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Abstract. Papillary thyroid carcinoma (PTC) is the most 
common subtype of thyroid cancer; however, the specific 
genes and signaling pathways involved in this cancer remain 
largely unclear. The present study analyzed three profile 
datasets, GSE6004, GSE29265 and GSE60542, which were 
comprised of 47 PTC and 41 normal thyroid tissue samples, to 
identify key genes and pathways associated with PTC. Initially, 
differentially‑expressed genes (DEGs) between PTC and 
normal thyroid tissue were screened using R 3.4.0 (2017‑04‑21, 
R Foundation, Vienna, Austria, https://www.R‑project.org/). 
These DEGs were then clustered by gene ontology functional 
terms and representative signaling pathways. Additionally, 
specific key gene nodes were filtered out from a constructed 
protein‑protein interaction (PPI) network. The results 
identified a total of 423 shared DEGs associated with PTC, 
including 211  upregulated and 212  downregulated genes. 
These 423 genes were primarily enriched in glycosamino-
glycan binding, sulfur compound binding, heparin binding, 
enzyme activator activity, peptidase activator activity and 
hsa04512: Extracellular matrix (ECM)‑receptor interaction. 
A total of 21 central node genes were identified as key genes 
in the PTC disease process including complement factor D 
(CFD), Collagen Type I α 1 Chain (COL1A1), Extracellular 
Matrix Protein 1 (ECM1) and Fibronectin 1 (FN1). These 
genes are involved in protease binding, G‑protein coupled 
receptor binding, extracellular matrix structural constituent 
and peptidase regulator activity. To conclude, using bioinfor-
matics analysis, the present study identified candidate DEGs 
and critical pathways in PTC that may improve the current 

understanding regarding the underlying mechanisms of PTC. 
These genes and pathways may be used as potential thera-
peutic targets of PTC in the future.

Introduction

Thyroid cancer is the most common type of endocrine 
malignancy in the United States in 2015  (1). In China, 
thyroid carcinoma resulted in 6,800 mortalities and 90,000 new 
cases in 2015  (2). Although clinical practice guidelines 
for this disease have been updated in recent years, the 
morbidity of this disease has not changed (3). For females 
in particular, the disease burden for thyroid cancer with 
uncertain etiology is increased due to the increased disease 
incidence in females, which is 3  times higher than that 
of males (21 vs. 7 per 100,000 population), albeit with a 
comparable mortality (0.5 per 100,000 population)  (4). 
Although numerous studies have used next‑generation 
sequencing and other novel technologies to investigate the 
potential key genes and pathways in thyroid cancer, its key 
molecular mechanisms remain unclear (5‑9). Elucidating 
the underlying mechanisms in thyroid cancer is crucial for the 
diagnosis and prevention of this deadly disease.

Gene chip and gene expression profiles can be used to 
analyze the total genetic information within a sample, thus 
making them appropriate for differentially expressed gene 
screening. In parallel with extended gene detection applica-
tions, numerous microarray data have been generated and 
deposited into public databases (5‑7). Re‑analysis of these data 
can offer novel insights regarding specific gene expression 
in disease (10). Unlike conventional experimental research, 
these re‑analysis articles focus on bioinformatics analysis 
to screen differentially‑expressed genes (DEGs), construct 
gene functional networks, and identify novel targets for 
disease diagnosis and treatment (11). At present a plethora 
of bioinformatics articles have been published, especially 
pertaining to cancer research (12,13). With regard to thyroid 
cancer, multiple studies have described hundreds of DEGs and 
signaling pathways (8,10,11,14‑21). However, these results are 
always circumscribed or inconsistent with each other due to 
heterogeneity between study samples, or the fact that they were 
generated from single cohort studies (11,16,21). Consequently, 
a comprehensive analysis of the integrated gene expression 
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data with bioinformatic methods is a superior method to 
overcome these previous shortcomings.

