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Abstract. The incidence of cancer is increasing at an alarming 
rate despite recent advances in prevention strategies, diagnostics 
and therapeutics for various types of cancer. The identifica-
tion of novel biomarkers to aid in prognosis and treatment for 
cancer is urgently required. Uncontrolled proliferation and 
dysregulated apoptosis are characteristics exhibited by cancer 
cells in the initiation of various types of cancer. Notably, aber-
rant expression of crucial oncogenes or cancer suppressors is 
a defining event in cancer occurrence. Research has demon-
strated that SAD1/UNC84 domain protein‑2 (SUN2) serves 
a suppressive role in breast cancer, atypical teratoid/rhabdoid 
tumors and lung cancer progression. Furthermore, SUN2 
inhibits cancer cell proliferation, migration and promotes 
apoptosis. Recent reports have also shown that SUN2 serves 
prominent roles in resistance to the excessive DNA damage 
that destabilizes the genome and promotes cancer develop-
ment, and these functions of SUN2 are critical for evading 

initiation of cancer. Additionally, increasing evidence has 
demonstrated that SUN2 is involved in maintaining cell 
nuclear structure and appears to be a central component for 
organizing the natural nuclear architecture in cancer cells. The 
focus of the present review is to provide an overview on the 
pharmacological functions of SUN2 in cancers. These find-
ings suggest that SUN2 may serve as a promising therapeutic 
target and novel predictive marker in various types of cancer.
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1. Introduction

Cancers originate from normal cells that gain the ability to 
aberrantly proliferate and eventually turn malignant. These 
cancerous cells then grow clonally into tumors and eventually 
acquire the potential to metastasize (1). Alteration of cellular 
processes is a central component in cancer development, 
including changes in cancer cell growth, apoptosis, migration 
and invasion (2‑6). Inhibition of the abnormal growth of cancer 
cells and the promotion of cancer cell apoptosis are widely 
recognized as crucial goals for intervention of cancer progres-
sion. In addition, dysregulations of oncogenes and cancer 
suppressors tightly correlate with cancer occurrence (7‑9). 
However, the lack of useful cancer biomarkers and targets is 
a major contributor to the high mortality rate and prevalence 
of cancer.

SAD1/UNC84 domain protein‑2 (SUN2), a member of the 
SUN domain protein family, is a key component of linker of 
nucleoskeleton and cytoskeleton (LINC) complex. The nuclear 
architecture functionally provides a framework for organizing 
and regulating diverse processes within cells. Notably, cancer 
cells generally exhibit variety of features indicative of atypical 
nuclei  (10), although the molecular mechanism of these 
phenomena remains to be elucidated. A number of studies 
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have shown that loss of LINC complexes reduces nuclear and 
cellular rigidity, increasing tissue fluidity, promoting invasive 
activity, and inducing cancer progression (10‑12). Interestingly, 
studies have uncovered a fundamental role of SUN2 in 
nuclear structure determination function (13). Therefore, we 
hypothesize that the effects of SUN2 on regulating nuclear 
architecture may affect biological function in cancer cells. 
Indeed, abnormal expression of SUN2 and LINC complexes 
is associated with the occurrence of many human diseases, 
especially cancers (10).

Several studies have also linked SUN2 function with various 
cancers. SUN2 plays SUN2 also plays a cancer suppressor 
role in miR‑221/222‑mediated malignant embryonal tumors 
of the central nervous system (14). Another study confirmed 
that expression of SUN2 was reduced in breast cancer (10). 
Moreover, SUN2 exhibited suppression of lung cancer cell 
proliferation and migration and promotion of lung cancer cell 
apoptosis; SUN2 also enhanced the chemotherapy sensitivity 
of lung cancer cells exposed to cisplatin, and higher SUN2 
level predicts a better overall survival in lung cancer progres-
sion (12). Together these studies indicate that dysregulation of 
SUN2 may be involved in cancer development.

