
ONCOLOGY LETTERS  17:  3677-3686,  2019

Abstract. Ovarian cancer (OC) is the most common and lethal 
gynecologic malignancy. The pathophysiology of OC tumor 
development is complex and involves numerous biological path-
ways. Previous studies suggest that circular (circ)RNAs serve 
important roles in OC tumor pathology. In the present study, a 
re‑annotation strategy was performed to evaluate the expres-
sion level of circRNAs based on a microarray dataset obtained 
from the Gene Expression Omnibus database. Univariate 
and multivariate Cox regression analyses were performed to 
evaluate the association between survival and expression of 
circRNAs in each OC cohort. An expression‑based risk score 
model was constructed to extrapolate the prognostic efficacy 
of this signature. In the GSE9891 dataset, the 278 OC patients 
were randomly divided into training and validating groups. 
A six‑circRNA signature was significantly associated with 
overall survival in the training and validating datasets. The 
risk score model was further validated in GSE63885 and 
GSE26193 datasets. The six‑circRNA signature was also 
significantly associated with patient progression‑free survival 
and disease‑free survival. Further investigation revealed that 
the signature had higher area under the curve values than the 
existing clinical and other molecular signatures in predicting 
survival. In conclusion, the present study revealed that the 
six‑circRNA signature may serve as a potential prognostic 
biomarker of OC.

Introduction

Ovarian cancer (OC) is the most common gynecologic 
malignancy and remains the leading cause of cancer‑related 
mortality worldwide (1). Despite advances in chemotherapy 

and surgical treatment, the 5 year survival rate of OC is ~30% 
due to its frequent recurrence (2). Negative outcome of OC 
are mainly due to asymptomatic stages, rapid metastasis and 
chemotherapy resistance (3). Although the understanding of 
OC is constantly progressing, its underlying molecular mecha-
nisms remain unclear. Most patients with OC have developed 
metastases by the time of their first diagnosis (4). There is 
therefore an urgent need to identify potential prognostic 
biomarkers for the prediction of OC clinical outcomes.

Circular RNAs (circRNAs) are produced from 
back‑splicing of precursor mRNAs and represent a novel class 
of endogenous noncoding RNAs  (5). These mRNAs have 
been considered for decades as abnormal splicing products of 
RNAs due to their low expression levels. Alongside the devel-
opment of high‑throughput sequencing and bioinformatics 
technologies, recent studies have confirmed that circRNAs 
are abundant, stable and conserved in mammalian cells (6‑8). 
The involvement of circRNAs in cancer pathology is there-
fore intensively studied. It has been reported that circRNAs 
negatively modulate micro (mi)RNA expression by harboring 
their binding sites, and subsequently further affect the levels of 
downstream mRNA (9). For example, the circRNA of ciRS‑7 
sequence works as a competing endogenous RNA that sponges 
the miRNA miR‑7, which leads to an increase in miR‑7 targets 
expression in various types of cancer  (10). Furthermore, 
RNA‑sequencing analyses revealed that circRNAs are 
enriched in cancer cell‑derived exosomes (11). A recent study 
reported that a large amount of long RNA species, including 
circRNAs, are detected in human blood‑derived exosomes (12). 
These studies indicate that circRNAs may serve as potential 
biomarkers in cancer diagnosis and help monitor cancer 
progression. Although circRNAs have roles in oncogenesis 
and tumor progression, their role in OC remains unclear.

The present study aimed to identify potential circRNA 
signatures that could predict the survival of patients with OC. 
A re‑annotation strategy was performed to evaluate the expres-
sion level of circRNAs based on microarray datasets obtained 
from the Gene Expression Omnibus (GEO) database. In the 
GSE9891 dataset, a signature comprising six circRNAs asso-
ciated with survival was identified. An expression‑based risk 
score model was designed to extrapolate the prognostic efficacy 
of this signature. The risk score model was further validated 
in GSE63885 and GSE26193 datasets. The results demon-
strated that the signature was significantly associated with 
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patient overall survival (OS), progression‑free survival (PFS) 
and disease‑free survival (DFS). Further analysis revealed 
that this signature was more sensitive and specific than the 
existing clinical and other molecular signatures in predicting 
survival. In conclusion, the present study demonstrated that 
the six‑circRNA signature may serve as a potential prognostic 
biomarker of OC.

