-
matory positive one.

The statistical analysis was done with SPSS 22.0 (IBM 
SPSS Statistics for Windows, version 22.0; IBM Corp, 
Armonk, NY, USA) except for HWE deviation assess-
ment, MAF calculations, haplotype estimation and linkage 
disequilibrium (LD) analysis which were performed using the 
SNPstats Software (42). Two‑tailed P<0.05 was considered to 
indicate a statistically significant difference.

Results

The demographic characteristics of the 106 DTC cases and 
their 212 age and gender‑matched controls are depicted in 
Table II. The mean age for each group was 52 years (range 
19‑77 in the patient group and 18‑77 in the control group). 
Female patients significantly outnumbered male patients, in 
accordance with the worldwide estimation for gender distribu-
tion in DTC (1,2). A total of 11.3% of patients were categorized 
as smokers. No statistically significant difference between 
groups was observed concerning age distribution, gender and 
smoking habits. Regarding DTC histological classification, 78 
(73.6%) patients were diagnosed as of the papillary type, while 
28 (26.4%) were diagnosed as of the follicular type. All cancer 
patients were incident cases and none of the controls had a 
family history of cancer.

Table  III summarizes the results for MAF, genotypic 
frequencies and crude/adjusted ORs of the six MMR pathway 
SNPs selected in our study. The genotype distributions of the 
studied SNPs were in HWE (P≥0.05), in both case and control 
groups. No relevant LD was observed between the studied 
SNPs (data not shown). When comparing, for each of the 
studied SNPs, the genotype frequency distribution between 
cases and controls, a significant difference was observed 
only for MSH6 rs1042821 (P=0.04, on the codominant and 
recessive models). Statistical significance was not attained 
when assuming a dominant model of inheritance (P=0.54). 
No additional significant differences were found, irrespec-
tive of the model of inheritance assumed. When performing 
logistic regression analysis, a significant DTC risk increase 

was observed in MSH6 rs1042821 variant allele homozygotes, 
after adjustment for age, gender and smoking status (Glu/Glu 
vs. Gly/Gly: adjusted OR=3.42, 95% CI: 1.04‑11.24, P=0.04; 
Glu/Glu vs. Gly/Gly+Gly/Glu: adjusted OR=3.84, 95% CI: 
1.18‑12.44, P=0.03). This association was also apparent 
without covariate adjustment when assuming a recessive 
model of inheritance (Glu/Glu vs. Gly/Gly+Gly/Glu: OR=3.35, 
95% CI: 1.07‑10.50, P=0.04). No significant associations with 
DTC risk were observed for the remaining SNPs analysed in 
this study, irrespective of the model assumed.

Since DTC comprises two distinct histological types 
(papillary and follicular), affects women more than men 
and is the most incident malignancy in the 15‑39 years age 
group (1,2), patients and controls were stratified on the basis 
of these criteria, i.e., histological tumour type, gender and 
age, in order to identify any subgroup‑specific risk associa-
tion. As shown in Table IV, stratification of subjects according 
to histological criteria showed that the association between 
the homozygous variant genotype of MSH6 rs1042821 and 
DTC risk, observed in the complete set of patients, was also 
present in the follicular subset (adjusted OR=20.98, 95% CI: 
1.08‑406.53, P=0.04, under the co‑dominant model; adjusted 
OR=23.70, 95% CI: 1.25‑449.32, P=0.04, under the recessive 
model) but absent from the papillary subset, suggesting a histo-
logical type‑specific SNP effect. Also in the follicular subset, 
a significant difference in the genotype frequency distribution 
of MLH3 rs175080 was observed (P=0.04, in the dominant 
model, data not shown). On binary logistic regression analysis, 
significantly increased follicular TC risk was observed in 
MLH3 rs175080 variant allele carriers (OR=3.95, 95% CI: 
1.05‑14.81, P=0.04). After gender stratification (Table IV), the 
frequency distribution of MSH6 rs1042821 genotypes differed 
significantly between female DTC patients and their age and 
gender‑matched controls (P=0.02, in the codominant model, 

Table II. General characteristics for the DTC case (n=106) and 
control (n=212) populations.

Characteristics	 Controls n (%)	 Cases n (%)	 P‑valuec

Gender
  Male	 31 (14.6)	 16 (15.1)	 1.00
  Female	 181 (85.4)	 90 (84.9)	
Agea,b

  <30	 10 (4.7)	 4 (3.8)	 0.98
  30‑49	 75 (35.4)	 38 (35.8)	
  50‑69	 98 (46.2)	 49 (46.2)	
  ≥70	 29 (13.7)	 15 (14.2)	
Smoking habits
  Non‑smokers	 174 (82.1)	 94 (88.7)	 0.19
  Smokers	 36 (17.0)	 12 (11.3)	
  Missing	 2 (0.9)	 0 (0.0)

aAge of diagnosis, for cases. bAge at the time of diagnosis of the 
matched case, for controls. cP‑value for cases vs. control group deter-
mined by two‑sided Fisher's exact test (gender, smoking habits) or 
χ2 test (age). DTC, well‑differentiated thyroid cancer.
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Table III. Genotype distribution in case (n=106) and control (n=212) populations and associated DTC risk (crude and adjusted 
ORs).