Failure to detect and repair DNA damage leads to genomic 
instability, which is one of the hallmarks that drive cancer 
occurrence (15). Recent reports also suggest that SUN2 exhibits 
resistance to DNA damage and maintaining the genome 
integrity (16). Lei et al confirmed that SUN2 is required for 
attenuating excessive DNA damage in mouse embryonic fibro-
blasts (MEFs) from SUN1‑/‑SUN2‑/‑ double knockout mice (16). 
Whether SUN2 participates in maintaining genomic stability 
in other types of cancer needed further validation.

Following recent advances, this review presents recent 
information regarding the functions of SUN2 in the progres-
sion of cancer and discusses the emerging signal pathways 
regulated by SUN2 in cancer.

2. Structure of SUN2

The LINC complex is a nuclear envelope protein complex 
that mainly consists of SUN and nesprin proteins, connecting 
nuclear lamina and cytoskeletal filaments  (10), LINC 
complex characteristics of architecture framework helps to 
regulate the size and shape of the cell nucleus. Several SUN 
proteins have been identified in several organisms, including 
Schizosaccharomyces pombe Sad1, Caenorhabditis elegans 
UNC‑84 and SUN1, and five human SUN proteins  (17). 
Human SUN proteins can be grouped into two subfamilies 
based on their intracellular localization: SUN1 and SUN2 
are integral membrane components of the inner nuclear 
membrane (INM) (18‑20); SUN3 and the sperm‑associated 
antigen 4 localize to endoplasmic reticulum and outer nuclear 
membrane (ONM) (21,22).

SUN proteins are conserved among all eukaryotes 
and characterized by a C‑terminal 200 amino acid SUN 
domain (18,19,23‑25). SUN proteins form a trimer through 
the SUN domain and exhibits a perfect three‑fold symmetry, 
resembling a cloverleaf (65 Å diameter) sitting on a short stem 
(30 Å of length) (26). As shown in Fig. 1, SUN2 extends into 
the perinuclear space by its C‑terminal SUN domain and 
interacts with nuclear lamina via its nucleoplasmic N‑terminal 

domain (11,27,28). Additionally, SUN2 connects with klar-
sicht/ANC‑1/syne‑1 homology (KASH) domain, providing 
mechanical transduction between the cytoskeleton and 
nuclear interior, directly (19,22,28‑30). Recent reports indicate 
that the SUN domain is at the center of a nucleocytoplasmic 
bridge that is essential for nuclear motility in cells  (31). 
These observations suggest that the structural characteristics 
of SUN2 are crucial for nuclear anchoring, migration, and 
positioning (19,22,29,30,32,33), centromere localization (34) 
and regulating the tethering of meiotic telomere (26). Thus, 
SUN2 may possess anti‑cancer by regulating atypical nuclei 
structures in cancer cells.

3. The role of SUN2 in different cancers

Atypical teratoid/rhabdoid tumors (AT/RTs). AT/RT frequently 
occur in children. However, the pathogenesis of AT/RT 
remains to be uncovered. Several studies have indicated that 
the miR‑221/222 gene cluster serves as an oncogenic miRNA 
in several types of human cancer (35,36). Recently, miRNome 
and transcriptome traits in AT/RT were evaluated using small 
RNA sequencing and gene expression microarray analyses. 
Hsieh et al showed that miR‑221/222‑encoded miRNAs are 
abundantly expressed in AT/RT and substantially contribute 
to the malignancy of embryonal tumors (10). In AT/RT cells, 
overexpression of miR‑221/222 leads to faster cell growth, 
and this observation is supported by previous reports that 
miR‑221/222 promotes AT/RT malignancy and tumor growth 
in nude mice (14). AT/RT tissue microarray demonstrated that 
SUN2 is markedly decreased in AT/RT specimens. miRNAs 
generally execute their cellular functions through regulating 
target gene expression. Notably, miR‑221/222 promotes cancer 
cell proliferation and tumor malignancy by targeting SUN2 
mRNA in AT/RT, directly. Adherent cell growth of human 
medulloblastoma Daoy and human ATRT CHLA‑02‑ATRT 
cells was significantly increased upon transfection of SUN2 
short hairpin‑producing plasmids, parallelly, while over-
expression of SUN2 reduced the proliferation rate  (14). 
Together these studies show that SUN2 plays a critical role 
in miR‑221/222‑mediated AT/RT malignancy, indicating that 
SUN2 may be a promising target of AT/RT. For the first time, 
SUN2 was demonstrated closely relate to cancer initiation and 
progression.