Materials and methods

The expression dataset of OC. Three independent OC datasets 
(Affymetrix HG‑U133_Plus_2.0 array platform) GSE26193 
(n=107), GSE9891 (n=278) and GSE63885 (n=75), were down-
loaded from the GEO database (https://www.ncbi.nlm.nih.
gov/geo/).

Re‑annotation of circRNAs from microarray dataset. A 
re‑annotation strategy was performed to identify the circRNAs 
from microarray dataset (13). The circRNA transcripts were 
downloaded from circBase (hg19; http://www.circbase.
org/) (14). The SeqMap tool was used to map probes to circRNA 
transcripts (15). In the mapping procedure, mismatches were not 
allowed in mapping probes to circRNA transcripts. Probes that 
were uniquely mapped to circRNAs were retained. To further 
purify probes that were specific to circRNAs, probes that also 
mapped to other transcripts were excluded based on GENCODE 
(v19) (https://www.gencodegenes.org/) annotation and RefSeq 
(GRCH37) database (https://www.ncbi.nlm.nih.gov/refseq/). 
With regards to probes that mapped the same circRNA, the 
arithmetic mean expression value was used. A total of 630 
circRNAs were eventually identified from the microarray data.

Clinical information of patients with OC. Clinical characteris-
tics of patients with OC were derived from series matrix file or 
supporting information of the corresponding dataset available 
in the GEO database. Patients with OC from GSE9891 were 
randomly assigned into two groups as training (n=139) and 
validating (n=139) datasets. There were no significant differ-
ences in the clinical characteristics between the two groups 
(P>0.05). Detailed clinical characteristics obtained from these 
datasets are presented in Table I.

Statistical analysis. Student's t‑test was used to determine 
the difference of age and survival time between training and 
validating groups. χ2 and Fisher's exact tests were used to 
determine the difference of stage, grade, malignancy, recur-
rence and survival status between training and validating 
groups. Univariate and multivariate Cox regression analyses 
were performed to evaluate the association between survival 
and circRNAs expression in each OC cohort. The random 
survival forests variable hunting (RSFVH) algorithm was 
carried out to select important predictors (16). This strategy 
has been used in a previous study to identify prognostic 
lncRNAs in OC (17). The risk score for each patient with OC 
was calculated according to the linear combination of the 
expression values weighted by the coefficient from univariate 
Cox regression analysis as follows:

where βi is the Cox regression coefficient of a circRNA and n 
is the number of circRNAs regulated by the same TF. Exp(ci) is 
the expression value of circRNA i in the corresponding patient. 
The median risk score was used as the cutoff point to divide 
the patients into high and low risk groups. Kaplan‑Meier (KM) 
survival curves were plotted for patients in different risk 
groups, and statistical significance was assessed by the 
log‑rank test (P<0.05). A time‑dependent receiver operating 
characteristic  (ROC) curve analysis was performed using 
an R  package named survivalROC (https://cran.r‑project.
org/web/packages/survivalROC/). The function roc.KM.calc 
returns the true positive (TP) and false positive (FP) values 
at the time point of interest. The sensitivity is calculated as 
TP/(TP + false negative), and the specificity is calculated as 
true negative (TN)/(TN+FP). All analyses were performed 
based on R framework (v3.4; https://www.r‑project.org/).

