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Abstract. Interleukin (IL)‑15 is a promising cytokine for 
cancer immunotherapy as it is a critical factor for the prolif-
eration and activation of natural killer (NK) cells. Previous 
studies have suggested critical roles of IL‑15 in tumor invasion 
and metastasis. However, the association between IL‑15 and 
liver metastasis of gastric cancer (LMGC) remains unknown. 
The present study investigated the therapeutic efficacy of 
recombinant mouse IL‑15 (rmIL‑15) in murine LMGC models, 
in which stable green fluorescent protein (GFP)‑expressing 
MKN45 cells (MKN45‑GFP cells) were injected into the 
spleen parenchyma of mice for liver metastasis. At different 
treatments (high dose group: 2.5 µg of rmIL‑15; low dose 
group: 0.2 µg of rmIL‑15; control group: PBS), it was found 
that rmIL‑15 decreased the formation of liver metastasis 
sites. Additionally, this treatment lead to improved survival of 
mice following tumor cell transplantation. Treatment with a 
high dose of rmIL‑15 provided greater therapeutic efficacy by 
prolonged survival of the mice compared with low dose group 
and control group. It was found that NK cells isolated from the 
liver that received the high dose of rmIL‑15 showed stronger 
cytotoxic activity compared with the other two groups on the 
target cells. These findings hold significant importance for 

the use of IL‑15 as a potential adjuvant/therapeutic for liver 
metastasis from gastric cancer.

Introduction

Gastric cancer is the fourth most common cause of 
cancer‑associated mortality worldwide  (1). The major 
causes of mortality are due to local recurrence and distant 
metastasis  (2). Liver metastasis can be found in 5‑9% of 
patients with gastric cancer  (3‑5). Liver metastasis from 
gastric cancer (LMGC) has a poor prognosis and there 
are no effective treatment modalities (6). The present treat-
ment of LMGC includes surgical resection, radiofrequency 
ablation, hepatic arterial infusion, systemic chemotherapy 
and targeted therapy  (7). However, current treatments 
are ineffective and the prognosis is poor. Therefore, studies on 
LMGC remain an important issue.

Interleukin (IL)‑15 was co‑discovered by two different 
studies in 1994 and characterized as a T cell growth factor (8,9). 
Mature human IL‑15 is a 14‑15 kDa glycoprotein and a member 
of the four α‑helix bundle family of cytokines (10). IL‑15 binds 
to the IL‑15‑specific high affinity binding protein IL‑15Rα 
and signals through a β chain and a γ chain signaling complex, 
leading to the recruitment of Janus kinase (JAK) JAK1 by the 
β chain and activation of JAK3 that is constitutively associ-
ated with the γ chain (11). IL‑15 performs important roles in 
immune response, such as stimulating the proliferation of acti-
vated T cells (9), B cells (12) and NK cells (13), and shares two 
receptor subunits with IL‑2 (14,15). IL‑15 has innate antitumor 
activity independent of NK and CD8 T cells (16). The direct 
administration of IL‑15 has shown antitumor effects in several 
preclinical studies of IL‑15 immunotherapy in murine tumor 
models (17,18). Thus far, there have been seven clinical trials 
initiated to explore anticancer vaccination or immunotherapy 
with IL‑15 (19).

According to recent advances, IL‑15 is a promising 
cytokine for cancer immunotherapy, however the association 
between IL‑15 and LMGC remains unknown. Therefore, the 
present study used a LMGC mouse model to investigate the 
role of IL‑15 in liver metastasis. Using different doses for 
treatment, the role of IL‑15 in LMGC was investigated.
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Materials and methods

Cell line. The gastric cancer MKN45 cell line and YAC‑1, a 
mouse lymphoma cell line sensitive to NK cells, were obtained 
from Shanghai Institute for Biological Sciences, Chinese 
Academy of Sciences (Shanghai, China). Cells were cultured 
at 37˚C in a humidified atmosphere containing 5% CO2, and 
maintained in RPMI‑1640 supplemented with 10% fetal calf 
serum, 100 U/ml penicillin and 0.1 mg/ml streptomycin (all 
supplied by Invitrogen; Thermo Fisher Scientific, Inc.). Stable 
green fluorescent protein (GFP)‑expressing MKN45 cells 
(MKN45‑GFP) were maintained in the same culture as the 
MKN45 cells.