Breast cancer. Several studies have provided evidence that 
abnormalities of the LINC are associated with complex altera-
tion of biological processes and cancer occurrence. Reduced 
expression of lamin A/C was detected in colon cancer (37), 
small cell lung cancer (38), leukemias and lymphomas (39,40). 
However, lamin A/C is overexpressed in colorectal cancer (41), 
prostate cancer (42), and skin cancer (43,44). Therefore, the 
precise relationship between LINC complex components 
and the clinical significance of cancer still has not yet been 
well elucidated. In the present study, evaluation of four LINC 
complex and nuclear lamina components, SUN1, SUN2, 
nesprin‑2, and lamin A/C, in breast cancer was performed. 
Matsumoto et al collected 73 breast cancer samples and found 
lower expression levels of LINC components in tumor regions 
compared with cancer‑associated noncancerous regions (11). 
Furthermore, decreased expression of SUN2 was detected in 



ONCOLOGY LETTERS  17:  1401-1408,  2019 1403

several breast cancer cell lines compared with noncancerous 
mammary gland cells in vitro. Together this demonstrates 
that the expression of SUN2 is attenuated in human breast 
cancer clinical specimens, indicating that SUN2 may have 
fundamental pathological functions in human breast cancer 
progression.

Lung cancer. Previous studies have demonstrated that SUN2 
exhibits anti‑cancer functions in lung cancer progression. 
Higher SUN2 expression predicts a better overall survival 
(OS) in lung cancer (12). Lv et al confirmed that expression 
level of SUN2 was significantly reduced in lung cancer 
tissues compared with paired normal tissues using Oncomine 
Database (12). According to the Protein Atlas Database, the 
expression of SUN2 is reduced in 75% (9 out of 12) of lung 
cancer tissue samples (12). Furthermore, in a previous study 
evaluating the relationship between SUN2 and lung cancer, 
lung cancer samples were subdivided into two groups and 
OS was analyzed. Individuals with lower SUN2 expression 
levels exhibited shorter OS than those with high SUN2 
expression level  (12). Together this indicates that down-
regulation of SUN2 in lung cancer progression and higher 
expression of SUN2 may predict a good outcome in human 
lung cancer occurrence. Additionally, ectopic expression of 
SUN2 inhibited lung cancer cell proliferation and colony 
formation abilities, and chemotherapy sensitivity to cisplatin 
treatment was increased when SUN2 was overexpressed in 
lung cancer cells. Further, knockdown of SUN2 promoted 
lung cancer cell proliferation and migration (12). Together 
these observations suggest that SUN2 is a key player in lung 
cancer development.

4. SUN2 and DNA damage

Cancers research remains a challenge to researchers, as 
genomic instability causes a constantly changing genetic 
profile of cancer occurrence  (45). Failure of the DNA 
damage response (DDR) leads to genomic instability, 