	 MAF	 Genotype frequency
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Genotype	 Controls	 Cases	 Controls n (%)	 Cases n (%)	 P‑valuea	 OR (95% CI)	 Adjusted OR (95% CI)b

MLH1 rs1799977			   212 (100)	 105 (100)			 
  Ile/Ile	 G: 0.34	 G: 0.30	 93 (43.9)	 48 (45.7)	 0.42	 1 (Reference)d	 1 (Reference)d

  Ile/Val			   95 (44.8)	 50 (47.6)		  1.02 (0.63‑1.66)	 1.02 (0.62‑1.68)
  Val/Val			   24 (11.3)	 7 (6.7)		  0.57 (0.23‑1.41)	 0.56 (0.22‑1.40)
  Dominant model			   119 (56.1)	 57 (54.3)	 0.81	 0.93 (0.58‑1.49)	 0.93 (0.58‑1.50)
  Recessive model			   24 (11.3)	 7 (6.7)	 0.23	 0.56 (0.23‑1.34)	 0.55 (0.23‑1.34)
  Log‑additive model			‑	‑	‑	      0.86 (0.59‑1.23)	 0.85 (0.59‑1.24)
MSH3 rs26279			   211 (100)	 105 (100)			 
  Thr/Thr	 G: 0.35	 G: 0.33	 93 (44.1)	 48 (45.7)	 0.89	 1 (Reference)d	 1 (Reference)d

  Thr/Ala			   90 (42.7)	 45 (42.9)		  0.97 (0.59‑1.60)	 0.94 (0.57‑1.56)
  Ala/Ala			   28 (13.3)	 12 (11.4)		  0.83 (0.39‑1.78)	 0.80 (0.37‑1.72)
  Dominant model			   118 (55.9)	 57 (54.3)	 0.81	 0.94 (0.59‑1.50)	 0.91 (0.56‑1.46)
  Recessive model			   28 (13.3)	 12 (11.4)	 0.72	 0.84 (0.41‑1.73)	 0.82 (0.40‑1.70)
  Log‑additive model			‑	‑	‑	      0.93 (0.66‑1.31)	 0.91 (0.64‑1.28)
MSH4 rs5745325			   212 (100)	 106 (100)			 
  Ala/Ala	 A: 0.33	 A: 0.27	 97 (45.8)	 57 (53.8)	 0.38	 1 (Reference)d	 1 (Reference)d

  Ala/Thr			   91 (42.9)	 40 (37.7)		  0.75 (0.46‑1.23)	 0.75 (0.45‑1.23)
  Thr/Thr			   24 (11.3)	 9 (8.5)		  0.64 (0.28‑1.47)	 0.64 (0.28‑1.48)
  Dominant model			   115 (54.2)	 49 (46.2)	 0.19	 0.73 (0.45‑1.16)	 0.72 (0.45‑1.16)
  Recessive model			   24 (11.3)	 9 (8.5)	 0.56	 0.73 (0.33‑1.63)	 0.72 (0.32‑1.63)
  Log‑additive model			‑	‑	‑	      0.78 (0.54‑1.11)	 0.78 (0.54‑1.11)
PMS1 rs5742933			   212 (100)	 104 (100)			 
  G/G	 C: 0.18	 C: 0.17	 144 (67.9)	 73 (70.2)	 0.90	 1 (Reference)d	 1 (Reference)d

  G/C			   58 (27.4)	 27 (26.0)		  0.92 (0.54‑1.57)	 0.88 (0.51‑1.51)
  C/C			   10 (4.7)	 4 (3.8)		  0.79 (0.24‑2.60)	 0.76 (0.23‑2.60)
  Dominant model			   68 (32.1)	 31 (29.8)	 0.70	 0.90 (0.54‑1.50)	 0.86 (0.51‑1.45)
  Recessive model			   10 (4.7)	 4 (3.8)	 1.00	 0.81 (0.25‑2.64)	 0.80 (0.24‑2.67)
  Log‑additive model			‑	‑	‑	      0.90 (0.59‑1.38)	 0.88 (0.57‑1.35)
MLH3 rs175080			   212 (100)	 106 (100)			 
  Pro/Pro	 A: 0.46	 A: 0.51	 60 (28.3)	 22 (20.8)	 0.34	 1 (Reference)d	 1 (Reference)d

  Pro/Leu			   109 (51.4)	 59 (55.7)		  1.48 (0.83‑2.64)	 1.50 (0.83‑2.71)
  Leu/Leu			   43 (20.3)	 25 (23.6)		  1.59 (0.79‑3.17)	 1.60 (0.79‑3.22)
  Dominant model			   152 (71.7)	 84 (79.2)	 0.17	 1.51 (0.86‑2.63)	 1.53 (0.87‑2.69)
  Recessive model			   43 (20.3)	 25 (23.6)	 0.56	 1.21 (0.69‑2.12)	 1.21 (0.69‑2.12)
  Log‑additive model			‑	‑	‑	      1.26 (0.90‑1.77)	 1.26 (0.89‑1.78)
MSH6 rs1042821			   210 (100)	 106 (100)			 
  Gly/Gly	 T: 0.21	 T: 0.22	 127 (60.5)	 68 (64.2)	 0.04c	 1 (Reference)d	 1 (Reference)d

  Gly/Glu			   78 (37.1)	 30 (28.3)		  0.72 (0.43‑1.20)	 0.73 (0.43‑1.23)
  Glu/Glu			   5 (2.4)	 8 (7.5)		  2.99 (0.94‑9.49)	 3.42 (1.04‑11.24)c