Thyroid cancer may be categorized into multiple subtypes. 
Among them, the most common subclass is papillary 
thyroid carcinoma (PTC), comprising 80% of total thyroid 
carcinomas (20). In the present study, three original datasets 
GSE6004  (22), GSE29265 and GSE60542  (23) from the 
NCBI‑Gene Expression Omnibus database (NCBI‑GEO) 
(https://www.ncbi.nlm.nih.gov/geo)  (24) were processed 
to identify the DEGs between PTC tissue and healthy 
tissue controls. The present study further filtered DEGs 
and completed gene ontology (GO) and pathway enrich-
ment via limma (25) package and clusterProfiler in R 3.4.0 
(2017‑04‑21, R Foundation, Vienna, Austria) (26) and Panther 
(http://www.pantherdb.org) (27). A protein‑protein interac-
tion (PPI) network (http://string‑db.org) (28) of DEGs was 
constructed along with modular analysis to identify key 
genes in PTC. The results of the present study may provide 
more practically precise and credible biomarkers for use in 
the diagnosis, prevention and individualized therapy of PTC.

Materials and methods

Data preparation and DEG identification. From NCBI‑GEO 
(https://www.ncbi.nlm.nih.gov/gds/), three gene expression 
datasets of GSE6004 (22), GSE29265 and GSE60542 (23) were 
selected if they met four criteria: i) The deposited raw data 
were in CEL format; ii) the datasets contained PTC and paired 
healthy thyroid tissue samples. iii) GSE datasets involved 
in published papers were excluded; iv)  Chernobyl‑related 
specimens were removed from the remaining eligible samples 
based on the conclusion that these PTCs are different from 
those sporadic PTCs, as the present study wanted to analyze 
the latter (8). These three datasets were all analyzed on the 
GPL570 platform (Affymetrix human genome U133 plus 2.0 
array, Affymetrix; Thermo Fisher Scientific, Inc., Waltham, 
MA, USA) (http://www.affymetrix.com/support/tech-
nical/byproduct.affx?product=hg‑u133‑plus). Detailed sample 
information on these microarrays are listed in Table I. The raw 
data of these datasets were processed by R 3.4.0 (2017‑04‑21, R 
Foundation, Vienna, Austria) using the ‘affy’ package (29) and 
‘limma’ package (25) for variance stabilization, background 
correction, normalization and log transformation. DEGs were 
defined based on the criteria p P<0.01 and |logFC|>1.5. For vali-
dation, PTC data, including 58 normal and 356 thyroid cancers, 
were obtained from The Cancer Genome Atlas (TCGA) 
(https://cancergenome.nih.gov/) and analyzed (20).

Hierarchical analysis of GO and pathways of DEGs. The 
GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways of DEGs were hierarchically investigated using 
‘clusterProfiler’ in R 3.4.0 (2017‑04‑21, R Foundation, Vienna, 
Austria) (26) and Panther (http://www.pantherdb.org) (27), a 
website that can visualize integrated gene information.

Constructing PPI network and modular analysis. The PPI 
network of PTC‑associated DEGs‑encoded proteins was 
constructed using STRING (http://string‑db.org) (30). Decisive 
candidate proteins in prominent modules (confidence score 
of  >0.9) with pivotal physiologic regulation of PTC were 

retrieved by Cytoscape software (version 3.5.1, The Cytoscape 
Consortium, San Diego, CA, USA) (http://www.cytoscape.
org/) (31).

