
ONCOLOGY LETTERS  17:  432-441,  2019432

Abstract. Colorectal cancer is a complex multistage process 
following the adenoma‑carcinoma sequence. Additional 
research on the basis of molecular dysregulations, particu-
larly in the precancerous stage, may provide insight into the 
realization of potential biomarkers and therapeutic targets 
for the disease. In the present study, the expression profile 
of human multistage colorectal mucosa tissues, including 
healthy, adenoma and adenocarcinoma samples, was down-
loaded. Genes that were consistently differentially expressed 
in precancerous tissues and cancer samples were collected. 
Based on a merged biological network, the biggest connected 
component composed of these identified genes and their 
one‑step neighbors were retrieved to conduct random walk 
with restart algorithm, in order to identify genes signifi-
cantly affected during carcinogenesis. Therefore, 35 genes 
significantly affected by carcinogenic dysregulation were 
successfully identified. Survival and Cox analysis indicated 
that the expression of these genes was an independent prog-
nostic factor confirmed by six cohorts. In summary, based 
on the transcription profile of multi‑stage carcinogenesis and 
bioinformatics analysis, 35 genes significantly associated with 
patient survival were successfully identified, which may serve 
as promising therapeutic targets for the disease.

Introduction

Despite advances in understanding the underlying molecular 
mechanism of colorectal cancer (CRC), CRC remains a 
leading cause of cancer‑associated mortality worldwide (1). 
Patient survival has been reported to be excessively depen-
dent on clinical stage at the time of diagnosis, and reduced 
sensitivity to chemotherapy remains a major challenge in the 
effective management of CRC (2). Therefore, the identification 
of novel molecules promoting CRC progression is required 
for the identification of promising prognostic biomarkers and 
potential therapeutic targets (3).

CRC is a complex bioprocess following the adenoma‑carci-
noma multistage sequence. Therefore, understanding the 
molecular dysregulations during the process of carcinogen-
esis, particularly during the precancerous stage, may assist 
in identifying potential prognostic biomarkers and candidate 
therapeutic targets. Differentially expressed genes (DEGs) 
consistently and continuously altered throughout the whole 
carcinogenic process may reduce potential noise created by 
large‑scale heterogeneity in tumors.

Network‑based analyses have been demonstrated to be 
substantially effective in identifying causal cancer driver 
genes (4,5). Based on publicly accessible biological networks, 
a random walk with restart (RWR) algorithm was used in the 
present study to identify potential genes affected significantly 
by source genes. RWR is a network‑based mathematical 
model simulating a random walker starting from seed nodes 
and advancing towards randomly selected neighbors at each 
step (6). Subsequently, once the network dynamics are stable, 
the probability of walking to each node in the network is also 
inclined to be stable. Therefore, novel candidate molecules 
receiving significant information flow were regarded to be 
significantly affected by source genes.

In the last decade, the rapid development of high 
throughput technologies has greatly promoted modern 
studies of molecular oncology  (7). However, expres-
sion‑profiling datasets are short of systematic consistency 
between different studies, probably due to different working 
platforms and lab protocols (8,9). In order to evaluate the 
robustness of identified prognostic genes, four microarray 
datasets in the Gene Expression Omnibus (GEO) database 
and one dataset from The Cancer Genome Atlas (TCGA) 
database (https://tcga‑data.nci.nih.gov/tcga/) were used as 
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independent testing cohorts in the present study, increasing 
the accuracy and robustness of the analysis.

Materials and methods

Download of transcriptomic profile of colorectal carcino‑
genesis. The processed expression profile of 117 colorectal 
carcinogenesis samples and 52 samples with survival informa-
tion was downloaded from GEO database with the accession 
number GSE71187 (microarray platform ID, GPL6480) (10). 
Adenocarcinoma is pathologically defined as submucosal inva-
sion by tumors (11). The global expression profiles contained 
the expression values of 18,986 genes. All associated data 
were directly downloaded from the original publication (10). 
Furthermore, TCGA RNA sequencing data, GSE14333 (12), 
GSE17536 (13), GSE39582 (14) and GSE28722 (15) were also 
downloaded from their original publications in order to test 
the validity of the identified gene signature.