  Dominant model			   83 (39.5)	 38 (35.8)	 0.54	 0.86 (0.53‑1.39)	 0.87 (0.54‑1.43)
  Recessive model			   5 (2.4)	 8 (7.5)	 0.04c	 3.35 (1.07‑10.50)c	 3.84 (1.18‑12.44)c

  Log‑additive model			‑	‑	‑	      1.05 (0.70‑1.57)	 1.08 (0.71‑1.63)

aP‑value for cases vs. control group determined by two‑sided Fisher's exact test (whenever 2x2 contingency tables are possible) or χ2  test 
(remaining cases). bORs were adjusted for gender (male and female), age (<30, 30‑49, 50‑69, ≥70 years) and smoking status (non‑smoker and 
smoker). cSignificant results (P<0.05) highlighted in bold. dThe reference comparator for OR calculations. DTC, well‑differentiated thyroid 
cancer; MAF, minor allele frequency; OR, odds ratio; CI, confidence interval.
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Table IV. Genotype distribution in the case population (n=106) and associated DTC risk (crude and adjusted ORs), after stratifi-
cation according to histological type, gender and age.a

A, Histological type

	 Papillary carcinoma	 Follicular carcinoma
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
			   Adjusted			   Adjusted
Genotype	 n (%)	 OR (95% CI)	 OR (95% CI)b	 n (%)	 OR (95% CI)	 OR (95% CI)b

MSH6 rs1042821	 78 (100)			   28 (100)		
  Gly/Gly	 49 (62.8)	 1 (reference)e	 1 (reference)e	  19 (67.9)	 1 (reference)e	 1 (reference)e

  Gly/Glu	 24 (30.8)	 0.74 (0.41‑1.32)	 0.74 (0.41‑1.35)	    6 (21.4)	 0.65 (0.22‑1.91)	 0.76 (0.24‑2.35)
  Glu/Glu	 5 (6.4)	 2.30 (0.59‑8.95)	 2.47 (0.61‑9.89)	    3 (10.7)	 5.84 (0.57‑60.03)	 20.98 (1.08‑406.53)c

  Dominant model	 29 (37.2)	 0.83 (0.48‑1.46)	 0.85 (0.48‑1.49)	    9 (32.1)	 0.92 (0.35‑2.43)	 1.10 (0.39‑3.07)
  Recessive model	 5 (6.4)	 2.57 (0.67‑9.85)	   2.74 (0.69‑10.84)	    3 (10.7)	 6.60 (0.65‑66.63)	 23.70 (1.25‑449.32)c

  Log‑additive model	‑	  0.98 (0.61‑1.59)	 1.00 (0.62‑1.62)	‑	  1.24 (0.57‑2.68)	 1.58 (0.66‑3.75)
MLH3 rs175080	 78 (100)			   28 (100)		
  Pro/Pro	 19 (24.4)	 1 (reference)e	 1 (reference)e	    3 (10.7)	 1 (reference)e	 1 (reference)e

  Pro/Leu	 42 (53.8)	 1.13 (0.59‑2.19)	 1.17 (0.60‑2.27)	  17 (60.7)	   3.78 (0.97‑14.79)	   3.61 (0.88‑14.85)
  Leu/Leu	 17 (21.8)	 1.17 (0.53‑2.61)	 1.20 (0.54‑2.68)	    8 (28.6)	   4.36 (0.95‑20.04)	   4.29 (0.89‑20.78)
  Dominant model	 59 (75.6)	 1.14 (0.61‑2.14)	 1.18 (0.62‑2.22)	  25 (89.3)	    3.95 (1.05‑14.81)c	   3.81 (0.97‑14.95)
  Recessive model	 17 (21.8)	 1.08 (0.56‑2.10)	 1.08 (0.56‑2.10)	    8 (28.6)	 1.64 (0.57‑4.69)	 1.67 (0.55‑5.02)
  Log‑additive model	‑	  1.09 (0.73‑1.62)	 1.10 (0.74‑1.63)	‑	  1.93 (0.97‑3.86)	 1.93 (0.93‑4.01)

B, Gender

	 Male	 Female
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
			   Adjusted OR			   Adjusted
Genotype	 n (%)	 OR (95% CI)	 (95% CI)b	 n (%)	 OR (95% CI)	 OR (95% CI)b

MSH6 rs1042821	 16 (100)			   90 (100)		
  Gly/Gly	 11 (68.8)	 1 (reference)e	 1 (reference)e	 57 (63.3)	 1 (reference)e	 1 (reference)e

  Gly/Glu	 4 (25.0)	  0.86 (0.21‑3.54)	 0.96 (0.20‑4.52)	 26 (28.9)	 0.70 (0.41‑1.22)	 0.70 (0.40‑1.22)
  Glu/Glu	 1 (6.3)	    0.86 (0.07‑10.66)	  1.08 (0.07‑16.53)	 7 (7.8)	    4.42 (1.10‑17.75)c	    4.78 (1.17‑19.56)c

  Dominant model	 5 (31.3)	  0.86 (0.23‑3.19)	 0.98 (0.23‑4.24)	 33 (36.7)	 0.86 (0.51‑1.44)	 0.86 (0.51‑1.45)
  Recessive model	 1 (6.3)	    0.90 (0.08‑10.77)	  1.09 (0.08‑15.61)	 7 (7.8)	    5.00 (1.26‑19.84)c	    5.42 (1.34‑21.92)c