which is one of enabling hallmarks that drive cancer occur-
rence (46). Phosphorylation of ataxia telangiectasia mutated 
(ATM) and H2A.X are among the earliest events in response 
to DNA damage  (47‑49). Recent studies showed that the 
expression level of γ‑H2A.X is significantly reduced in 
MEFs isolated from SUN1‑/‑SUN2‑/‑ double knockout mice 
compared with wild‑type mice. Although ATM is activated 
by 0.1 mM of hydroxyurea (HU) in wild‑type MEFs, ATM 
is not activated by HU in SUN1‑/‑SUN2‑/‑ MEFs (16). There 
was no significant difference in tail moment between 
wild‑type and SUN1‑/‑SUN2‑/‑ MEFs in the absence of methyl 
methane‑sulfonate (16), which induces DNA damage (50). 
Interestingly, after treatment of SUN1‑/‑SUN2‑/‑ MEFs with 
methyl methane‑sulfonate, a substantial increase occurred in 
the number of cells with prominent comet tails, indicative 
of DNA fragmentation (16). These observations reveal that 
DNA damage may accumulate rapidly in SUN1‑/‑SUN2‑/‑ 
MEFs.

Phosphorylated checkpoint kinase‑1 (Chk1), a cell‑cycle 
checkpoint factor downstream of the DDR pathway, is reduced 
in SUN1‑/‑SUN2‑/‑ MEFs compared with wild‑type mice (16). 
In addition, perinuclear heterochromatin is decreased in 
SUN1‑/‑SUN2‑/‑ MEFs, indicating that SUN1 and SUN2 partic-
ipate in maintaining genomic stability, possibly by affecting 
DDR or DNA repair. Furthermore, MEFs from SUN1‑/‑SUN2‑/‑ 
mice exhibit a premature proliferative arrest at the S phase 
of cell cycle and increase in cell apoptosis (16,51,52), leading 
to the death of SUN1‑/‑SUN2‑/‑ mice shortly after birth. 
These reports suggest that SUN2 may have crucial effects on 
evading cancer occurrence by its involvement in the DDR, and 
eliminating DNA lesions, maintaining genome stability and 
integrity.

SUN2 also interacts with DNA‑PKcs that are potentially 
involved in the DDR, especially in DNA repair (16). Of note, 
cancer cells exhibit a high rate of proliferation and metabolic 
activities and DNA‑PKcs plays an active part in regulation 
of cell proliferation (53). Of further interest, a previous study 
demonstrated that SUN2 exhibits suppression of cancer cell 

Figure 1. Schematic representation of SUN2 at the nuclear envelope. In the nuclear envelope, SUN2 exhibits a three‑fold symmetry with its C‑terminal extending 
into the perinuclear space and its nucleoplasmic N‑terminal interacting with nuclear lamina. SUN2 connects with actin binding domain through binding to the 
KASH domain of Nesprin in cytoplasmic. The structure of SUN2 is functions as a bridge between the nuclear membrane and cytoplasm. SUN2, SAD1/UNC84 
domain protein‑2; KASH, klarsicht/ANC‑1/syne‑1 homology; PNS, perinuclear space; INM, inner nuclear membrane; ONM, outer nuclear membrane.
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proliferation activity. In summary, uncovering the function 
of DNA‑PKcs/SUN2 in regulation of cancer cells may offer 
potential avenues for cancers treatment.