Identifying consistent DEGs at precancerous and cancer 
stages. An unpaired significance analysis of microar-
rays (SAM) algorithm  (16) was used to identify the 
DEGs during the following two transitions, i.e., between 
precancerous progression of colorectal adenoma (n=58) 
and normal mucosal tissues (n=12), and between CRC 
(n=47) and precancerous progression [false discovery rate 
(FDR)<0.005]. Genes that were simultaneously and contin-
uously upregulated or downregulated at the aforementioned 
transitions were regarded as consistent DEGs and used for 
further analysis.

Establishing a merged a priori knowledge‑based biological 
network. The gene‑gene interaction information was obtained 
from combining the a priori knowledge from the Human 
Protein Reference Database (HPRD; http://www.hprd.org/) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG; 
https://www.kegg.jp/). The gene regulatory network was 
subsequently established by merging HPRD and KEGG 
gene‑gene interactions, including 10,340 nodes and 60,642 
edges. All consistently dysregulated DEGs were projected 
onto this merged network and the largest connected component 
comprised of consistent DEGs and corresponding one‑step 
neighbors was retrieved for further analysis.

RWR to identify genes significantly affected by carcinogenetic 
dysregulation. Consistent DEG i was weighted with zi as 
follows:

Zi = φ‑1 (1 ‑ Pi)

In this formula, pi represented the P‑value of Cox regression 
analysis between the expression value of DEG i and the patients' 
overall survival (OS) rate; Φ‑1 represented the inverse standard 
normal cumulative distribution function (17,18). Therefore, zi 

increased monotonically along with OS association of DEG i, 
following a standard normal distribution. Gene‑gene interac-
tions were further weighted with corresponding co‑expression 
values. For example, for a particular gene x with the expression 
values (x1,……, xn) and another gene y with the values (y1,……, 
yn), the formula for the interaction weight Er was as follows:

In RWR analysis, genes of interest were regarded as 
the information source, such as the source nodes, while 
the remaining genes were regarded as the target, such 
as the target nodes. Subsequently, the information flow was 
iteratively and randomly ‘walked’ from source nodes to their 
neighboring targets with a probability constantly propor-
tional to their connectivity. Following considerable steps, 
the final steady‑state probability calculated for each gene 
denoted the integrated influence imposed by source nodes, as 
well as network topology. The RWR algorithm was defined 
as follows:

pt+1 = (1 ‑ r) Wpt+rp0

In this formula, W is the column‑normalized adjacency 
matrix of the target network and pt is the probability vector 
the genes hold at step t in the iterative process. Source nodes 
were initially weighted with the probability vector p0, with 
the sum of all elements being 1, and r denoted the restart 
probability (r=0.7 in the present study). All genes in the 
aforementioned network were ranked according to the values 
in the steady‑state probability vector p∞. The iteration did not 
cease until the difference between pt and pt+1 was <1x10‑10, 
which was measured by the least absolute deviations norm. 
To increase the robustness of RWR analysis, 10,000 permuta-
tions of nodes were conducted to simulate the null distribution. 
Therefore, the P‑value was designated as the ratio of random 
values greater than or equal to the observed final probability 
and then corrected using the FDR method. Genes with FDR 
of <0.001 were defined as the genes significantly affected by 
carcinogenic dysregulation.

Statistical analysis. Kaplan‑Meier survival analysis was used 
to determine the OS difference between the two eigengene of 
the module (EM)‑assigned groups. The first principal compo-
nent (PC1) captured the greatest amount of total variance 
in the profiles and was calculated for each patient. Patients 
were then divided into two groups of equal size based on the 
rank order of PC1 across their tumor profiles. Kaplan‑Meier 
survival analysis and the log‑rank test were used to evaluate 
the prognostic difference between the two groups (10,19). Cox 
regression model was conducted to evaluate the independence 
of prognostic factors. Samples along with their detailed 
information, including age, sex, stage and survival time, 
were used and P<0.05 was considered to indicate a statisti-
cally significant difference. All data analyses were conducted 
using R programming (version 3.3.1; https://www.r‑project.
org/), Bioconducter packages (version 3.5; http://www.
bioconductor.org/) and Matlab (version 2015b; https://www.
mathworks.com/products/matlab.html) language. The network 
visualization and analysis were achieved through Cytoscape 
(version 3.4.0; http://www.cytoscape.org/). DEG identifica-
tion was conducted with R package ‘samr’ (version 2.0; 
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https://cran.r‑project.org/web/packages/samr/index.html), and 
meta‑analysis was performed with R package ‘meta’ (version 
4.8‑2; https://cran.r‑project.org/web/packages/meta/).