  Log‑additive model	‑	   0.90 (0.33‑2.48)	 1.00 (0.32‑3.14)	‑	  1.08 (0.69‑1.69)	 1.09 (0.70‑1.71)

C, Age

	 <50 years	 ≥50 years
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
			   Adjusted			   Adjusted
Genotype	 n (%)	 OR (95% CI)	 OR (95% CI)b	 n (%)	 OR (95% CI)	 OR (95% CI)b

MSH6 rs1042821	 42 (100)			   64 (100)		
  Gly/Gly	 29 (69.0)	 1 (reference)e	 1 (reference)e	  39 (60.9)	 1 (reference)e	 1 (reference)e

  Gly/Glu	 12 (28.6)	 0.56 (0.25‑1.27)	 0.56 (0.25‑1.26)	  18 (28.1)	 0.84 (0.43‑1.64)	 0.86 (0.44‑1.70)
  Glu/Glu	 1 (2.4)	 0.31 (0.03‑2.79)	 0.32 (0.04‑2.93)	    7 (10.9)	‑ d	‑ d

  Dominant model	 13 (31.0)	 0.53 (0.24‑1.16)	 0.53 (0.24‑1.17)	  25 (39.1)	 1.17 (0.63‑2.17)	 1.21 (0.64‑2.27)
  Recessive model	 1 (2.4)	 0.38 (0.04‑3.37)	 0.40 (0.04‑3.58)	    7 (10.9)	‑ d	‑ d

  Log‑additive model	‑	  0.56 (0.28‑1.12)	 0.56 (0.28‑1.12)	‑	  1.57 (0.93‑2.66)	 1.63 (0.95‑2.79)

aOnly SNPs presenting significant findings are shown. bORs were adjusted for gender (male and female), age (<30, 30‑49, 50‑69, and ≥70 years), 
and smoking status (non‑smoker and smoker). cSignificant results (P<0.05) highlighted in bold. dGenotype not found in the corresponding 
controls. eThe reference comparator for OR calculations. DTC, well‑differentiated thyroid cancer; SNP, single nucleotide polymorphism; OR, 
odds ratio; CI, confidence interval.
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data not shown). Also, as depicted in Table IV, the homozygous 
variant genotype of this SNP was found to confer increased 
DTC risk in females only, under both the co‑dominant 
(OR=4.42, 95% CI: 1.10‑17.75, P=0.04 and adjusted OR=4.78, 
95% CI: 1.17‑19.56, P=0.03) and the recessive model (OR=5.00, 
95% CI: 1.26‑19.84, P=0.02 and adjusted OR=5.42, 95% CI: 
1.34‑21.92, P=0.02), supporting the idea that this polymor-
phism might influence DTC susceptibility, particularly in 

women. The study population was also stratified according to 
the age of diagnosis (Table IV). In order to avoid excessively 
low numbers in each strata, only two groups were formed: 
<50 and ≥50 years. In the elderly group (≥50 years), a highly 
significant difference in the frequency distribution of MSH6 
rs1042821 genotypes was observed between DTC patients 
and the corresponding controls (P=0.001 in the codominant 
model, data not shown). Unfortunately, no MSH6 rs1042821 

Table V. Two‑way SNP interactions: distribution of combined genotypes in the case (n=106) and control (n=212) populations and 
associated DTC risk (crude and adjusted ORs).a

		  DTC risk
	 Genotype frequency	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑			   Adjusted
Genotype	 Controls n (%)	 Cases n (%)	 P‑valueb	 OR (95% CI)	 P‑valueb	 OR (95% CI)c	 P‑valueb

MSH6 rs1042821‑MSH3	 209 (100)	 105 (100)	 0.167				  
rs26279
  Gly/Gly‑Thr/Thr	 59 (28.2)	 29 (27.6)		  1 (reference)e		  1 (reference)e	
  Gly/Gly‑Thr/Ala	 56 (26.8)	 32 (30.5)		  1.16 (0.62‑2.16)	 0.64	 1.18 (0.63‑2.20)	 0.62
  Gly/Glu‑Thr/Thr	 31 (14.8)	 16 (15.2)		  1.05 (0.50‑2.22)	 0.90	 1.14 (0.53‑2.43)	 0.74
  Gly/Glu‑Thr/Ala	 33 (15.8)	 10 (9.5)		  0.62 (0.27‑1.42)	 0.26	 0.60 (0.26‑1.39)	 0.23
  Gly/Gly‑Ala/Ala	 11 (5.3)	 7 (6.7)		  1.30 (0.46‑3.69)	 0.63	 1.26 (0.44‑3.62)	 0.67
  Glu/Glu‑Thr/Thr	 5 (2.4)	 8 (7.6)		  3.26 (0.98‑10.84)	 0.05	 3.81 (1.11‑13.13)d	 0.03d

  Glu/Glu‑Thr/Ala
  Glu/Glu‑Ala/Ala
  Gly/Glu‑Ala/Ala	 14 (6.7)	 3 (2.9)		  0.44 (0.12‑1.64)	 0.22	 0.42 (0.11‑1.59)	 0.20
MLH3 rs175080‑MSH6	 210 (100)	 106 (100)	 0.032d				  
rs1042821
  Pro/Pro‑Gly/Gly	 32 (15.2)	 19 (17.9)		  1 (reference)e		  1 (reference)e	
  Pro/Pro‑Gly/Glu	 26 (12.4)	 2 (1.9)		  0.13 (0.03‑0.61)d	 0.01d	 0.11 (0.02‑0.53)d	 0.01d