Reverse transcription‑quantitative polymerase chain reaction 
(RT‑qPCR) assay. In the present study, 8 DEGs (5 upregulated 
and 3 downregulated) were selected for validation in peripheral 
blood samples of PTC patients using RT‑qPCR. The present 
study was approved by the Ethics Committee of Guang'anmen 
Hospital (Beijing, China). Patients provided written informed 
consent prior to blood collection. From March 1st, 2018 to 
March 31st, 2018, peripheral blood samples of 21 PTC patients 
(2 ml/sample) were collected from the department of internal 
medicine at the Southern branch of Guang'anmen Hospital. 
PTC patients were selected based on two criteria: First hospital-
ized and no other autoimmune disease or other malignancies at 
the time of the investigation (age range, 26 to 65 years; median 
age, 46.5 years; 4 males, 17 females). Then 21 blood samples 
from healthy people (2  ml/sample) served as the control 
(age range, 20 to 63 years; median age, 47.5 years; 4 males, 
17 females). The PCR primers were as follows: Forward primer 
AGTR1, 5'‑TTG​TTG​AAA​GGT​TTG​AGT​GGG‑3' and reverse 
primer AGTR1, 5'‑TTG​CAG​ATA​TTG​TGG​ACA​CGG‑3'; CFD 
forward primer, 5'‑CGA​TGG​TGT​CGG​GCT​GGC​TGT‑3' and 
reverse primer, 5'‑GCC​CTA​CAT​GGC​GTC​GGT​GCA‑3'; 
COL1A1 forward primer, 5'‑CGA​TGG​ATT​CCA​GTT​CGA​
GTA​TG‑3' and reverse primer, 5'‑TGT​TCT​TGC​AGT​GGT​
AGG​TGA​TG‑3'; COL8A1 forward primer, 5'‑CTT​TCT​GTC​
CAA​TTT​CTC​CTT‑3' and reverse primer, 5'‑ATA​CCA​TTA​
GCC​AGT​TTA​CGA‑3'; COL10A1 forward primer, 5'‑GAT​
GAT​GGC​ACT​CCC​TGA​AGC‑3' and reverse primer, 5'‑ATA​
AGA​ATG​GCA​CCC​CTG​TAA‑3';  LPAR5 forward 
primer, 5'‑ACG​GCG​GAC​CTT​TCG​GAT​TGC‑3' and reverse 
primer, 5'‑GCG​GGG​TGC​TGA​TGG​TGA​TGG‑3'; MMRN1 
forward primer, 5'‑ATG​GGC​AGG​AAG​TCT​GGT​TAC​GA‑3' 
and reverse primer,  5'‑ACA​GAG​CAG​ATG​TGC​AAG​CAA​
AGA​T‑3'; NMU forward primer, 5'‑CAT​TCC​CAT​AAT​CAT​
AAA​GCA​A‑3', reverse primer, 5'‑AAG​GAT​TAC​AGC​CTG​
AAC​AAC‑3'; β‑actin forward primer, 5'‑CTA​CCT​CAT​GAA​
GAT​CCT​CAC​CGA‑3', reverse primer, 5'‑TTC​TCC​TTA​ATG​
TCA​CGC​ACG​ATT‑3'.

Total RNA was isolated from blood samples using TRIzol 
reagent (Invitrogen; Thermo Fisher Scientific, Inc.). Reverse 
transcription and real‑time quantification were performed 
using PrimeScript™ RT reagent kit with gDNA Eraser 
(Perfect Real Time) (Takara Biotechnology Co., Ltd., Dalian, 

Table I. Data descriptions of the three datasets from GEO.

GSE	 Tumor	 Normal	 Submission
number	 tissue	 control	 date

GSE6004	 7	 4	 Oct 10, 2006
GSE29265	 7	 7	 May 31, 2011
GSE60542	 33	 30	 Aug 20, 2014
Total	 47	 41	

GEO, gene expression omnibus.
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China) and TB Green™ Premix Ex Taq™ (Tli RNaseH Plus) 
(Takara Biotechnology Co., Ltd., Dalian, China) according to 
manufacturer's protocol (32). Each measurement was made in 
triplicate and normalized with β‑actin control. The thermal 
cycling conditions included an initial denaturing step at 95˚C 
for 30 sec, 40 cycles at 95˚C for 5 sec, 60˚C for 30 sec. The 
relative gene expression data were analyzed using 2‑ΔΔCq 
algorithm (33) according to the literature (34) and the RDML 
(Real‑Time PCR Data Markup Language) data standard 
(http://www.rdml.org) (35).

Statistical analysis. Statistical analyses were performed with 
GraphPad Prism 5 (GraphPad Software, Inc., La Jolla, CA, 
USA). Data from the qPCR experiments are presented as 
mean ± standard deviation. The significance of differential 
expression between PTCs and controls was assessed by an 
unpaired Student's t‑test. P<0.05 was considered to indicate a 
statistically significant difference.