Results

Schematic of methodology. The schematic adopted for the 
present study is depicted in Fig. 1.

Consistently dysregulated DEGs in precancerous and 
cancer stages identified to reduce noise. The global expres-
sion profiles of human healthy colorectal mucosa, CRC 
precancerous (adenoma) and cancer (adenocarcinoma) 
samples from the GEO database (GSE71187) were down-
loaded. Using unpaired SAM analysis, 6,726 genes were 
upregulated and 4,825 genes were downregulated in precan-
cerous samples compared with those in healthy tissues. A 
total of 2,404 genes were upregulated and 2,726 genes were 
downregulated in cancer samples compared with those in 
precancerous samples. Furthermore, DEGs that were simul-
taneously and continuously upregulated or downregulated 
during carcinogenic transitions were referred to as consistent 
DEGs. Therefore, 405 upregulated and 877 downregulated 
consistent DEGs were identified (Fig. 2A). Gene ontology 
(GO) analysis was further conducted with the Database for 
Annotation, Visualization and Integrated Discovery bioin-
formatics tool (http://david.abcc.ncifcrf.gov/). The results 
of the GO enrichment analysis indicated that the consis-
tent downregulated DEGs were associated with the ‘cell 
development’ process, while consistent upregulated DEGs 
functionally concentrated upon the ‘immune response’ and 
the ‘defense response’ in CRC (Fig. 2B).

Consistent DEGs are also dysregulated in the same direction 
in TCGA dataset. Gene set enrichment analysis using 32 paired 
RNA sequencing data of cancer and adjacent healthy tissue in 
TCGA database indicated that consistently upregulated DEGs 
were also significantly upregulated [normalized enrichment 
score (NES)=3.22; FDR=2.20x10‑4; Fig. 3A] and consistently 
downregulated DEGs were also significantly downregulated 
(NES=‑3.36; FDR=1.80x10‑4; Fig.  3B) in TCGA dataset. 
Principal component analysis indicated that consistent DEGs 
retrieved from GSE71187 were able to distinguish CRC 
samples from adjacent healthy tissues in TCGA paired data 
(Fig. 3C and D).

Random walk in merged biological network to identify 
genes significantly affected by carcinogenic dysregulation. 
The identified consistent DEGs were projected onto the 
merged a priori knowledge‑based biological network and 
subsequently, the largest connected component was obtained, 
composed of these consistent DEGs and their one‑step 
neighbors (Fig. 4A). Finally, 35 genes significantly affected 
by carcinogenic dysregulation were successfully identified 
through the RWR algorithm (Fig. 4B). It was indicated that 
this network approximated the scale‑free network topology 
of a transcriptional regulatory network (Fig. 4C), indicating 
that the merged network functioned as a small‑world phenom-
enon (20). The largest connected component contained 173 
consistently upregulated DEGs, 320 downregulated DEGs, 
1,901 one‑step neighbors and 21,691 interactions (Fig. 4D). 
Furthermore, DEGs and interactions were weighted with prog-
nostic association by quantifying the survival association and 
with gene‑to‑gene co‑expression by quantifying the biological 
affinity, using 52 CRC microarray data and corresponding 

Figure 1. Schematic of methodology adopted in the present study. HPRD, Human Protein Reference Database; KEGG, Kyoto Encyclopedia of Genes and 
Genomes; SAM, significance analysis of microarrays.
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survival information in GSE71187. The initial probability 
vector p0 was calculated by normalizing score vector (n=493) 
so that the sum of the vector equaled 1. When the steady state 
was achieved, genes in the connected component, including 
493 source nodes, were scored with p∞ (n=2,394, output of 
random walk algorithm). Genes with significantly high score 
were referred to as the most affected ones by large‑scale 
molecular dysregulations during carcinogenesis. Therefore, 
35 genes significantly affected by carcinogenic dysregulation 
were collected through 10,000 permutations.