  Pro/Leu‑Gly/Gly	 71 (33.8)	 36 (34.0)		  0.85 (0.43‑1.71)	 0.66	 0.81 (0.40‑1.65)	 0.56
  Pro/Leu‑Gly/Glu	 35 (16.7)	 19 (17.9)		  0.91 (0.41‑2.03)	 0.83	 0.94 (0.41‑2.13)	 0.88
  Pro/Pro‑Glu/Glu	 5 (2.4)	 8 (7.5)		  2.70 (0.77‑9.44)	 0.12	 3.09 (0.85‑11.27)	 0.09
  Pro/Leu‑Glu/Glu
  Leu/Leu‑Glu/Glu
  Leu/Leu‑Gly/Gly	 24 (11.4)	 13 (12.3)		  0.91 (0.38‑2.20)	 0.84	 0.83 (0.34‑2.03)	 0.68
  Leu/Leu‑Gly/Glu	 17 (8.1)	 9 (8.5)		  0.89 (0.33‑2.39)	 0.82	 0.89 (0.33‑2.43)	 0.82
MSH4 rs5745325‑MSH6	 210 (100)	 106 (100)	 0.149				  
rs1042821
  Ala/Ala‑Gly/Gly	 53 (25.2)	 36 (34.0)		  1 (reference)e		  1 (reference)e

  Ala/Ala‑Gly/Glu	 41 (19.5)	 20 (18.9)		  0.72 (0.36‑1.42)	 0.34	 0.74 (0.37‑1.47)	 0.39
  Ala/Thr‑Gly/Gly	 59 (28.1)	 26 (24.5)		  0.65 (0.35‑1.21)	 0.18	 0.66 (0.35‑1.23)	 0.19
  Ala/Thr‑Gly/Glu	 30 (14.3)	 7 (6.6)		  0.34 (0.14‑0.87)d	 0.02d	 0.35 (0.14‑0.88)d	 0.03d

  Ala/Ala‑Glu/Glu	 12 (5.7)	 11 (10.4)		  1.35 (0.54‑3.39)	 0.52	 1.43 (0.56‑3.66)	 0.45
  Ala/Thr‑Glu/Glu
  Thr/Thr‑Gly/Glu
  Thr/Thr‑Glu/Glu
  Thr/Thr‑Gly/Gly	 15 (7.1)	 6 (5.7)		  0.59 (0.21‑1.66)	 0.32	 0.60 (0.21‑1.70)	 0.33

aOnly combined genotypes presenting significant findings are shown. bP‑value for cases vs. control group determined by two‑sided Fisher's 
exact test (whenever 2x2 contingency tables are possible) or χ2 test (remaining cases). cORs were adjusted for gender (male and female), age 
(<30, 30‑49, 50‑69, ≥70 years) and smoking status (non‑smoker and smoker). dSignificant results (P<0.05) highlighted in bold. eThe reference 
comparator for OR calculations. DTC, well‑differentiated thyroid cancer; SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence 
interval.
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homozygous variant individuals ≥50 years were observed in 
the control group, limiting OR calculations and subsequent 
analysis for this SNP. Further analysis of our study subjects 
after histological type, gender and age stratification revealed 
no other significant correlations between the analysed SNPs 
and DTC risk.

Proteins that participate in a common DNA repair pathway 
functionally interact with each other, establishing ground for 
additive or even multiplicative effects of different SNPs of the 
same pathway on DNA repair activity and, hence, cancer risk. 
This has been previously demonstrated for other DNA repair 
pathways (16,44,45) and, most likely, also applies to MMR, 
justifying the usefulness of assessing the effect of combined 
genotypes on DTC risk. As detailed in Table V, the combined 
genotype distribution of the MSH6 rs1042821‑MLH3 rs175080 
SNP pair was significantly different in cases and controls 
(P=0.032). On logistic regression analysis, when MSH6 
rs1042821 and MSH3 rs26279 were considered together, a 
significantly increased risk was observed in the pooled group 
of MSH6 rs1042821 variant allele homozygotes, despite only 
after adjusting for gender, age and smoking status (adjusted 
OR=3.81, 95% CI: 1.11‑13.13, P=0.03). Interestingly, two other 
MSH6 rs1042821 genotype combinations, all involving the 
rs1042821 heterozygous genotype, yielded significant results 
in the opposite direction: a significantly decreased risk was 
detected in combined MSH6 rs1042821‑MSH4 rs5745325 
heterozygotes (OR=0.34, 95%  CI: 0.14‑0.87, P=0.02 and 
adjusted OR=0.35, 95% CI: 0.14‑0.88, P=0.03), as well as in 
individuals simultaneously heterozygous for MSH6 rs1042821 
and homozygous for the common allele of MLH3 rs175080 
(OR=0.13, 95% CI: 0.03‑0.61, P=0.01 and adjusted OR=0.11, 
95% CI: 0.02‑0.53, P=0.01). None of the remaining genotype 
combinations showed association with disease (data not 
shown).