Mice. Female BALB/c nu/nu mice (n=54) and BALB/c mice 
(n=18), 4‑6‑week‑old and 15‑20  g, were purchased from 
Chinese Academy of Sciences. All mice were maintained 
under specific pathogen‑free conditions in the Animal Facility 
of Fudan University (Shanghai, China). Mice were fed a stan-
dard laboratory chow, given water as required and subjected to 
an equal 12‑h light/dark cycle in accordance with institutional 
guidelines. These experiments were approved by the Shanghai 
Medical Experimental Animal Care Commission.

Liver metastasis model and treatment procedure. A total 
of 1x106 (0.2 ml) MKN45‑GFP cells were re‑suspended in 
sterile PBS and injected into the spleen parenchyma of all 
mice following anesthesia using 1% pentobarbital sodium 
(50 mg/kg). The spleen was removed 5 min following tumor 
injection to prevent spleen tumor formation, so that metastatic 
lesions developed only in the liver.

All BALB/c nu/nu mice (n=36) were randomly assigned 
to receive the following treatments: Low dose group (n=12), 
0.2 µg rmIL‑15 in 0.1 ml saline; high dose group (n=12), 2.5 µg 
rmIL‑15 in 0.1 ml saline; control group (same volume of PBS, 
0.1 ml, n=12). All the mice were treated 5 times a week for 
3 weeks. On day 28, 6 mice from each group were sacrificed, 
their livers were harvested, the number of liver metastases 
nodules was counted and liver weight was measured. The rest 
of the mice (3 groups, n=6/group) were monitored for survival 
according to the different therapies (0.2 µg rmIL‑15, 2.5 µg 
rmIL‑15 or PBS).

Assessment of liver tissue. The livers were excised and 
fixed with 10% buffered formalin for 24 h at 4˚C and were 
paraffin‑embedded. Stable GFP‑expressing MKN45‑GFP 
cells were injected into the spleen parenchyma Tissues were 
cut into 5 µm thick serial sections for fluorescent imaging. The 
number of liver metastatic nodules in each tissue section were 
evaluated by fluorescence microscopy (Olympus Corporation, 
Tokyo, Japan).

ELISA of cytokines. Blood samples (1 ml, n=6/group) were 
obtained from the tail vein of mice on day 12. Blood was 
centrifuged at 1,000 x g for 15 min at room temperature. 
Subsequently, the serum was extracted and the extracted 
serum was stored at ‑80˚C. The serum IL‑15 and interferon 
(IFN)‑γ concentrations were measured by ELISA with the use 
of Quantikine ELISA kits (R&D Systems, Inc., Minneapolis, 
MN, USA), and the ELISA was performed as indicated in the 

manufacturer's protocol. Quantifications were conducted in 
triplicate.

Flow cytometric analysis. Selective NK depletion 
was confirmed with a FACSCalibur f low cytometer 
(BD Biosciences, Franklin Lakes, NJ, USA) on day 21. 
Blocking was performed using FcR Blocking Reagent mouse 
(Miltenyi Biotec GmbH, Bergisch Gladbach, Germany) at 4˚C 
for 30 min. The mouse splenocytes were incubated with satu-
rating amounts (1 µg/106 cells) of phycoerythrin conjugated 
anti‑mouse cluster of differentiation (CD) 49b monoclonal 
antibody (mAb; 1:100; cat. no., 553858; BD Biosciences) and 
fluorescein isothiocyanate‑conjugated anti‑mouse CD3 mAb 
(1:100; cat. no. 555274; BD Biosciences) for 30 min at 4˚C. 
Following incubation, cells were washed once in PBS (400 x g 
for 15 min at 4˚C) and analyzed for fluorescence intensity 
using the FACS Calibur cytometer Data were processed using 
FlowJo software version 7.6 (BD Biosciences).