Validation of the prognostic value of the genes significantly 
affected by carcinogenic dysregulation. GSE71187 CRC survival 
data, TCGA RNA sequencing data, and datasets GSE14333, 
GSE17536, GSE39582 and GSE28722 were used to evaluate the 
prognostic value of the 35 genes significantly affected by carcino-
genic dysregulation. The EM value of the candidate module was 
calculated based on their first principal component. Kaplan‑Meier 
survival analysis was used to illustrate the difference of survival 

status between the two EM‑assigned groups in each dataset. The 
result of the survival analysis indicated a satisfactory perfor-
mance of the 35 genes significantly affected by carcinogenic 
dysregulation in all six independent cohorts (GSE71187, n=52, 
P=0.028; TCGA, n=377, P=0.0068; GSE14333, n=226, P=0.016; 
GSE17536, n=177, P=0.0072; GSE39582, n=566, P=0.0073; 
GSE28722, n=125, P=0.041; Fig. 5). All genes were significantly 
dysregulated during CRC carcinogenesis in TCGA paired data 
(P<0.05; Fig. 6), with the exception of hepsin (P=0.350) and GLI 
family zinc finger 1 (P=0.906).

Confirmation of the prognostic value of the 35 genes signifi‑
cantly affected by carcinogenic dysregulation. Meta‑analysis 
of 35 significant mRNAs in six independent cohorts was 
conducted with a fixed‑effects model and a random‑effects 
model (Fig.  7). The Cox proportional hazards regression 
model was used to evaluate the independence of the prognostic 
factors in a stepwise manner (Table I). In each independent 
cohort, samples with age, sex and American Joint Committee 

Figure 2. Collection of consistent DEGs and GO enrichment analysis. (A) Heatmap of 1,282 consistent DEGs, including 405 upregulated DEGs and 877 down-
regulated DEGs, in human healthy colorectal samples and in CRC precancerous and cancer samples. Unsupervised clustering algorithm was used to cluster 
DEGs with a similar expression pattern during colorectal carcinogenesis. (B) GO enrichment analysis of consistent DEGs. Bar length represented the‑log10 
transformed FDR value. The results revealed that upregulated consistent DEGs indicated the genes that were associated with ‘immune response’, while 
downregulated DEGs indicated the genes that were associated with ‘cell development’ processes. FDR, false discovery rate; DEGs, differentially expressed 
genes; CRC, colorectal cancer; GO, Gene Ontology.
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Figure 3. GSEA analysis of consistent DEGs using TCGA paired data set. GSEA analysis was conducted with the consistent (A) upregulated and (B) down-
regulated DEGs. The two gene groups revealed a concordant differential expression pattern in TCGA paired data sets (FDR<0.001). Principal component 
analysis was conducted with the consistent (C) upregulated and (D) downregulated DEGs, indicating that consistent DEGs retrieved in the GSE71187 dataset 
were able to distinguish CRC samples from adjacent healthy tissues. PCA, principal component analysis; GSEA, gene set enrichment analysis; FDR, false 
discovery rate; CRC, colorectal cancer; DEGs, differentially expressed genes; TCGA, The Cancer Genome Atlas.

Figure 4. Random walk of consistent DEGs in merged biological network. (A) The biggest connected component containing 2,394 genes and 21,691 edges. 
Consistent DEGs were regarded as source nodes and the rest genes in the network were target nodes. (B) The heatmap of the 35 genes in GSE71187. Rows 
represent 35 significant genes, which were clustered UCA, while columns represent samples, which are divided into two groups according to their corre-
sponding EM value. (C) The network degree approximating the scale‑free network topology of a transcriptional regulatory network. (D) Pie chart of 3 gene 
groups in the biggest connected component. UCA, unsupervised clustering algorithm; EM, eigengene of the module; DEGs, differentially expressed genes.
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on Cancer staging information were used to perform Cox 
analysis, with the exception of GSE28722, since the dataset 
does not contain sex information. The results indicated that 

the expression of these 35 genes (as indicated by the EM value) 
was confirmed as significant in all six cohorts based on the 
univariate analysis, and as an independent prognostic factor 

Figure 5. Kaplan‑Meier survival analysis of the 35 significant genes in six study cohorts, of which the patients are divided into two EM‑assigned groups. EM, 
eigengene of the module; GSEA, gene set enrichment analysis; TCGA, The Cancer Genome Atlas.

Figure 6. Boxplot of 35 genes significantly affected by carcinogenic dysregulation in TCGA paired data. This illustration indicated that all the genes within 
this gene signature were significantly dysregulated during colorectal cancer carcinogenesis according to TCGA paired data, with the exception of HPN and 
GLI1. HPN, hepsin; GLI1, GLI family zinc finger 1; TCGA, The Cancer Genome Atlas.
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in four out of six cohorts, with the exception of GSE71187 
(P=0.131) and GSE17536 (P=0.063).