Results

Screening of DEGs from PTC and paired thyroid tissues 
based on NCBI‑GEO datasets. Employing the cut‑off criteria 
P<0.01 and |logFC|>1.5, 423 DEGs were identified from PTC 
and paired healthy thyroid tissues based on three datasets 
GSE6004, GSE29265 and GSE60542 (data not shown) using 
R 3.4.0 (2017‑04‑21; R Foundation, Vienna, Austria) program. 
Among these genes, up‑ and downregulated genes accounted 
for 211 and 212 genes, respectively. These DEGs could be 
clearly discriminated between PTC and normal controls with 
heat map visualization (Fig. 1).

Gene Ontology analysis of DEGs in PTC. Candidate DEGs 
gene ontology (GO) analysis was performed using the online 
database Panther (http://www.pantherdb.org) and R 3.4.0 
(2017‑04‑21, R Foundation, Vienna, Austria) program (26). 
The DEGs were classified into molecular function (MF), 
biological process (BP) and cellular component (CC) groups 

(Fig. 2). In the BP grouping, DEGs were mainly enriched in 
cellular component organization or biogenesis, localization, 
reproduction, and regulation. In the MF grouping, DEGs 
were mainly enriched in binding, receptor activity, struc-
tural molecule activity, signal transducer activity. In the 
CC grouping, DEGs were mainly enriched in synapse, cell 
junction, membrane, macromolecular complex, extracellular 
matrix.

Additionally, the present study used ‘clusterProfiler’ in 
R 3.4.0 (2017‑04‑21, R Foundation, Vienna, Austria) (26) 
to perform DEGs GO analysis. The results indicated that 
the majority of DEGs were clustered in glycosaminoglycan 
binding, sulfur compound binding, heparin binding, 
enzyme activator activity and peptidase activator activity 
(Fig. 3 and Table II). Upregulated DEGs were significantly 
enriched serine‑type endopeptidase activity, serine‑type 
peptidase activity, serine hydrolase activity, endopeptidase 
activity, protease binding. Unexpectedly, there were no 
downregulated DEGs involved in typical GO biological 
processes and pathways.

Screening of typical signaling pathways associated with 
DEGs. The typical signaling pathways associated with 
our DEGs were identified using ‘clusterProfiler’ in R 3.4.0 
(2017‑04‑21, R Foundation, Vienna, Austria) (26). The DEGs 
had commonalities in hsa04512: ECM‑receptor interac-
tion pathway (Fig. 4A). The outcome of a reactome enquiry 
suggested that the majority of the DEGs were involved in 
extracellular matrix organization, degradation of the extra-
cellular matrix, integrin cell surface interactions, collagen 
degradation, ECM proteoglycans (Fig. 4B and Table III). The 
reactome network is illustrated in Fig. 5.

PPI network, key nodes analyses and pathway identification. 
The PPI network was constructed based on 423  selected 
DEGs using STRING database. Furthermore, we filtered 
three prominent modules from it by Cytotype MCODE 
of Cytoscape depending on the importance of each gene 
(Fig. 6). These modules consisted of 21 genes: Complement 
factor D (CFD), collagen type X α 1 chain (COL10A1), 
collagen type XIII α 1 chain (COL13A1), collagen type I 
α  1 chain (COL1A1), collagen type XXIII α 1 chain 
(COL23A1), collagen type VIII α  1 chain (COL8A1), 
collagen type VIII α 2 chain (COL8A2), collagen type 
IX α 3 chain (COL9A3), Extracellular Matrix Protein 1 
(ECM1), Fibronectin 1 (FN1), Multimerin 1 (MMRN1), 
Protein S (PROS1), Serpin Family A Member 1 (SERPINA1), 
TIMP Metallopeptidase Inhibitor 1 (TIMP1), Angiotensin II 
Receptor Type 1 (AGTR1), Arginine Vasopressin Receptor 
1A (AVPR1A), Endothelin 3 (EDN3), G Protein Subunit α 14 
(GNA14), KISS1 Receptor (KISS1R), Lysophosphatidic Acid 
Receptor 5 (LPAR5) and Neuromedin U (NMU). Enrichment 
analysis (Table IV) demonstrated that these three modules 
were principally associated with protease and G‑protein 
coupled receptor binding, extracellular matrix components 
and peptidase regulator activity.