Cytotoxicity assay. Effector cells from each of the treatment 
groups were cultured with 1x104 MKN45 target cells/well in 
triplicate at varying effector to target cell ratios, and incubated 
at 37˚C for 4 h. Cytotoxic activity was measured by lactate 
dehydrogenase release. The percentage cytotoxicity was calcu-
lated as 100x [(experimental release)‑(effector spontaneous 
release)‑(target spontaneous release)]/[(target maximum 
release)‑(target spontaneous release)].

Statistical analysis. All statistical analyses were performed 
with SPSS 19.0 for Windows (IBM Corp., Armonk, NY, 
USA). Data are presented as the mean ± standard deviation. 
The statistical significance of differences in survival of the 
mice in different groups was determined by the log‑rank 
test. Statistical differences in the data were evaluated by a 
Student's t‑test or one‑way analysis of variance as appropriate, 
the post‑hoc test used was the least significant difference test. 
P<0.05 was considered to indicate a statistically significant 
difference.

Results

IL‑15 treatment leads to decreased liver metastasis. Nude 
mice were treated with gastric carcinoma MKN45‑GFP 
cells into the spleen parenchyma (Fig. 1). rmIL‑15 was intra-
peritoneally administered 5 times a week for 3 weeks at 2.5 µg 
(high dose) or 0.2 µg (low dose) per injection. PBS was used 
as the control group. The development of liver metastases 
was assessed in detection of liver metastasis by fluorescent 
microscopy (Fig. 2). The tumor appearance, liver weight and 
number of liver metastasis nodules were monitored. rmIL‑15 
was found to inhibit metastatic dissemination of MKN45‑GFP 
cells: 66.7% (4/6) and 83.3% (5/6) of mice administered high 
or low dose rmIL‑15 developed liver metastases, respectively, 
in contrast to 100% (6/6) among PBS‑treated mice (P>0.05; 
Fig.  3A). Liver weight was not significantly increased in 
mice treated with rmIL‑15 compared with PBS‑treated mice 
(P>0.05; Fig. 3B). In addition, high dose rmIL‑15 also led to a 
significant reduction in the number of liver metastasis nodules 
compared with low dose treatment (P<0.05) and high dose 
rmIL‑15 led to a decrease in the number of liver metastasis 



ONCOLOGY LETTERS  16:  4839-4846,  2018 4841

nodules compared with that observed in the PBS‑treated group 
(P<0.05) (Fig. 3C).

IL‑15 treatment increases the survival rate of nude mice. In 
the survival assay, mice were monitored daily until mortality 

occurred. The Kaplan‑Meier survival curves showed that 
the probability of survival was significantly higher for mice 
treated with the high dose rmIL‑15 therapy (P<0.01 vs. low 
dose; P<0.005 vs. control; Fig. 3D). Mice treated with PBS 
survived a median of 32 days (range, 21‑46 days). Animals 

Figure 2. Representative fluorescence images of low‑dose, high‑dose and control groups (scale bar, 20 µm). MKN45‑green fluorescent protein cells were 
injected into the spleen parenchyma and the livers were cut into 5‑µm thick serial sections for fluorescence imaging. Female BALB/c nu/nu mice aged 
4‑6 weeks old were assigned randomly into a low‑dose group (0.2 µg rmIL‑15), high‑dose group (2.5 µg rmIL‑15) and control group (PBS), with 6 mice/group. 
All mice were treated five times/week for 3 weeks. On day 28, 6 mice/group were sacrificed. (A‑C) Representative fluorescence images of the high‑dose group, 
(D‑F) Representative fluorescence images of the low dose group. (G‑I) Representative fluorescence images of the control group. rmIL‑15, recombinant mouse 
interleukin‑15.