Discussion

The concept of biological pre‑determinism was first proposed 
in a study by MacDonald, which stated that clinical outcome 
is possibly pre‑determined by the intrinsic natural history of 
cancer (21). A previous study of a mammary intraepithelial 
neoplasia model indicated that precancerous cells possess 
the malignant inclination for latency and distant metastasis, 
independent of further genetic alterations  (22). Invasive 
behaviors were also discovered in the precancerous stage, 
suggesting that cancer cell dissemination may happen prior 
to tumor formation (23). The aforementioned studies indi-
cated that the ability of cancer cells to invade and metastasize 
may be acquired at a precancerous stage. This concept was 
also addressed in a previous study (24). Therefore, consistent 
DEGs continuously activated or inactivated in precancerous 
and cancer stages may increase the knowledge on the essen-
tial molecular dysregulations during carcinogenesis, and aid 
in the identification of prognostic biomarker and potential 
therapeutic targets.

GO analysis indicated that consistent DEGs were 
significantly enriched in immune response and develop-
ment‑associated processes (Fig. 2B). It has been reported that 
chronic infection and inflammation contribute to ~25% of all 
cancer types worldwide, particularly in CRC (25). The molec-
ular similarities between malignancies and corresponding 

developing samples have been reported in respect to transcrip-
tion factor activity (26), chromatin structural regulation (27) 
and other signaling pathways (28). Important molecules have 
been indicated to be activated or inactivated simultaneously 
in development and carcinogenesis processes. For example, 
patched 1 is a key regulator for embryonic development and 
skin carcinogenesis (29). Furthermore, a fetus could also evade 
maternal immune‑surveillance by adopting similar molecular 
mechanisms to tumors (30). In the present study, GO results of 
consistent DEGs confirmed that the molecular dysregulations 
associated with immunity and development regulation may 
serve an important role in CRC carcinogenesis, as indicated in 
previous investigations.

In the present study, RWR, a simple and effective compu-
tational strategy, was used in a merged biological network to 
identify genes affected by multistage molecular dysregulation. 
The RWR algorithm was used to establish gene to disease asso-
ciations in a priori knowledge‑based networks, as it performed 
superiorly compared with other methods (31‑33). The advan-
tage of this computational strategy is subtly combining 
dysregulation status of one's own data with putatively accepted 
prior knowledge, rendering genes significantly affected by 
carcinogenic dysregulation with certain biological and clinical 
associations. Furthermore, consistent DEGs were weighted 
with survival association and the edges were weighted with 
co‑expression association. Therefore, genes identified through 
RWR algorithm possibly contained specific genes undergoing 
considerable dysregulations during carcinogenesis. Gene 
signatures derived from one data type should be extensively 

Figure 7. Forest plots of the association between the 35 identified genes and survival in patients with colorectal cancer. (A) Forest plot of the 35 genes with the 
six independent cohorts using fixed effects model, calculated by pooling all the effect sizes from the six independent cohorts. (B) Forest plot using random 
effects model. HR, hazard ratio.
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tested in other published datasets in order to increase the 
validity of the whole analysis. Therefore, additional published 
CRC data were also used to test the validity of these 35 genes 
significantly affected by carcinogenic dysregulation. A total of 
six independent cohorts were used to evaluate the prognostic 
value of these 35 mRNAs significantly affected by carcinogenic 
dysregulation. Kaplan‑Meier survival analysis was conducted 
to distinguish the actual survival association between the 
two EM‑assigned groups in each dataset. The first principal 
component captured the greatest amount of total variance in 
the profiles and was calculated for each patient. Patients were 
then divided into two groups of equal size based on the rank 
order of PC1 across their tumor profiles. This method has 
been frequently used in previous studies (19,34‑36). The result 
indicated that the 35 genes significantly affected by carcino-
genic dysregulation performed well in all six independent 

cohorts (Fig. 5), suggesting a profound prognostic value of the 
35 identified genes. The significance of these identified genes 
in CRC was also supported by a review of the literature. For 
example, EPH receptor B2 could substantially reduce migration 
and invasiveness of colonic tumor implants (37), functioning 
as a key regulator in CRC carcinogenesis and prognostic 
prediction (38,39). The promoter of spartin, variously methyl-
ated in colorectal carcinomas, adenomas and normal mucosa 
samples (40), was found to be a highly specific and sensitive 
biomarker for screening CRC (41). Furthermore, Cox analysis 
revealed that the 35 identified genes were unanimously signifi-
cant in univariate analysis, validating their association with 
survival in patients with CRC.