TCGA datasets used to verify selection of 423 DEGs. 
To confirm the 423 DEGs screened in the current study, 
PTC datasets containing 356 PTC and 58 normal controls 

Figure 1. Expression heat map of 423 differentially expressed genes. The 
x axis indicates the samples and the y axis indicates the DEGs. DEGs, 
differentially‑expressed genes.
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were downloaded from TCGA website and were analyzed 
using the same investigative approach  (20). The results 
demonstrated that 186 upregulated and 184 downregulated 
genes were overlapping at two different sources (data not 
shown). Notably, 25 upregulated as well as 28 downregulated 
genes did not appear in the list, suggesting our results were 
credible.

RT‑qPCR verification of selected DEGs. The expressions of 5 
upregulated (COL10A1, COL1A1, COL8A1, LPAR5, NMU) 

and 3 downregulated (CFD, MMRN1, AGTR1) genes were 
validated using RT‑qPCR assay of genetic material extracted 
from the peripheral blood samples of patients with PTC. 
The results demonstrated that gene expression of COL10A1, 
COL1A1, LPAR5, NMU, and CFD (P=0.0364, P=0.0135, 
P=0.0478, P=0.0002, P=0.0009, PTC group  vs.  control 
group) were consistent with data from the bioinformatics 
analysis. There was no difference in the expression of 
COL8A1, MMRN1, and AGTR13 between the PTC and 
control groups (Fig. 6B).

Figure 3. Representative enrichment GO terms for differentially expressed genes in papillary thyroid carcinoma. GO, gene ontology.

Figure 2. Diagram of GO analysis results classifying DEGs into three functional groups using Panther (http://www.pantherdb.org). GO, gene ontology; DEGs, 
differentially‑expressed genes.
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Discussion

The present study identified 423 obvious DEGs between PTC 
tissues and normal controls, of which 211 were upregulated and 
212 were downregulated. These 423 DEGs were then catego-
rized into three groups (MF, BP and CC) based on GO analysis. 
Results of GO and signaling pathway enquiry indicated that the 
DEGs were remarkably clustered in glycosaminoglycan binding, 
sulfur compound binding, heparin binding, enzyme activator 
activity, peptidase activator activity and hsa04512: ECM‑receptor 
interaction. The reactome network of DEGs demonstrated that 
extracellular matrix organization and degradation as well as 
integrin cell surface interactions were key nodes of this network.

A PPI network was established using the selected DEGs 
and the most correlated 3 modules were selected for further 

analysis. Among these modules, 21  central node genes 
were present which were most associated with protease and 
G‑protein coupled receptor binding and peptidase regulator 
activity.

Consistent with the results obtained by the present study, 
other research groups also published the results of DEGs 
certification in PTC (11,18‑21). For example, based on four 
datasets (GSE3467, GSE33630, GSE3678, GSE5315), 
Espinal‑Enríquezet al (10) analyzed 64 healthy controls, 
12 follicular thyroid carcinoma, 72 PTC and 11 anaplastic 
thyroid carcinoma samples, and reported there were an 
overall 503 upregulated and 457 downregulated genes in 
PTC. The topmost 10 dysregulated genes were GABRB2, 
HMGA2, PRR15, CHI3L1, ZCCHC12, TPO, DIO1, ADH1B, 
PKHD1L1, and TFF3. These DEGs were also identified in 

Figure 4. Representative enriched signaling pathways of differentially expressed genes in papillary thyroid carcinoma. (A) The DEGs had commonalities in 
hsa04512: ECM‑receptor interaction pathway. (B) The reactome point of differentially expressed genes in PTC. DEGs, differentially expressed genes; PTC, 
papillary thyroid carcinoma.