Functional analysis. Pearson correlation coefficients were used 
to evaluate the co‑expression association between circRNAs 
and mRNAs [correlation coefficients >0 and false discovery 
rate (FDR)  <0.05]. For each circRNA, the co‑expressed 
mRNAs were used to perform gene set functional enrichment 
analysis. The R package named clusterProfiler was used to 
predict biological functions of circRNAs based on the gene 
sets of co‑expressed mRNAs (18). Gene Ontology (GO) terms 
of ‘Biological Process’ and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways with FDR <0.05 were considered 
to be significantly enriched.

Results

Identification of potential prognostic circRNAs. To identify 
potential prognostic circRNAs, 278 patients with OC from 
GSE9891 were randomly assigned into two groups as training 
(n=139) and validating (n=139) datasets (Table I). There were 
no significant differences between the two groups in the 
clinical characteristics (P>0.05). A re‑annotation strategy 
was performed to evaluate the expression of circRNAs from 
microarray dataset (Fig. 1A). A total of 630 circRNAs were 
identified from the microarray data. The univariate Cox 
regression analysis was performed for circRNAs expression 
data in the training dataset. A set of 15 circRNAs were signifi-
cantly associated with patient OS at a threshold of P<0.01, of 
which 11 were considered as protective factors with hazard 
ratio (HR) values of 0‑1 (Fig. 1B); however, four circRNAs were 
considered as risk factors for OC with HR values >1 (Fig. 1C). 
To provide a smaller set of circRNAs with more predictive 
efficacy, the RSFVH method  (16) was used to select the 
circRNAs highly associated with OS. Subsequently, a panel 
of six circRNAs (circ_0031356, 0093477, 0110166, 0126526, 
0130590 and 0135175) was identified (Fig. 1D and E). These 
six circRNAs had negative coefficients, which suggested that 
lower expressions were associated with poor OS (Fig. 1B). 
These circRNAs represented protective factors with HR 
values of 0‑1.

A six‑circRNA signature predicts OS in the training and vali‑
dating datasets. A KM survival analysis was performed for the 
six circRNAs based on their expression values in the training 
dataset. The six circRNAs presented significant differences in 
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patient OS between high and low risk groups (log‑rank test 
P<0.05; data not shown). To improve the predictive efficacy of 
the six‑circRNA signature, a risk score formula was developed 
by integrating the expression values and corresponding coef-
ficients derived from Cox regression analysis. A total of 139 
training patients were assigned into a high (n=70) and a low 
risk group (n=69) by using the median risk score as a cutoff 
point (P=4.66x10‑4; Fig. 2A). Furthermore, the prognostic 
efficiency of the six‑circRNA signature was investigated in the 
validating dataset using the same risk score threshold from 
the training set. Based on this strategy, the validating patients 
were also significantly divided into high (n=70) and low risk 
groups (n=69; P=1.03x10‑2; Fig. 2B). KM survival curves for 
the six‑circRNA signature in the 278 patients with OC of 
GSE9891 are presented in Fig. 2C. By using the median risk 
score, the six‑circRNA signature significantly divided all the 
OC patients of GSE9891 into high (n=139) and low risk groups 
(n=139) (P=4.16x10‑2). Distribution of patient risk scores and 

survival status are presented in Fig. 2D‑F. Patients in the low 
and high risk groups tended to have different survival rates.

Validation of the six‑circRNA signature in other independent 
cohorts. To further evaluate the prognostic efficacy of the 
six‑circRNA signature, a survival analysis was performed in 
the two other independent OC datasets GSE26193 (n=107) 
and GSE63885 (n=75) by using the same model construction 
as for the GSE9891 dataset. Patients in these independent data-
sets were given risk scores and classified into high or low risk 
groups. The six‑circRNA signature was significantly associated 
with prognosis in GSE26193 (HR=2.48, 95% CI=1.43‑4.28, 
P=1.17x10‑3) and GSE63885 (HR=2.63, 95% CI=1.40‑4.96, 
P=2.28x10‑3) datasets. In addition, significant association 
between the risk score and OS was observed in the two inde-
pendent datasets (Fig. 3A and B). The distribution of patient risk 
scores and survival status is presented in Fig. 3C and D. Patients 
with higher risk scores were prone to have shorter survival time, 

Table I. Clinical characteristics of different OC datasets.