In conclusion, the global expression profiles of human 
healthy colorectal mucosae, precancerous and CRC samples 
were downloaded to identify genes with profound prognostic 

Table I. Univariate and multivariate analyses of survival in patients with colorectal cancer in six test cohorts.

	 Univariate cox regression	 Multivariate cox regression
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ 
Factors	 HR (95% CI)	 P‑value	 HR (95% CI)	 P‑value

GSE71187
  Age (years)	 0.959 (0.928‑0.991)	 0.013	 0.961 (0.927‑0.997)	 0.034
  Sex (male/female)	 1.777 (0.768‑4.115)	 0.179	‑	‑ 
  Stage (III/II)	 2.919 (1.073‑7.942)	 0.036	 2.261 (0.800‑6.393)	 0.124
  EMa	 3.068 (1.241‑7.583)	 0.015	 2.086 (0.804‑5.411)	 0.131
TCGA				  
  Age (years)	 1.027 (1.009‑1.045)	 0.003	 1.038 (1.019‑1.057)	 6.090x10‑5

  Sex (male/female)	 1.244 (0.808‑1.915)	 0.321	‑	‑ 
  Stage (III+IV/ I+II)	 2.750 (1.759‑4.299)	 9.190x10‑6	 3.101 (1.949‑4.932)	 1.769x10‑6

  EMa	 1.815 (1.172‑2.809)	 0.008	 1.610 (1.031‑2.513)	 0.036
GSE14333				  
  Age (years)	 1.015 (1.002‑1.028)	 0.020	 1.013 (1.001‑1.026)	 0.042
  Sex (male/female)	 0.877 (0.651‑1.182)	 0.390	‑	‑ 
  Stage (Duke C/A+B)b	 0.878 (0.638‑1.207)	 0.422	‑	‑ 
  EMa	 1.456 (1.072‑1.976)	 0.016	 1.395 (1.025‑1.901)	 0.035
GSE17536				  
  Age (years)	 1.007 (0.989‑1.025)	 0.473	‑	‑ 
  Sex (male/female)	 1.105 (0.694‑1.759)	 0.674	‑	‑ 
  Stage (III+IV/I+II)	 4.220 (2.387‑7.459)	 7.275x10‑7	 3.934 (2.215‑6.985)	 2.934x10‑6

  EMa	 1.899 (1.180‑3.055)	 0.008	 1.576 (0.976‑2.545)	 0.063
GSE39582				  
  Age (years)	 1.024 (1.012‑1.036)	 8.793x10‑5	 1.026 (1.014‑1.038)	 2.356x10‑5

  Sex (male/female)	 1.314 (0.983‑1.756)	 0.065	‑	‑ 
  Stage (III+IV/I+II)	 1.761 (1.322‑2.347)	 1.109x10‑4	 1.762 (1.319‑2.354)	 1.257x10‑4

  EMa	 1.457 (1.094‑1.940)	 0.010	 1.385 (1.038‑1.847)	 0.027
GSE28722				  
  Age (years)	 1.017 (0.997‑1.038)	 0.103	‑	‑ 
  Stage (III+IV/I+II)	 1.205 (0.791‑1.834)	 0.385	‑	‑ 
  EMa	 1.647 (1.011‑2.688)	 0.045	 1.647 (1.011‑2.688)	 0.045

aBased on the median of the EM value to divide samples into two groups. bOnly information based on Duke's staging was available for this 
dataset. HR, hazard ratio; CI, confidence interval; TCGA, The Cancer Genome Atlas; EM, eigengene of the module.
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information and potential clinical application. Consistent 
DEGs that continuously differentiated at precancerous and 
cancer stages were identified. Upregulated consistent DEGs 
were associated with ‘immune response’, while downregu-
lated DEGs were mainly associated with ‘cell development’. 
Furthermore, 35 genes significantly affected by carcino-
genic dysregulation were successfully identified through 
a network‑based RWR algorithm, and the expression of 
these genes was significantly associated with CRC patients' 
survival.
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