Figure 1. Establishing a mouse model of liver metastasis from gastric cancer. Representative fluorescence image of MKN45‑GFP and representative image of 
spleen during injection of 1x106/0.2 ml of MKN45‑GFP cells into the spleen parenchyma of nude mice. MKN45‑GFP cells, stable green fluorescent protein 
(GFP)‑expressing MKN45 cells (scale bar, 50 µm).
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treated with low dose rmIL‑15 did not show a survival advan-
tage over animals treated with PBS (median survival, 44 days; 
range, 28‑57 days; P>0.05). Mice receiving high dose rmIL‑15 
(median survival, 59 days; range, 43‑88 days) demonstrated a 
significant prolongation of survival when compared with the 
PBS‑treated group (Fig. 3E). Lifespan rate was calculated as 
the ratio of treated/control group. High dose rmIL‑15 therapy 
led to an increased life‑span rate of (109%), whereas low dose 
rmIL‑15 improved by only (36%) (Fig. 3F).

IL‑15 treatment increases the concentration of IFN‑γ in 
the bloodstream. Blood samples were obtained from the 
tail vein of mice on day 12. IL‑15 and IFN‑γ secretion was 
measured. Mice treated with rmIL‑15 demonstrated an 
increased IFN‑γ secretion compared with the PBS control 
group in nude mice as well as the Balb/c mouse model 
(P<0.05; Fig. 4).

IL‑15 induces NK cell proliferation and lytic activity. The 
target cells used were YAC‑1 and MKN45 in NK cell assays 
The studies showed that treatment with either high dose 
mIL‑15 or low dose mIL‑15 had greater therapeutic efficacy. 
NK cells are involved in the antitumor action mediated by 
mIL‑15 in nude mice or Balb/c mice model. It was revealed 
that mIL‑15 treatment induced NK cell proliferation (Fig. 5) 
and increased the cytotoxic activity of NK cells (Fig. 6) in 
nude mice and Balb/c mice.

Discussion

In 1889, Paget (20) found that the organ distribution of metas-
tases is not a matter of chance and first noted that metastasis 
from specific tumor types grew in select secondary organ 
sites. Paget suggested that metastases develop only when the 
seed (certain tumor cells with metastatic ability) and the soil 
(organs providing growth advantage to the seeds) are compat-
ible (20). Paget's seed and soil hypothesis stated that cancer 
metastasis requires permissive interactions between tumor 
cells and secondary organ microenvironments. IL‑15 is a 
pleiotropic cytokine sharing structural homology and receptor 
components with IL‑2 (21,22). IL‑2 has been approved by the 
Food and Drug Administration for use in the treatment of 
patients with metastatic renal cell carcinoma and malignant 
melanoma (23,24). However, its toxicity at high doses as well as 
its ability to promote activation‑induced cell death and expan-
sion of T regulatory cells had limited its contemplated use in 
cancer treatment (25). In the past, the antitumor effect of IL‑15 
has been widely reported (26‑28), and it has been recognized 
as a more promising cytokine than IL‑2, with the potential for 
application in tumor therapy, since IL‑15 is more potent than 
IL‑2 in tumor therapy with greater therapeutic index (29).

In recent years, several studies have provided evidence 
that IL‑15 administration serves an important role in tumor 
therapy (28,30). Zhang et al (31) found IL‑15 combined with an 
anti‑CD40 antibody provides enhanced therapeutic efficacy for 