	 Number of patients with OC
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
	 Training	 Validating	 GSE26193	 GSE63885
Characteristic	 set (n=139)	 set (n=139)	 (n=107)	 (n=75)	 P‑values

Stage					     0.94a

  I	   11	   13	 21	   0
  II	    9	     8	 10	   2
  III	 107	 107	 59	 63
  IV	   12	   10	 17	 10
Age, years					     0.34b

  Mean ± SD	 60.24±10.47	 59.04±10.68	 NA	 NA
  Range	 23‑80	 22‑80	 NA	 NA
Histological grade					     0.73a

  G1	   10	     9	   1	   0
  G2	   51	   44	 33	   9
  G3	   77	   84	 67	 48
  G4	     0	     0	   0	 18
Malignancy					     1a

  Malignant	    9	     9	 NA	 NA
  Low malignant potential	 130	 130	 NA	 NA
Recurrence					     0.90a

  Yes	   94	   96	 80	 70
  No	   45	   43	 27	   5
Survival, months					     0.47b

  Mean ± SD	 30.83±26.61	 32.84±18.69	 49.92±39.60	 42.80±28.89
  Range	 0‑214	 0‑113	 0‑243	 3‑136
  State 					     0.63a

  Survival	   85	   80	 31	   9
  Mortality	   54	   59	 76	 66

The training and validating groups were randomly derived from GSE9891 dataset. The P‑values were calculated by comparing the character-
istics between training and validating groups. Patients with missing stage and grade values were not listed. aP‑values were determined using 
χ2 test or Fisher's exact test when appropriate; bP‑values were determined using Student's t‑test. OC, ovarian cancer; SD, standard deviation.
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whereas patients with lower risk scores tended to have longer 
survival time. These observations were consistent with findings 
obtained from the training and validating datasets.

Prognostic performance of six‑circRNA signature on PFS/DFS. 
The prognostic performance of the six‑circRNA signature 
on PFS and DFS was analyzed. PFS analysis was made on 
GSE9891 (n=275) and GSE26193 (n=107) datasets, while 
DFS analysis was performed on GSE63885 (n=75) dataset. 
The six‑circRNA signature was significantly associated with 
patient PFS in the GSE9891 (HR=1.76, 95% CI=1.16‑2.68, 
P=7.58x10‑3) and GSE26193 (HR=2.17, 95% CI=1.30‑3.61, 
P=2.83x10‑3) datasets. In GSE63885, the six‑circRNA signa-
ture was significantly associated with patient DFS (HR=2.76, 
95% CI=1.38‑5.54, P=4.13x10‑3). In addition, a significant 
association between risk scores and PFS/DFS was observed 
in the three datasets (Fig. 4). In PFS analysis, the six‑circRNA 
signature successfully divide patients from the GSE9891 and 

GSE26193 datasets into high and low risk groups, respec-
tively (Fig. 4A‑C). In DFS analysis, the six‑circRNA signature 
could also significantly separate GSE63885 patients into high 
and low risk groups (Fig. 4D).

Independence of six‑circRNA signature from clinical char‑
acteristics. To evaluate whether the six‑circRNA signature 
was associated with other clinical variables, multivariate Cox 
regression analyses were performed in each OC cohort. The 
six‑circRNA signature and other clinical and pathological 
variables, including age at diagnosis, International Federation 
of Gynecologists and Obstetricians (FIGO) stage and tumor 
grade, were analyzed as covariables  (Table  II). Following 
multivariate Cox regression analysis, the six‑circRNA 
signature was significantly associated with patient survival 
in GSE9891 (P=1.08x10‑4), GSE26193 (P=5.28x10‑3) and 
GSE63885 (P=4.04x10‑3). Furthermore, a time‑dependent ROC 
analysis was performed to assess the sensitivity and specificity 