5. Overview of SUN2 signaling pathways in cancer

MiR‑221/222. miRNAs mainly function by regulating the 
expression of target genes at the post‑transcriptional level. 
Up‑regulation of miR‑221/222 is associated with initiation 
and progression of breast cancer (54‑59), liver cancer (60‑63), 
pancreatic cancer (64‑68), gastric cancer (69‑73), colorectal 
cancer (74‑78), glioma (79‑85), multiple myeloma (86‑89), and 
malignant melanoma (90,91). TargetScan indicated a poten-
tially favorable interaction between miR‑221‑3p/miR‑222‑3p 
and an 8‑mer site at the position 255‑262 in the SUN2 
3'‑untranslated region (3'UTR). Luciferase assays demon-
strated that both miR‑221‑3p and miR‑222‑3p directly bind 
to the recognition element and reduce activity of Luc fused 
to full‑length 3'UTR of SUN2 (14). Moreover, correlation 
coefficients (Pearson's r) between SUN2 and miR‑221‑3p 
as well as SUN2 and miR‑222‑3p are ‑0.777 and ‑0.802, 
respectively, indicating negative correlation between SUN2 
and miR‑221/222 in AT/RT and medulloblastoma (MB) (14). 
A previous report also showed that the transcript and protein 
level of SUN2 was reduced after ectopic expression of 
miR‑221/222, further supporting SUN2 as a direct target of 
miR‑221/222. Increasing numbers of studies illustrate that 
expression of miR‑221/222 induces cancer cell proliferation 
and invasion by inhibiting cancer suppressors and apoptotic 
genes  (92). Over‑expression of miR‑221/222 significantly 
increases cell proliferation, while over‑expression of both 
miR‑221/222 and the complete coding sequence (CDS) 
of SUN2, which possesses no miR‑221/222 recognition 
elements, counteracted the pro‑proliferative effects  (14). 
Together this suggests that one of the crucial pathways of 
miR‑221/222 increasing cancer cell proliferation may occur 
by down‑regulating SUN2 expression (Fig. 2).

SIRT5. Silent information regulator‑5 (SIRT5) is a key 
component of the sirtuin family. SIRT5 expression has been 
associated with cancer prognosis and survival (93) via stimu-
lating cancer cell proliferation and tumor growth, attenuating 
the tumor‑type metabolism (94). Of note, the expression of 
SIRT5 is decreased in squamous cell carcinoma  (95) and 
endometrial carcinoma (96). Thus, inhibition of SIRT5 may 
become a potential strategy to suppress the progression of 
cancers  (97). Nevertheless, SIRT5 has also been found to 
have negative implications in certain types of malignan-
cies (98). For instance, SIRT5 is highly expressed in human 
non‑small cell lung cancer (NSCLC) and facilitates tumor 
growth and drug resistance (99). SIRT5 is also downregulated 
with histone deacetylase (HDACs) inhibitor treatment (100), 
while SUN2 expression dramatically increased in response 
to nicotinamide, an inhibitors of HDAC  (101,102), indi-
cating that SUN2 may be regulated by SIRT5. Additionally, 
ectopic expression of SIRT5 significantly reduced SUN2 
expression, while knockdown of SIRT5 dramatically 
increased SUN2 expression. Expression of SIRT5 inversely 
correlates with SUN2, indicating that SIRT5 acts as a nega-
tive regulator of SUN2, at least in part (12). The precise role 

of SIRT5/SUN2 as a novel axis in the regulation of different 
types of cancers is currently unclear, and the relationship 
between SUN2 with cancer occurrence related to SIRT5 
requires further exploration.

Warburg effect. Compared with normal cells, cancer cells 
exhibit a unique metabolism (103) to promote cell growth, 
survival, proliferation and long‑term maintenance and 
fulfill the energetic demands of activities required for 
cancer cells (104). Studies have shown that the majority of 
cancer cells preferentially use aerobic glycolysis instead of 
oxidative phosphorylation to meet their increased energetic 
and biosynthetic demands (105,106). This shifted metabolic 
patterning is known as the Warburg effect and is associated 
with cancer development  (106,107). Glucose transporter‑1 
(GLUT1) and lactate dehydrogenase A (LDHA), two key 
genes closely related to the Warburg effect, are needed for 
glucose uptake and conversion of pyruvate to lactate in cancer 
development (108). Recently, Recent studies demonstrated 
inverse correlations between SUN2 and GLUT1 as well as 
between SUN2 and LDAH. Ectopic expression SUN2 mark-
edly decreased GLUT1 and LDHA expression levels, while 
knockdown of SUN2 increased expression of GLUT1 and 
LDHA (12). These results indicate that SUN2 may suppress 
cancer progression via attenuating the Warburg effect, at least 
in part. Though majority of cancer cells preferentially use 
aerobic glycolysis instead of oxidative phosphorylation to meet 

