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Abstract. Hyaluronic acid (HA) in tumor stroma promotes 
tumor invasion and progression. 4‑Methylumbelliferone 
(4‑MU) is a potent HA synthesis inhibitor. In the present 
study, the effects of 4‑MU on enhanced HA synthesis and cell 
migration in pancreatic ductal adenocarcinoma (PDAC) cells, 
in response to co‑culture with stromal fibroblasts, was inves-
tigated. The HA concentration was determined using ELISA 
and a Transwell migration assay was used to analyze cell 
migratory capability. The mRNA expression levels of hyal-
uronan synthases (HAS1, HAS2 and HAS3) were determined 
using the quantitative polymerase chain reaction. Co‑culture 
between Panc‑1 cells and stromal fibroblasts markedly 
increased cell migration in association with increasing HA 
production, which was markedly associated with an increase 
in HAS3 mRNA expression. Treatment with 4‑MU markedly 
decreased the HA production and cell migration of Panc‑1 
cells in the co‑culture system. The results of the present study 
suggested that interactions between PDAC cells and stromal 
fibroblasts increased HA production, resulting in a marked 
increase in migration of PDAC cells, and 4‑MU may be used 

as a chemotherapeutic agent to inhibit the enhanced migration 
of PDAC cells in response to tumor‑stromal interactions.

Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a life‑threat-
ening malignant neoplasm which may invade and metastasize 
at an early stage (1). The deoxycytidine analogue gemcitabine 
[2',2'‑difluorodeoxycytidine (dFdC)] remains the standard of 
care for disseminated PDAC, prolonging the survival time 
by >5 weeks in a minority of patients (2). Gemcitabine‑based 
combination therapies may offer a survival benefit by 
decreasing the progression of PDAC (3). A previous study 
has identified that targeted inhibition of the epidermal growth 
factor receptor with erlotinib increases the median survival 
time by 2 weeks (4). PDAC exhibits a poor response to chemo-
therapy; therefore, the identification of an effective therapy for 
treating advanced PDAC is required.

Hyaluronan (HA) is synthesized by three types of HA 
synthase (HAS) termed HAS1, HAS2 and HAS3 (5). HA is 
synthesized in distinct amounts and sizes, depending on the type 
of synthase: HAS1 and HAS2 synthesize low and high (in the 
range of millions of Da) amounts of high‑molecular‑weight 
HA (HMW‑HA), respectively, whereas HAS3 produces high 
amounts of low‑molecular‑weight HA (LMW‑HA), in the 
range of several thousands of Da (6). The size of HA may vary 
between 20 kDa and 10 MDa, and, depending on the size, 
extracellular HA regulates a number of cellular biological 
functions, including cell motility, tumor viability, migration, 
metastasis, chemotherapeutic resistance and cytokine produc-
tion, via direct interactions with cell‑surface receptors (7‑9). 
A number of human PDAC cell lines synthesize and secrete 
HA (10), and the highest distribution of HA between the tumor 
mass and the normal tissue is exhibited in human primary 
pancreatic carcinomas, suggesting that HA may promote 
tumor invasion and form a barrier for cancer cells against 
host immunocompetent cells and anticancer agents (11‑14). 
A previous study revealed the association between increased 
expression of HA and poor prognosis in pancreatic cancer (15). 
Therefore, inhibiting HA synthesis to control tumor invasion 
and drug resistance, and subsequently to improve prognosis in 
patients with PDAC is required.
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4‑Methylumbelliferone (4‑MU; 7‑hydroxy‑4‑methylcou-
marin) has been identified to be an inhibitor of HA synthesis 
in a number of previous studies  (16‑28). In particular, the 
inhibitory effect of 4‑MU on HA synthesis demonstrates 
anticancer effects through decreasing cell viability, adhesion, 
migration and invasion (19,25‑28), and increasing the efficacy 
of anticancer agents (23). The mechanisms that enable 4‑MU 
to inhibit HA synthesis remain unclear. It has been hypoth-
esized that 4‑MU inhibits HA synthesis via glucuronidation by 
endogenous uridine phosphate (UDP)‑glucuronosyltransferase 
(UGT), which results in the depletion of UDP‑glucuronic 
acid (UDP‑GlcUA)  (20), and a decrease in HAS mRNA 
levels (24,25). In addition, previous studies have identified 
that 4‑MU decreases the expression of a number of matrix 
metalloproteinases (29,30) and cell‑adhesion molecules (31), 
alters phosphorylation of intracellular proteins  (26,32,33) 
and increases levels of UGT1 enzymes, leading to decreased 
UDP‑GlcUA levels (24).

The present study aimed at investigating whether the inter-
action between PDAC cells and fibroblasts may increase HA 
production and cell migration. Furthermore, whether 4‑MU 
may decrease the migration of PDAC cells in co‑culture with 
fibroblasts was investigated.