Table II. The significant enrichment analysis of DEGs in PTC.

Term	 Description	 Count	 P‑value

GO:0005539	 Glycosaminoglycan binding	 18	 0.0000004
GO:1901681	 Sulfur compound binding	 18	 0.0000018
GO:0008201	 Heparin binding	 14	 0.0000068
GO:0008047	 Enzyme activator activity	 24	 0.0000983
GO:0016504	 Peptidase activator activity	 6	 0.0001337
GO:0002020	 Protease binding	 10	 0.0001528
GO:0008236	 Serine‑type peptidase activity	 15	 0.0001572
GO:0017171	 Serine hydrolase activity	 15	 0.0001805 
GO:0061134	 Peptidase regulator activity	 14	 0.0002016
GO:0005518	 Collagen binding	 7	 0.0003936

DEGs, differentially expressed genes; PTC, papillary thyroid carcinoma; GO, gene ontology.
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the present study and were primarily clustered in extracel-
lular region and space and developmental process.

Yu  et  al  (21) analyzed GSE3467 raw data including 
9 PTC subjects and 9 paired normal tissues. They identified 
1343 DEGs, of which, 651 were upregulated and 692 were 
downregulated, which were mainly enriched in complement 
and coagulation cascades as well as thyroid cancer pathways. 

The most significant differentially expressed genes were 
MMP9, C3, PPARG, PAX8 and JUN. However, it is 
important to note that this study employed only one dataset. 
Similarly, Zhao et al (11) enrolled one dataset, GSE53157, 
containing 7 PTC specimens and 3 paired normal tissues, 
and ascertained 668 DEGs containing 262 upregulated genes 
and 406 downregulated genes, which were mainly enriched 

Table III. Signaling pathway enrichment analysis of DEGs in PTC.

Pathway	 Name	 Gene Count	 P‑value	 Genes

1474244	 Extracellular matrix organization	 25	 0.000000002 	 BMP2/COL10A1/COL13A1/COL1A1/
				    COL23A1/COL8A1/COL8A2/COL9A3/
				    COMP/DCN/EFEMP1/FBLN1/FN1/ICAM1/
				    ITGA2/KLK7/LAMB3/LRP4/MMP16/
				    NCAM1/PRSS2/SDC4/SPP1/TIMP1/TNC
1474228	 Degradation of the extracellular	 15	 0.000000062 	 COL10A1/COL13A1/COL1A1/COL23A1/
	 matrix			   COL8A1/COL8A2/COL9A3/DCN/FN1/
				    KLK7/LAMB3/MMP16/PRSS2/SPP1/
				    TIMP1
216083	 Integrin cell surface interactions	 13	 0.000000103 	 COL10A1/COL13A1/COL1A1/COL23A1/
				    COL8A1/COL8A2/COL9A3/COMP/FN1/
				    ICAM1/ITGA2/SPP1/TNC
1442490	 Collagen degradation	 8	 0.000134395 	 COL10A1/COL13A1/COL1A1/COL23A1/
				    COL8A1/COL8A2/COL9A3/PRSS2
3000178	 ECM proteoglycans	 8	 0.000233271 	 COL1A1/COMP/DCN/FN1/ITGA2/LRP4/
				    NCAM1/TNC
1474290	 Collagen formation	 8	 0.000316917 	 COL10A1/COL13A1/COL1A1/COL23A1/
				    COL8A1/COL8A2/COL9A3/LAMB3
3000170	 Syndecan interactions	 5	 0.000319611 	 COL1A1/FN1/ITGA2/SDC4/TNC
1630316	 Glycosaminoglycan metabolism	 10	 0.000587452 	 B4GALT6/CHST2/CSGALNACT1/DCN/
				    GPC3/HS6ST2/LYVE1/OGN/PAPSS2/SDC4
1650814	 Collagen biosynthesis and	 7	 0.000599989 	 COL10A1/COL13A1/COL1A1/COL23A1/
	 modifying enzymes			   COL8A1/COL8A2/COL9A3

DEGs, differentially expressed genes; PTC, papillary thyroid carcinoma; ECM, extracellular matrix.