Figure 3. Liver metastasis and survival of nude mice. Mice were inoculated with 1x106 MKN45 cells into the spleen parenchyma. After 24 h, they were divided 
into three groups: Control (PBS treatment), 0.2 µg rmIL‑15 and 2.5 µg rmIL‑15. At day 28, metastasis nodules on the livers were counted. The rest of the 
mice were monitored daily until mortality. (A) 66.7% (4/6) and 83.3% (5/6) of mice given high or low dose rmIL‑15 developed liver metastases, respectively, 
in contrast to 100% (6/6) among PBS‑treated mice. (B) Mean liver weight of the three experimental groups; no significant difference among three groups 
(P>0.05). (C) rmIL‑15 treatment caused a decrease in the number of liver metastasis nodules compared with PBS treatment, (P<0.05), and the number of liver 
metastasis nodules of the high dose rmIL‑15 group was significantly less than the low dose group (P<0.05). (D) Kaplan‑Meier survival curves, (E) average 
survival and (F) increased life‑span rate in the liver metastasis model confirmed an association between 2.5 µg rmIL‑15 therapy and longer survival time. 
Data are presented as the mean ± standard deviation. All statistics were calculated by the long‑rank test (*P>0.05 vs. control, **P<0.05 vs. 0.2 µg, ***P<0.01 vs. 
control). rmIL‑15, recombinant mouse interleukin‑15.
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murine models of colon cancer, combination of mIL‑15 with the 
anti‑CD40 antibody enhanced the cytotoxic activity of NK cells 
and increased the total NK cell numbers. Yu et al (32) showed 
that IL‑15 treatment resulted in a significant prolongation of 
survival in a metastatic murine colon carcinoma CT26 model. 
The data reported in their study showed enhancement of 
immune responses leading to increased antitumor activity.

Liver metastasis contributed to the major cause of mortality 
in patients with gastric cancer at advanced stages (3,6,33). To the 
best of our knowledge, this is the first study to demonstrate the 
role of IL‑15 in LMGC. The present study has revealed that the 
presence of IL‑15 could prolong the survival time of nude mice 
and prevent liver metastasis from gastric cancer. Furthermore, 
it was found that IL‑15 enhances the cell activity of NK cells in 
nude mice or immunogenicity mice. Evidence exists that IL‑15 
serves a key role in murine NK cell homeostasis: NK cells are 
absent in IL‑15 knockout (34) and IL‑15Rα knockout mice (35). 
NK cells develop from CD34+ hematopoietic progenitors, first 
in the fetal liver, then in bone marrow and lymph nodes under 
the effect of the cytokine IL‑15 (36). The liver may have unique 
precursors for memory NK cells, which are developmentally 
distinct from NK cells derived from bone marrow (37).

The present study showed that changes in the immune 
microenvironment of the liver can affect tumor metastasis 
and antitumor properties. The antitumor effects of IL‑15 
observed in the present study are likely underestimated, since 
the experimental systems used here excluded the effect of T 
cells. IL‑15 is also important for NK cell activation as IFN‑γ 
and Granzyme B expression in NK cells is induced by IL‑15, 
and deficient in the absence of IL‑15 (38,39). IL‑15 activated 

NK cells through the IL‑15/IL‑15Rα complex trans‑presenta-
tion (40). For the soil, the mechanism of liver metastasis from 
gastric cancer was investigated from the perspective of the 
target organ immune microenvironment. Target organ micro-
environment, particularly the immune microenvironment, 
performs an important role in tumor metastasis (41,42). The 
immunotherapy of cancer has made significant strides in the 
past few years due to improved understanding of the underlying 
principles of tumor biology and immunology (43,44). NK cells 
are critical innate effectors with direct killing and regulatory 
roles, shown to be important antitumor effectors, exhibiting 
direct cytotoxicity and more regulatory, cytokine‑mediated 
effects (45). Presumably, at least some of the aforementioned 
mechanisms could be responsible for the development of cyto-
toxic effectors against tumor cells in mice treated with IL‑15.

In conclusion, IL‑15 was found to exhibit a significant 
therapeutic effect on liver metastasis from gastric cancer by 
enhancing NK cell activity in a murine model. The findings of 
the present study provide the scientific basis, and it is expected 
that administration of IL‑15 for clinical treatment of patients 
with gastric cancer liver metastasis will be seen in the future.
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