Finally, since MSH3 and MLH3 (whose studied variants 
yielded significant associations on SNP pair analysis) are 
located in the same chromosomic region that DTC markers 
reported in prior GWAS (rs13184587 at 5q14.1 and rs10136427 
at 14q24.3, respectively) (13), we used LDLink (43) to verify 
in silico any potential linkage disequilibrium relation between 
these MMR variants and the GWAS‑suggested markers 
co‑localized in the same chromosomic region. No linkage 
disequilibrium was observed between either MSH3 rs26279 
and rs13184587 or MLH3 rs175080 and rs10136427 in 
European populations (data not shown).

Discussion

To our knowledge, this was the first study evaluating the poten-
tial role of MMR SNPs on DTC susceptibility in Caucasian 
populations.

We observed a significantly increased DTC risk in MSH6 
rs1042821 variant allele homozygotes (Glu/Glu). MSH6 
rs1042821 is probably one of the most studied SNPs of the 
MMR pathway and its potential association with cancer (other 
than TC) has previously been addressed, with inconsistent 
results: rs1042821 has been associated with increased CRC 
risk  (46,47), as well as with triple negative breast cancer 
(TNBC)  (48) and highly malignant bladder cancer  (49). 
Contrasting results have been reported for hepatocellular (50), 

colorectal  (51) and pancreatic cancer  (52). Most studies, 
however, present inconclusive findings (53‑57), including a 
recent meta‑analysis (58) aggregating data from many of the 
above‑quoted studies. It is possible that organ and popula-
tion‑specific characteristics (e.g., genetic background and 
environmental exposure) may have contributed to such diverse 
observations. More recently, rs1042821 has also been detected 
through sequencing techniques in several cancer cases (59‑61) 
but, considering the high population frequency of this SNP, 
this could be merely coincidental.

The involvement of MSH6 SNPs in cancer susceptibility 
(DTC, in particular) is expected for three fundamental reasons. 
Firstly, because it is biologically plausible: MSH6 integrates 
the MutSα complex, a sensor of genetic damage that, besides 
its role in the repair of replication errors, cooperates with 
other DNA repair and damage‑response signalling pathways 
to allow for cell cycle arrest, DNA repair and/or apoptosis of 
genetically damaged cells. Of importance for DTC suscep-
tibility, MutSα ensures accurate homologous recombination 
repair of double strand breaks and cooperates with MUTYH 
in the repair of 8‑oxoGuanine [reviewed in (27‑29)], lesions 
that commonly arise from IR exposure, the most well‑known 
DTC risk factor. Secondly, because of the functional impact 
of MSH6 mutations: Experimental studies in MSH6‑deficient 
yeast, mice or human cells demonstrate that MSH6 mutations 
results in partial MMR deficiency (mild mutator phenotype, 
characterized by weak microsatellite instability, MSI‑L) and 
increased cancer susceptibility in animal models (27). And 
finally because, in the clinical context, MSH6 mutations 
are associated with cancer syndromes (and TC, possibly): 
Inherited MSH6 germline mutations are responsible for 
7‑10% of LS cases, patients presenting an atypical pheno-
type (lower CRC incidence‑with later onset‑high incidence 
of endometrial cancer and lower degree or absence of MSI), 
compared to the more frequent MSH2 and MLH1‑mutant 
LS cases (27,31,39,62). TC‑despite not part of the usual LS 
spectrum‑ has been sporadically observed in LS patients 
harbouring MSH2 and MLH1 mutations  (36,38‑40) and, 
more recently, also in a MSH6‑mutant LS case (37). MSH6 
mutations were also recently observed in both anaplastic (33) 
and papillary TC (34). In the latter study, MSH6 was even 
the most frequently mutated gene and two of these mutations 
(Gly355Ser and Ala36Val) were coincidental in family‑related 
patients, suggesting a causative association. For all of the 
above, it is likely that MSH6 genetic variation contributes to 
TC development.

The rs1042821 SNP is a common missense variant that 
involves the substitution 116G>A in exon 1 of the MSH6 
gene. It results in the substitution of glutamic acid for 
glycine at position 39 (Gly39Glu) of the MSH6 N‑terminal 
region (NTR), a highly disordered domain upstream of the 
mismatch binding domain. The importance of the MSH6 
NTR is being increasingly recognized as missense muta-
tions in this region have been associated with cancer [an 
exhaustive list of LS‑associated mutations is available in 
the InSiGHT database (32)]. Interestingly, the MSH6 NTR 
is absent from prokaryotic MutS which, coincidentally, 
does not share some of the functions of eukaryotic MutSα 
(e.g., activation of apoptosis) (63), suggesting a critical role 
for this region in such processes. As extensively reviewed 
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in Edelbrock et al (28), several sequence motifs in the NTR 
may be of relevance to the multitude of actions performed 
by MSH6, including: 1) a short, conserved PCNA interacting 
protein (PIP) motif, located near the N‑terminal extreme, that 
allows PCNA binding; 2) a PWWP sequence motif, distal to 
the PIP box, that mediates interactions with chromatin and 
chromatin‑associating proteins; 3) a conserved motif near the 
NTR C‑terminus, rich in positively charged amino acids that 
(through electrostatic attraction) contributes to nonspecific 
DNA binding and stabilizes the MutSα‑DNA interaction 
(possibly modulating the residence time of MutSα at the lesion 
site); 4) nuclear localization sequences (NLSs, e.g., a conserved 
Ser‑Pro‑Ser sequence‑amino acids 41‑43‑containing phos-
phorylated serines), that may contribute to the nuclear import 
of MutSα; and 5) multiple phosphorylation sites (19 out of 
the 23 identified in MSH6, according to the updated list at 
http://www.uniprot.org/uniprot/P52701), that may be involved 
in the post‑translational regulation of MutSα stability, nuclear 
import and differential downstream signalling for MMR and 
DNA damage response. The NTR may also be responsible for 
other protein interactions.