Table IV. Enrichment analysis of genes' function in modules 1‑3.

Term	 Description	 Count	 P‑value

GO:0002020	 Protease binding	 4	 0.0000004
GO:0001664	 G‑protein coupled receptor binding	 5	 0.0000018
GO:0005201	 Extracellular matrix structural constituent	 3	 0.0000068
GO:0061134	 Peptidase regulator activity	 4	 0.0000983
GO:0008528	 G‑protein coupled peptide receptor activity	 3	 0.0001337
GO:0001653	 Peptide receptor activity	 3	 0.0001528
GO:0071855	 Neuropeptide receptor binding	 2	 0.0001572
GO:0004866	 Endopeptidase inhibitor activity	 3	 0.0001805
GO:0061135	 Endopeptidase regulator activity	 3	 0.0002016
GO:0030414	 Peptidase inhibitor activity	 3	 0.0003936

GO, gene ontology.
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in the signaling pathways related to programmed cell death, 
the p53 signaling cascades, the activities of protein kinase and 
transferase. They suggested that S100A6, MET and CDKN1C 
might have potential roles in the development of PTC.

Degradation of the extracellular matrix of adjacent tissues 
facilitates tumor invasion and metastasis (36). A recent study 
has identified that a regulatory loop exists between thyroid 
tumor cells, cancer associated fibroblasts (CAFs), collagen, 
and lysyl oxidase (Lox), which potentiates thyroid cancer 
progression (37). Qu et al (15) analyzed two microarray 
datasets (GSE3467 and GSE3678) and identified a total of 
167 DEGs, which were associated with the regulation of 
plasma membrane and extracellular matrix.

The difference between our manuscript and the 
published papers on data mining for PTC is that the present 
study used R language and ‘clusterProfile’ in R for data 
processing, which can overcome some deficiencies such as 
data insufficiency caused by the update delay of some data-
bases (10,11,14,15,21). In addition, the datasets selected were 
all based on GPL570 platform (Affymetrix human genome 
U133 plus 2.0 array, Affymetrix; Thermo Fisher Scientific, 
Inc.) which is regarded as classic high‑throughput expres-
sion microarray. This is helpful for the follow‑up research, 
because by re‑annotating and reassigning probe groups 
for functional regions of interest based on Affymetrix® 
GeneChip® technology, researchers can take advantage of 
the high volume of publicly available data to detect subtle 
changes in the region of interest likely to have phenotypical 
consequences in gene, transcript (isoform), untranslated 
region (UTR) and exon level with only minimal computa-
tional cost (38).

In the present study, reactome analysis indicated that the 
majority of the DEGs were primarily involved in extracellular 
matrix organization and degradation, integrin cell surface 
interactions, collagen degradation and collagen formation. The 
present study identified that COL10A1, COL13A1, COL1A1, 
COL8A1 and COL8A2 were upregulated in PTC, while 
COL9A3 and COL23A1 were downregulated. These DEGs 
work together to establish a network permissive of tumori-
genesis (39), which requires further study, and hypothesize 
that this result will lead to the verification of additional 
therapeutic targets and biomarkers in PTC.

In the PPI network constructed in the present study, the 
second cluster consisted of CFD, ECM1, FN1, MMRN1, 
PROS1, SERPINA1 and TIMP1. Excluding CFD and 
MMRN1, all the genes were upregulated in PTC. ECM1 
encodes a soluble protein that participates in angiogenesis and 
oncobiology (40). Kebebew et al (41) reported that ECM1 and 
TMPRSS4 were effective diagnostic markers of malignant 
thyroid nodules and differentiated thyroid cancers (DTC). 
FN1 regulates cell adhesion and migration processes (42). Its 
overexpression is an important determining factor in thyroid 
cancer aggression (43,44). In a meta‑analysis, SERPINA1 was 
identified as a single marker for PTC with 99% accuracy (45). 
As a member of the TIMP gene family, TIMP1 encoded 
proteins that naturally inhibit MMP pathway resulting in the 
extracellular matrix degradation; a process closely associated 
with thyroid cancer invasiveness, migration and metastasis (10). 
In addition, TIMP1 encoded proteins promoted proliferation 
in various cell types and impeded cell apoptosis (46). TIMP1 
mRNA had high inducibility to numerous cytokines and 
hormone stimulation (47).