Figure 1. Pre‑analysis for identification of potential prognostic circRNAs in OC. (A) Evaluation of circRNAs from microarray dataset expression by re‑anno-
tation strategy. (B) Distribution of HR values for circRNAs as protective factors. Error bars represent 95% confidence interval. (C) Distribution of HR values 
for circRNAs as risk factors. (D) Error rate of the random survival forests variable hunting algorithm for the selection of important circRNAs. (E) Variable 
importance values for the top six circRNAs. circRNA, circular RNA; HR, hazard ratio; OC, ovarian cancer.
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of OS prediction between the six‑circRNA signature and other 
clinical and molecular variables, including a panel of eight 
lncRNAs obtained from a previous study (19). The median 
survival time was used as a cutoff point to identify posi-
tive/negative cases. Following comparison of the area under 
the curve (AUC) values of the ROC curves, the predictive value 
of the six‑circRNA signature was higher than other clinical 
and molecular variables in different OC datasets (Fig. 5A‑C). 
In GSE9891, the six‑circRNA signature reached the highest 
AUC value of 0.68. The AUC value of FIGO stage variable 
reached 0.67 in GSE9891; however, it was only 0.59 and 0.43 
in GSE26193 and GSE63885 datasets, respectively. These 
results demonstrated that the six‑circRNA signature was more 
sensitive and specific than the existing clinical and molecular 
signatures in predicting the survival of patients with OC.

Function prediction of six‑circRNA signature. To explore the 
potential functional roles of these six prognostic circRNAs, a 
‘guilt‑by‑association’ analysis (20) was performed to identify 
co‑expressed circRNA‑mRNA pairs on GSE9891 dataset, 
which has the largest samples size. For the six circRNAs, 
functional enrichment analysis was performed based on their 
co‑expressed mRNAs by using clusterProfiler R package (18). 
The results from GO enrichment analysis revealed that the six 
circRNAs were significantly enriched in 24 GO terms based 
on ‘biological processes’ ontology (Fig. 6A). These related 
GO terms could be organized into different functional clus-
ters, including ‘RNA catabolic processes’, ‘ribonucleoprotein 

complex biogenesis’, ‘histone modification’ and ‘methylation’. 
KEGG pathway enrichment analysis revealed that 
circ_0130590 and 0093477 were significantly enriched in 
‘neuroactive ligand‑receptor interaction’ and ‘ribosome’ 
pathways  (Fig.  6B). Circ_0031356, 0126526, 0135175 and 
0110166 were significantly enriched in ‘spliceosome pathway’. 
‘Endometrial cancer’ and certain other signaling pathways 
were enriched by circ_0126526. These results suggested that 
the six circRNAs may participate in numerous biological 
processes involved in OC tumorigenesis.

Discussion

In the present study, a re‑annotation strategy was performed to 
evaluate circRNAs expression from microarray dataset of OC. 
Following univariate Cox regression analysis, 15 circRNAs 
were significantly associated with patients OS. Amongst 
these prognostic candidates, 11 circRNAs were determined as 
protective factors with HR values of 0‑1, while 4 circRNAs 
were determined as risk factors with HR values >1. In addi-
tion, the RSFVH method revealed that a panel of six circRNAs 
(circ_0031356, circ_0093477, circ_0110166, circ_0126526, 
circ_0130590 and circ_0135175) was associated with patient 
OS. Subsequently, an expression‑based risk score model was 
constructed to extrapolate the prognostic efficacy of these 
circRNAs. The results revealed that the six‑circRNA signa-
ture was significantly associated with patient survival in the 
training and validating datasets of GSE9891. The risk score 