Functional assays are needed to confirm if the MSH6 
rs1042821 variant affects the function of MutSα. However, 
given its location‑in the MSH6 NTR, near a NLS containing 
two phosphorylation sites (Ser41 and Ser43)‑ it is possible 
that rs1042821 interferes with phosphorylation of these 
residues (both MAPK recognition motifs) and hence with 
the post‑translational regulation of MutSα stability, nuclear 
import or activity (28). The rs1042821 SNP may also interfere 
with non‑specific DNA binding since glutamate, contrasting 
with glycine, is negatively charged at physiological pH. This 
may hamper electrostatic attraction to the phosphate backbone 
of DNA, interfere with the stability of the MutSα‑DNA inter-
action and hence decrease the residence time of MutSα at the 
lesion site [previously suggested to play a role in the differ-
ential regulation of the DNA repair and apoptosis signalling 
roles of MSH6 (63)]. In fact, increasing number of negatively 
charged glutamate residues within the amino acid 231‑289 
NTR segment of the yeast Msh6 increases mutation rates in 
these cells (64) and substitutions of glutamic acid for glycine, 
in general, can determine the formation of sterically different 
helical structures, polypeptide folding, and intrinsic aggrega-
tion (51). Whether this applies to MSH6 rs1042821 remains to 
be established.

 In our study, upon stratification, the association between the 
MSH6 rs1042821 homozygous variant genotype and increased 
DTC risk was especially evident for the follicular histotype, 
female sex and, possibly, older age (≥50 years). Concerning the 
histological type of tumour, this contrasts with prior evidence: 
rs1042821 has been associated with the development of BRAF 
mutated (Val600Glu) colon tumours (54) ��������������������‑only in microsatel-
lite stable (MSS), not MSI tumours‑ and the Val600Glu BRAF 
mutation is a hallmark of papillary, not follicular TC  (3). 
However, as in our study, this observation resulted from strati-
fication analysis with only a limited number of subjects in each 
strata [n=3 for follicular TC cases with Glu/Glu genotype in 
our study; n=4 for BRAF mutated, MSS tumours with Glu/Glu 
genotype in (54)]. Either observation could therefore be due to 
chance (type I statistical error), hampering solid conclusions. 
Further studies with a larger sample size are needed to clarify 

the relationship, if any, between rs1042821 and DTC histo-
logical type. The genotype‑disease association was stronger 
among women, an expected finding since DTC affects women 
more than men (1,2), differential incidence starting with the 
onset of puberty and declining after menopause (65). Also, TC 
rates in women with breast cancer history (and vice‑versa) are 
higher than expected (66), suggesting some common ground 
between these conditions. Oestrogen could be the ‘missing 
link’: Besides its well‑established role in the pathogenesis of 
several endocrine‑related cancers (e.g., breast, endometrial, 
ovarian)  (67), oestrogen may promote the growth of TC 
cells and thus contribute to development and progression of 
DTC, through increased transcription of ERE‑containing 
genes, activation of the MAPK and PI3K signalling path-
ways, modulation of the TC microenvironment or specific 
effects on thyroid stem and progenitor cells (65). Oestrogen 
has also been suggested to give rise to cancer‑initiating 
mutations through the formation of DNA adducts and other 
oxidative lesions, high levels of which have been observed 
in women with breast, thyroid or ovarian cancer (68). On the 
other hand, MSH6 is increasingly being implicated in such 
oestrogen‑associated cancers as 1) in vitro oestrogen expo-
sure after catechol‑O‑methyltransferase inhibition increases 
the levels of 8‑oxo‑dG (69), an oxidative DNA lesion whose 
repair involves the MutSα complex; 2) MSH6 mutations and 
reduced MSH6 mRNA expression have been reported in 
breast cancer patients and breast tumour derived cell lines, 
respectively  (70); 3)  in LS patients, endometrial cancer is 
commonly associated with MSH6 mutations  (27,31,39,62); 
4) MSH2‑ the binding partner of MSH6 in MutSα‑ is able 
to transactivate the oestrogen receptor α, through its MSH6 
interaction domain (71); 5) several DNA repair SNPs have been 
associated with increased oestrogen sensitivity in the develop-
ment of breast cancer (72‑74). Also, we previously reported a 
non‑significant breast cancer risk increase in rs1042821 variant 
allele homozygotes (53), in line with the results reported here. 
Overall, if oestrogen indeed contributes to DTC and MSH6 
is indeed involved in oestrogen‑associated cancers, it is only 
logical that a putative association between rs1042821 and DTC 
susceptibility is particularly visible in women. Finally, in the 
current study, considering only individuals of age ≥50 years, 
the rs1042821 homozygous variant genotype was detected 
only in DTC patients, not in controls. This may suggest that 
rs1042821 is associated with DTC susceptibility particularly 
among older individuals. This is compatible with the obser-
vation of later onset cancer in LS patients harbouring MSH6 
mutations (27,31,39). Also, in line with our results, rs1042821 
has been associated with increased breast cancer risk in 
women of age >60 years and decreased risk in women of age 
≤60 years (57). Finally, MSH6 has been demonstrated to be 
markedly downregulated in senescent cells (75), suggesting 
that MutSα activity decreases during the aging process. Since 
our results were based on stratified analysis, further studies are 
required to confirm this finding.