Figure 2. The potential target genes of SUN2 and SUN2‑mediated effects 
implicated in cancer. The JAK signaling pathway‑related PI3K/AKT 
and STAT pathways participate in the occurrence of cancers. Among the 
members of these pathways, STAT5 plays a role in the inhibition of SUN2. 
Ectopic expression of miR‑221/222 reduces the expression of SUN2. Notably, 
SUN2 exhibits crucial functions in the cancer cell cycle, and SUN2 may 
exert effects on cancer cell apoptosis by regulating the cleavage of PARP. 
Besides, SUN2 influences cancers progression by contacting GLUT1 and 
LDHA to attenuate the Warburg effect. During DNA damage response, 
SUN2 interacts with DNA‑PKcs, which are involved in DNA repair and 
proliferation in cancer cells. JAK, janus protein tyrosine kinase; PTEN, 
phosphatase and tensin homology deleted on chromosome; PI3K; phospha-
tidylinositol 3‑kinase; AKT, protein kinase B; SIRT5, silent information 
regulator‑5; GLUT1, glucose transporter‑1; LDHA, lactate dehydrogenase A; 
PARP, poly (ADP‑ribose) polymerase; DNA‑PKcs, DNA‑dependent protein 
kinase catalytic subunit.



ONCOLOGY LETTERS  17:  1401-1408,  2019 1405

their increased energetic and biosynthetic demands (105,106). 
Prostate cancer does not exhibit Warburg effect, an increase 
in glucose uptake  (109). Herein, we cannot conclude that 
SUN2 exerts its anti‑cancer effects in all types of cancers by 
inhibiting the Warburg effect.

PARP. Poly (ADP‑ribose) polymerase (PARP) is verified as 
tightly correlated with cellular functions, such as DNA repair 
and transcriptional and posttranscriptional modulation of 
oncogenic gene expression, ultimately modulating carcinogen-
esis (110). Several studies suggested that PARP interacts with 
breast cancer (111), ovarian cancer (112), prostate cancer, lung 
cancer, gastric cancer and hepatocellular carcinoma (113,114). 
Cleavage of PARP is a well‑known marker of cell apoptosis, 
and interestingly, higher expression level of SUN2 increases 
PARP cleavage events (12). Together this suggests that SUN2 
expression may inhibit cancer progression by regulating 
PARP‑mediated cell apoptosis.

6. Conclusion and prospective

Overall, the complete underlying molecular mechanisms 
of cancers are still poorly elucidated. Many studies have 
established that dysregulations of oncogenes and cancer 
suppressor genes distinctly correlate with the initiation 
and progression of cancers. As outlined in this review, we 
discussed recent insights into the function of SUN2 in cancer 
progression. SUN2, as an anti‑cancer member, participates 
in AT/RT, breast cancer and lung cancer by regulating 
biological processes in cancer cells, including cell cycle, 
apoptosis and migration. In addition, deficiency of SUN2 
distinctly induces DNA damage, which is critically involved 
in cancer initiation.

Of note, SUN2 is widely expressed in different organs 
and tissues, such as the heart, brain, spleen, lung, liver, skel-
etal muscle, testis and embryos (17). Previous studies have 
shown an involvement of SUN2 in human cancers, such as 
cervical carcinoma, colorectal cancer, esophageal carcinoma 
and oral cavity squamous cell carcinoma. Furthermore, 
recent findings in fission yeast suggest that SUN2 may 
serve as a predictor and prognostic biomarkers in cancer. 
Therefore, we hypothesize that SUN2 may act as a potential 
biomarker in multiple cancer cell types. However, current 
findings suggest that SUN2 may present different functions 
in various cancers, and thus, we cannot definitively conclude 
that SUN2 solely functions as a cancer suppressor in all 
types of cancers. Undoubtedly, the precise functions and 
potential signaling pathways of SUN2 in cancer progression 
remain to be elucidated, and further studies and validations 
are urgently needed.
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