Figure 2. OS analysis for the six‑circular RNA signature in GSE9891 dataset. (A) OS curves for training dataset in GSE9891. (B) OS curves for validating 
dataset in GSE9891. (C) OS curves for all dataset in GSE9891. (D‑F) Distribution of risk scores and survival time in low and high risk groups of patients with 
ovarian cancer. OS, overall survival.
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model was further validated in the independent cohorts of 
GSE26193 and GSE63885. Furthermore, PFS analysis was 
performed on GSE9891 and GSE26193 dataset, while DFS 
analysis was performed on GSE63885. The six‑circRNA 
signature was significantly associated with patient PFS/DFS 
in GSE9891, GSE26193 and GSE63885 datasets. In addition, 
consensus cluster analysis (21) was performed on GSE9891 and 
GSE26193 datasets by considering the expression correlation 
of the six‑circRNA signature. The clustering results revealed 
that patients in GSE9891 and GSE26193 could be clustered 
into different risk groups, which was consistent with the results 
found by using risk scores of the six‑circRNA signature (data 
not shown).

To further evaluate the independence of the six‑circRNA 
signature, multivariate Cox regression analyses were performed 
based on the six‑circRNA signature and other clinical and path-
ological variables. Results demonstrated that the six‑circRNA 
signature was significantly associated with patient survival 
in GSE9891, GSE26193 and GSE63885 datasets. In addition, 
certain clinical variables, including patient age, stage and tumor 

grade, were significantly associated with OS in different OC 
cohorts (Table II). Additional stratification analyses according 
to these factors therefore require further investigation. With 
regards to OC stage, patients from different OC datasets were 
divided into early  (I/II) and late  (III/IV) stage subgroups. 
Results revealed that the six‑circRNA signature significantly 
subdivided patients in late stage subgroups but not in early stage 
groups (data not shown). With regards to OC age at diagnosis, 
patients from validating GSE9891 dataset were stratified into 
younger and older groups according to the age median value. 
Results revealed that the six‑circRNA signature significantly 
subdivided patients at different age levels (data not shown). 
With regards to OC tumor grade, patients in the GSE63885 
dataset were stratified into low (G1/G2) and high (G3/G4) grade 
subgroups; however, P‑values were not significant with regards 
to OC survival analysis in the two subgroups (data not shown). 
This last finding may be due to unknown confounding factors 
or the small size of each subgroup.

In the present study, only 630 circRNAs were identified 
from the microarray dataset; the re‑annotation strategy of 

Figure 3. OS analysis for the six‑circular RNAs signature in other independent datasets. (A) OS curves for GSE26193. (B) OS curves for GSE63885. 
(C and D) Distribution of risk scores and survival time in low and high risk groups of patients with ovarian cancer. OS, overall survival.
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Figure 4. PFS or DFS analysis for the six‑circRNA signature. (A) PFS for the training dataset of GSE9891. (B) PFS for validating dataset of GSE9891. (C) PFS 
for GSE26193. (D) DFS for GSE63885. DFS, disease‑free survival; PFS, progression‑free survival.

Figure 5. Time‑dependent ROC analysis of the sensitivity and specificity for survival prediction of the six‑circRNA signature and other factors. (A) ROC curves 
in GSE9891. (B) ROC curves in GSE26193. (C) ROC curves in GSE63885. CircRNAs, circulating RNAs; FIGO, International Federation of Gynecologists and 
Obstetricians; lncRNAs, long non‑coding RNAs; ROC, receiver operating curve.
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circRNA expression from the microarray dataset may not 
have been able to cover all circRNA transcripts. By consid-
ering this limitation, it is possible that certain potential 
signatures may have been ignored. For example, blood or 
exosome‑derived biomarkers are crucial for the prediction of 
cancer survival (22,23). However, validation of the prognostic 
biomarkers from peripheral blood or exosome populations 
requires expression dataset tested previously in the human 
circulation system and well‑annotated follow up information. 
The follow up procedure may take 3‑5 years (24). The acqui-
sition of fast growing RNA‑sequencing datasets may allow 
the discovery of novel noncoding signatures associated with 

survival. Future work will consider blood or exosome datasets 
to validate circRNA biomarkers.