On paired SNP analysis, several associations were 
observed in our study. Most of these involve MSH6 rs1042821, 
possibly reflecting an individual SNP effect. However‑ since 
MMR proteins functionally interact within the same pathway‑ 
an additive (or even multiplicative) effect with other MMR 
SNPs is possible. Supporting this hypothesis, several studies 
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have shown that, although individual susceptibility alleles 
may have only a modest effect, DTC risk may be substan-
tially increased when multiple risk variants are considered 
together (15,16). Considering the strong genetic component 
of DTC susceptibility, such a role for gene‑gene interactions 
is likely (16). One SNP combination comprising the MSH6 
rs1042821 homozygous variant genotype was associated with 
increased DTC risk, as expected from single SNP analysis. 
Interestingly, two other SNP pairs containing the MSH6 
heterozygous genotype were associated with a risk reduction. 
A similar non‑significant trend was already evident on single 
SNP analysis, suggesting a protective effect for the MSH6 
rs1042821 heterozygous genotype. Prior evidence supports 
this hypothesis: We previously reported a breast cancer risk 
reduction in combined MSH6 rs1042821 heterozygotes/MSH3 
rs26279 common allele homozygotes (53).

Other studies (50‑53,57), including a recent meta‑analysis by 
Li et al (58), detected a cancer risk reduction in MSH6 rs1042821 
heterozygotes or variant allele carriers. It should be noted that 
these observations in variant allele carriers do not contradict our 
prior suggestion of risk increase in variant homozygotes: consid-
ering, as stated above, i) the dual role of MSH6 on DNA repair 
and apoptosis; ii) the likely involvement of the MSH6 NTR in 
the differential regulation of such functions; and iii) the location 
and potential impact of rs1042821, it is possible that this SNP has 
distinct effects on each of MSH6 functions (DNA repair or apop-
tosis signalling) critically impairing one but somehow favouring 
the other. If so, variant allele homozygotes‑lacking the common 
form of MSH6‑could have higher cancer risk, while the presence 
of both forms in heterozygotes could be of some benefit. Further 
studies are required to confirm this hypothesis. Furthermore, it is 
interesting to note that two out of the three SNP pairs significantly 
associated with DTC susceptibility in our study involve variants 
that are located in the exact same chromosomic region of previ-
ously GWAS‑suggested DTC markers. According to our in silico 
analysis, no linkage disequilibrium was identified between these 
co‑localized variants in European populations. However, since 
it was not possible to verify this hypothesis with experimental 
data from our study, we cannot exclude the possibility that some 
of the variants analysed are indeed in linkage disequilibrium 
with previously suggested DTC markers, in the Portuguese 
population.

In conclusion, the rapidly increasing incidence of DTC (1) 
has prompted research on the genetic predisposing factors of 
this disease. Recently performed GWAS (6‑12) have provided 
valuable contribution but, even so, explain only part of the 
estimated heritability of DTC  (11,15,16). Several reasons 
may contribute: it is possible that the highly stringent criteria 
applied to GWAS to prevent false‑positive findings result in 
the exclusion of SNPs truly associated with DTC risk (14). 
Furthermore, evidence from the latest GWAS (10‑13) suggests 
the existence of population‑specific DTC risk alleles, raising 
the possibility that novel cancer susceptibility markers, 
specific for geographically distinct populations, may remain to 
be identified. Finally, gene‑gene and gene‑environment inter-
actions, despite seldom addressed, may also play an important 
role and explain part of the unresolved heritability of DTC 
susceptibility (15,16). The identification of additional common 
variants, gene‑environment and gene‑gene interactions predis-
posing to DTC may thus unveil at least part of the unexplained 

genetic component of DTC susceptibility. Hypothesis‑driven  
case control association studies remain a valid approach and, 
as recently demonstrated (14), could provide valuable insight 
into the genetic risk factors for DTC.

This work suggests an involvement of MMR SNPs such 
as MSH6 rs1042821, alone or in combination, on DTC 
susceptibility. However, despite the care put to avoid selec-
tion bias and variant misclassification, our results should be 
regarded solely as a proof of concept on the role of MMR 
genes on DTC susceptibility. Also, since the information that 
was collected from study participants on prior IR exposure 
was not suitable for rigorous statistical analysis, it was not 
possible to include it as a covariate in the adjustment statis-
tical model. Since IR exposure remains the best-established 
risk factor for TC, future studies should be designed in 
order to account for this. Finally, since no SNP functional 
assessment was performed, we cannot exclude the possibility 
that the associations observed are due to other variants, in 
LD with the ones considered here. Therefore, in order to 
obtain conclusive evidence, these preliminary findings must 
be replicated in larger, multicentric studies with indepen-
dent datasets of patients. Such studies should be powered 
to allow for more sophisticated analysis (e.g., haplotype 
analysis, evaluation of gene‑gene and gene‑environment 
interactions), for the study of other (e.g., less frequent but 
potentially relevant) variants and their potential asso-
ciation with mutational events that occur early in DTC 
carcinogenesis.
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