In the third cluster of the PPI network, EDN3 encodes a 
protein belong to the endothelin family (48). Altered expression 
of this protein has been implicated in tumorigenesis (49). KISS1 
is a metastasis suppressor gene (50). Its receptor, KISS1R, is a 
galanin‑like G protein‑coupled receptor that was demonstrated 
to be overexpressed in PTC and associated with MAP kinase 
activity  (51). In DTC, KISS1 expression was conspicuously 
higher in aggressive and advanced tumors, which was moderately 
negatively correlated with tumor size (52). Lysophosphatidic 
acid receptor 5 (LPAR5) belongs to the rhodopsin class of G 
protein‑coupled receptors (GPCR) superfamily that regulates 
various cellular processes engaged with tumor development (53). 
NMU encodes a member of the neuromedin family of neuropep-
tides that have effect in immune‑mediated inflammatory diseases 
development; its overexpression was detected in tumors of renal, 
pancreatic and lung origins (54‑57). The aforementioned analysis 
reminds us that these selected genes have not been the subjects of 
in‑depth scientific investigation. Consequently, their relationship 
with PTC should be studied further.

The present study first verified the screened 423 DEGs 
with TCGA database and identified that 186 upregulated and 
184 downregulated genes were overlapping in the two different 
sources (data not shown). The expressions of five upregulated 
(COL10A1, COL1A1, COL8A1, LPAR5, NMU) and three 
downregulated (CFD, MMRN1, AGTR1) genes were further 
validated using RT‑qPCR of the peripheral blood samples of 
patients with PTC. These genes were selected as the majority 
of them were not previously reported in the literature. The 
results were consistent (5/8 genes were confirmed) with data 
from the bioinformatics analysis, suggesting our screened data 
were credible.

The present study was unable to validate all 21 key genes 
and could not solve the problem regarding histological, genetic, 
clinic biological characteristics and treatments of PTCs, 
primarily due to fund shortage. However among these genetic 
targets, LPAR5 was demonstrated to be involved in the patho-
genesis of several types of cancer including melanoma, sarcoma, 
nasopharyngeal carcinoma (��������������������������������53,58,59������������������������). LPAR5 is lysophospha-
tidic acid (LPA) receptor 5, encodes a member of the rhodopsin 
class of G protein‑coupled transmembrane receptors (60). The 

Figure 5. The reactome network of differentially expressed genes in papillary 
thyroid carcinoma.
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activated LPA stimulates cell proliferation, migration and 
survival �����������������������������������������������������(61)�������������������������������������������������. Differentially LPA production, receptor expres-
sion and signals contribute to cancer initiation, progression 
and metastasis (61). Database‑based analysis (https://www.
proteinatlas.org/) results also indicated that the prognosis of 
thyroid cancer patients with high expression level of LPAR5 
was poor (https://www.proteinatlas.org/ENSG00000184574‑​
LPAR5/pathology/tissue/thyroid+cancer) (62,63). Therefore, 
functional experiments of this gene including cell prolifera-
tion, migration, gain‑ and loss‑of‑function assays, should be 
conducted in the future.

In the present study, 423 DEGs were identified using 
three datasets from GEO with R programming language, 
and then filtered 392 gene nodes in DEGs PPI network, and 
21 prominently altered key genes, which were significantly 
associated with extracellular matrix structural constituents 

and thyroid cancer invasiveness, migration and metastasis 
were selected. These candidate genes and pathways may 
have use as potential therapeutic targets in the future. These 
findings will expand the presently available knowledge 
regarding the etiology and essential molecular mechanisms 
at work in PTC progression. However, further experimenta-
tion on a larger clinical sample library should be used to 
verify these results.
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