Materials and methods

Cell lines and reagents. The Panc‑1 cell line was purchased 
from the American Type Culture Collection (Manassas, VA, 
USA). Primary fibroblasts derived from PDAC tissues were 
a gift from Kyushu University (Fukuoka, Japan). All the cell 
lines were maintained in RPMI‑1640 medium supplemented 
with 10% fetal bovine serum and 1% penicillin‑streptomycin 
(all from Thermo Fisher Scientific, Inc., Waltham, MA, USA) 
at 37˚C in a humidified atmosphere containing 5% CO2. 4‑MU 
was purchased from Sigma‑Aldrich; Merck KGaA (Darmstadt, 
Germany).

ELISA determination of HA concentrations. HA concentrations 
in cell culture media were determined according to a previous 
protocol (15). The quantity of HA was expressed per ml.

Migration assay. Panc‑1 cells (2x105 cells/ml) in 250  µl 
serum‑free RPMI‑1640 medium were seeded to the upper 
chamber (24‑well insert, 8 µm pore size; BD Biosciences, 
Franklin Lakes, NJ, USA). A total of 750  µl serum‑free 
RPMI‑1640 medium was added to the lower chamber as 
a monoculture. Primary fibroblasts (ike‑f3 cells) in 750 µl 
serum‑free RPMI‑1640 medium were seeded (1x105 cells/ml) 
in the lower chamber as a co‑culture without or with various 
concentrations (10, 100 and 1,000 µM) of 4‑MU for 72 h. 
Additionally, 7.5x104 cells/ml ike‑f3 cells were seeded in 
serum‑free RPMI‑1640 medium into the lower chamber for 
72 h as a fibroblast monoculture. The supernatant fractions 
of monoculture and co‑culture were divided into aliquots 
and stored at ‑80˚C until use. Non‑migrating cells on the 
upper surface of the membrane were removed with a cotton 
swab. Migrating cells penetrated onto the lower surface of 
the membrane and were fixed with 70% methanol, stained 
with hematoxylin (at room temperature for 10 min) and eosin 
(at room temperature, between 5‑10 min) and air‑dried. The 

number of migrating cells was determined in 6 randomly 
selected fields at x400 magnification by light microscope. 
Subsequently, the average number of cells per microscopic 
field was calculated as the extent of migration.

Co‑culture system. Panc‑1 cells (2x105 cells/ml) in serum‑free 
medium were seeded in the upper chamber (High Density, 
Translucent PET Membrane 6‑well insert, 0.4 µm pore size; BD 
Biosciences) and 3 ml serum‑free medium was added into the 
lower chamber as a monoculture. Ike‑f3 cells (1x105 cells/ml) 
in 3 ml serum‑free medium were seeded in the lower chamber 
as a co‑culture for 72 h. All samples were used to extract RNA.

Reverse transcription‑quantitative polymerase chain 
reaction (RT‑qPCR). mRNA expression analysis of HAS1 
(Hs00758053_m1), HAS2 (Hs00193435_m1), HAS3 
(Hs00193436_m1) and GAPDH (Hs02758991_g1), as a 
control (Applied Biosystems; Thermo Fisher Scientific, Inc.), 
were performed (monoculture and co‑culture), according to a 
previously described protocol (34).

Trypan blue dye‑exclusion assay cellular viability test. The 
effects of 4‑MU (10, 100 and 1,000 µM) on cell viability were 
analyzed using trypan blue dye‑exclusion (TBDE) assays as 
cytotoxic measurements. After 72 h at 37˚C in a humidified 
atmosphere containing 5% CO2, the untreated and treated 

Figure 1. Alterations in HA production and pancreatic ductal adenocarcinoma 
cell migration in response to co‑culture with fibroblasts. (A) ELISA demon-
strating significantly increased HA production in co‑culture system between 
Panc‑1 cells and ike‑f3 cells, compared with the sum of the incorporations 
by each cell line cultured alone (*P<0.05 vs. monocultures, paired Student's 
t‑test). Results are presented as the mean ± standard deviation of three repli-
cates. (B) Transwell migration assay (magnification, x400) revealed that the 
co‑culture system markedly increased the number of migrating Panc‑1 cells. 
Results are presented as the mean ± standard deviation of six replicates. HA, 
hyaluronan.
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cells were harvested and stained with 4% trypan blue at room 
temperature and then counted by the LUNATM automated cell 
counter (Logos Biosystems, Annandale, VA, USA) according 
to the manufacturer's protocol. Cytotoxicity was determined 
from the number of viable cells (no color) in treated samples 
as a percentage of the untreated control.

Stat ist ical analysis. Data were expressed as the 
mean  ±  standard deviation. All statistical analyses were 
performed using SPSS software (version 21.0; IBM Corp., 
Armonk, NY, USA). Differences in HA concentration and 
HAS1, HAS2 and HAS3 mRNA levels between monoculture 
and co‑culture were compared using a paired Student's t‑test. 
Comparisons between HA concentration and the migrating 
cell number, in all subgroups with various concentrations of 

Figure 2. Alterations in HAS1, HAS2 and HAS3 mRNA expression levels in the co‑culture system. HAS3 mRNA expression was significantly increased in 
Panc‑1 cells (P=0.049) and ike‑f3 cells (P=0.044), compared with monoculture. Results are presented as the mean ± standard deviation of three replicates. 
HAS, hyaluronan synthase; RQ, relative quality.