In conclusion, a re‑annotation strategy was performed 
to identify circRNA expressions from microarray dataset. 
Following the design of a risk score model, a panel of six 
circRNAs was significantly associated with OS, PFS and 
DFS in patients with OC. In addition, the present study 
revealed that the six‑circRNA signature was indepen-
dent of other clinical characteristics and more powerful 
than other molecular signatures. The present study high-
lighted some novel, potentially powerful prognostic markers 
for OC.

Table II. Univariate and multivariate Cox regression analyses of the six‑circRNA signature and other clinical variables.

A, GSE9891 (Training set)

	 Univariate Cox analysis	 Multivariate Cox analysis
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ 
Variables	 HR (95% CI)	 P‑value	 HR (95% CI)	 P‑value

Grade (G1/G2/G3)	 1.154 (0.741‑1.797)	 5.26x10‑01	 0.679 (0.408‑1.130)	 1.36x10‑01

Stage (I/II/III/IV)	 3.047 (1.787‑5.193)	 4.24x10‑05	 3.529 (1.939‑6.422)	 3.67x10‑05

Age	 1.020 (0.990‑1.051)	 1.83x10‑01	 1.023 (0.993‑1.053)	 1.41x10‑01

Six‑circRNA signature	 1.509 (1.260‑1.806)	 7.46x10‑06	 1.488 (1.242‑1.784)	 1.69x10‑05

B, GSE9891 (Validating set)

	 Univariate Cox analysis	 Multivariate Cox analysis
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ 
Variables	 HR (95% CI)	 P‑value	 HR (95% CI)	 P‑value

Grade (G1/G2/G3)	 1.618 (1.015‑2.578)	 4.31x10‑02	 1.264 (0.772‑2.068)	 3.52x10‑01

Stage (I/II/III/IV)	 1.568 (0.939‑2.619)	 8.55x10‑02	 1.716 (0.939‑3.136)	 7.90x10‑02

Age	 1.031 (1.004‑1.059)	 2.18x10‑02	 1.032 (1.005‑1.059)	 2.03x10‑02

Six‑circRNA signature	 2.202 (1.357‑3.575)	 1.40x10‑03	 2.110 (1.267‑3.513)	 4.10x10‑03

C, GSE26193 (n=107)

	 Univariate Cox analysis	 Multivariate Cox analysis
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ 
Variables	 HR (95% CI)	 P‑value	 HR (95% CI)	 P‑value

Grade (G1/G2/G3)	 1.207 (0.829‑1.759)	 3.26x10‑01	 0.819 (0.537‑1.247)	 3.51x10‑01

Stage (I/II/III/IV)	 2.057 (1.546‑2.738)	 7.54x10‑07	 2.212 (1.588‑3.083)	 2.72x10‑06

Six‑circRNA signature	 2.475 (1.432‑4.279)	 1.17x10‑03	 2.134 (1.253‑3.635)	 5.28x10‑03

D, GSE63885 (n=75)

	 Univariate Cox analysis	 Multivariate Cox analysis
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ 
Variables	 HR (95% CI)	 P‑value	 HR (95% CI)	 P‑value

Grade (G2/G3/G4)	 1.707 (1.129‑2.582)	 1.13x10‑02	 1.639 (1.043‑2.575)	 3.20x10‑02

Stage (II/III/IV)	 2.315 (1.239‑4.323)	 8.45x10‑03	 2.018 (1.087‑3.748)	 2.62x10‑02

Six‑circRNA signature	 2.630 (1.396‑4.957)	 2.78x10‑03	 2.643 (1.363‑5.128)	 4.04x10‑03

CI, confidence interval; circRNA, circular RNA; HR, hazard ratio.
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