Figure 3. HA concentration in the co‑culture system following treatment 
with 4‑MU. HA synthesis was significantly decreased following treatment 
with 1,000 µM 4‑MU, but was essentially unchanged at 10 and 100 µM 
(***P<0.001, one‑way analysis of variance and Fisher's least significant differ-
ence test). Results are presented as the mean ± standard deviation of three 
replicates. HA, hyaluronan; 4‑MU, 4‑methylumbelliferone.

Figure 4. Alterations in the migration of pancreatic ductal adenocarcinoma 
cells in the co‑culture system following treatment with 4‑MU using a 
Transwell migration assay. (A) Photomicrographs of migrating cells on the 
underside of chambers (magnification, x400). Migrating cells penetrated 
onto the lower surface of the membrane and were fixed with 70% methanol, 
stained with hematoxylin and eosin, and air‑dried. (B) Panc‑1 cell migration 
was inhibited by 4‑MU in a dose‑dependent manner (***P<0.001, one‑way 
analysis of variance and Fisher's least significant difference test). Results are 
presented as the mean ± standard deviation of six replicates. HA, hyaluronan; 
4‑MU, 4‑methylumbelliferone.
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4‑MU, were made using one‑way analysis of variance and 
Fisher's least significant difference test. P<0.05 indicated a 
statistically significant difference. All P‑values were two‑tailed 
and all investigations were repeated three times independently.

Results

Stimulation of HA production and cell migration in the 
co‑culture system between human PDAC cells and fibroblasts. 
Co‑culture of Panc‑1 cells with fibroblasts resulted in a signifi-
cant increase (P=0.016) in HA production, compared with 
those in monocultures (Fig. 1A). In addition, the Transwell 
migration assay revealed that co‑culture with fibroblasts 
significantly increased the migration of Panc‑1 cells (Fig. 1B).

To elucidate the mechanism of enhanced HA production 
by co‑culture system, the mRNA expression levels of HAS1, 
HAS2 and HAS3 in Panc‑1 cells and fibroblasts was investi-
gated using RT‑qPCR. The increased HA production was 
associated with a significantly increased mRNA expression of 
HAS3, but not HAS1 and HAS2 (Fig. 2).

Effects of 4‑MU on HA biosynthesis and cell migration in the 
co‑culture system. Panc‑1 cells in the co‑culture system were 
treated with various concentrations (10, 100 and 1,000 µM) 
of 4‑MU. The results demonstrated that no marked effects 
on the cell viability were observed following treatment with 
the aforementioned range of 4‑MU concentrations (data 
not shown). HA synthesis was inhibited by 88%, compared 
with the control, following treatment with 1,000 µM 4‑MU; 
however, treatment with 10 and 100 µM revealed almost no 
alterations in HA production (Fig. 3).

Panc‑1 cell migration was evaluated using a Transwell 
migration assay (Fig. 4A), which revealed that 4‑MU inhibited 
Panc‑1 cell migration in co‑culture with fibroblasts. Inhibition 
of cell migration was observed at 10 µM and maximal inhibi-
tion was revealed to be at 1,000 µM (Fig. 4B).

Discussion

A previous study identified interactions between tumor cells 
and fibroblasts which stimulated HA synthesis and identified 
that HA is increased in tumors  (35). In the present study, 
Panc‑1 cells were co‑cultured with fibroblasts which resulted 
in a marked increase in HA synthesis. Additionally, HAS3 
mRNA expression in Panc‑1 cells and fibroblasts was signifi-
cantly increased in this co‑culture system. The results of the 
present study suggested that, for the first time, to the best of 
our knowledge, the increase in HA in a PDAC co‑culture 
system was associated with markedly increased mRNA 
expression of HAS3. HAS3 may produce increased amounts 
of LMW‑HA (6) and this contributes to tumor progression 
by increasing the motility of cancer cells  (36‑38). These 
interactions may explain why the co‑culture system markedly 
increased PDAC cell migration.

HA production may be decreased by 4‑MU via the deple-
tion of cellular UDP‑GlcUA and the downregulation of HAS2 
and/or HAS3, and inhibit cell viability, migration and inva-
siveness (25). Therefore, PDAC cells in the co‑culture system 
were treated with 4‑MU. The results revealed a marked 
decrease in HA production and PDAC cell migration. This 

drug is promising because the safety of 4‑MU for humans 
has already been confirmed. Oral 4‑MU has been used to 
treat hepatobiliary disease due to the cholagogic and spasmo-
lytic actions exhibited on the sphincter of Oddi (39,40). The 
results of the present study demonstrated that the interaction 
between PDAC cells and fibroblasts stimulated HA produc-
tion and PDAC cell migration, and 4‑MU may inhibit HA 
synthesis and cell migration.
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