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Abstract. Confocal laser scanning microscopy (CLSM) is a 
modern imaging technique that enables the in vivo or ex vivo 
characterization of skin lesions located in the epidermis and 
superficial dermis with a high quasi-microscopic resolution. 
Currently, it is considered to be the most promising imaging 
tool for the evaluation of superficial skin tumors. The in vivo 
mode adds the advantage of noninvasive, dynamic, in real-time 
assessment of the tumor associated vasculature and inflamma-
tion. It offers the possibility to repeatedly examine the same 
skin area without causing any damage and to monitor disease 
progression and treatment outcome. Furthermore, this novel 
technology allows the evaluation of the entire lesion and can 
be used to guide biopsies and to define tumor margins before 
surgical excision or other invasive therapies. CLSM diagnostic 
features may differentiate between the various histologic 
subtypes of skin tumors and therefore helps in choosing the 
best therapeutic approach. In this study, we present the CLSM 
characteristic features of the most common melanocytic and 
non-melanocytic skin tumors, as well as future possible CLSM 
applications in the study of experimental skin tumorigenesis 
on animal models.
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1. Introduction

Within recent years, dermatologic imaging technology focused 
on the development of optical, noninvasive tools to improve 
diagnostic accuracy and to overcome the disadvantages of 
histopathological examination. Of all these promising in vivo 
tools, only confocal laser scanning microscopy (CLSM) allows 
the visualization of cutaneous structures with a resolution that 
is very close to that of light microscopy, thus performing a 
skin ‘optical biopsy’ (1). It enables the noninvasive, virtual 
sectioning of the skin at different depths, with grey-scale 
images obtained in horizontal planes (en  face), parallel to 
the skin surface and it does not require tissue processing or 
coloring (2,3). As it allows repeated imaging of the same skin 
area in real-time, at different time intervals, it is an excellent 
method for monitoring disease progression and treatment effi-
cacy and studying skin's dynamic behaviour (1,4-10).

Based on the source of image contrast, CLSM can be 
performed in either f luorescence or reflectance mode. 
Fluorescence confocal microscopy (FCM) requires the admi
nistration of a fluorescent agent to generate contrast (11) and 
has been used predominantly in experimental studies with 
promising results in lesional and nonlesional skin  (12,13). 
Reflectance confocal microscopy (RCM) relies on differences 
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in the refractive indices of cellular structures (14) and has been 
extensively applied in the noninvasive assessment of melano-
cytic (15-18) and non-melanocytic skin tumors (16,19), with 
features demonstrating a good correlation with dermoscopic 
and histologic findings. Furthermore, this novel imaging 
technique proved to be useful for the diagnosis of various 
inflammatory skin diseases (20), conditions with dermato-
logic manifestations (21), as well as for the study of dynamic 
processes like wound healing (22,23), in real-time assessment 
of blood flow in response to various topical stimuli (10,24) or 
leucocyte migration (5,6).

Currently, in vivo RCM is considered to be the most prom-
ising noninvasive imaging technique for the quasi-microscopic 
morphological and dynamic characterization of superficial 
skin tumors. Moreover, it helps to define tumor margins before 
surgical excision or other invasive treatment modalities (19). 
Moreover, ex vivo settings may guide Mohs micrographic 
surgery (25,26). Recently, novel multilaser devices, combining 
CLSM in reflectance mode with fluorescence techniques were 
developed, providing useful additional information when 
compared with the use of each variant of confocal microscope 
alone (13).

In this study, we present the RCM characteristic features 
of the most common melanocytic and non-melanocytic skin 
tumors (Table I), as well as future possible CLSM applications 
in the study of experimental skin tumorigenesis on animal 
models.

2. Application of reflectance confocal microscopy for skin 
cancer diagnosis

Basal cell carcinoma (BCC) is the most common of all cancers 
in light-skinned individuals (27) and its incidence is still rising 
with ~10% each year worldwide (28). Very often, a skin biopsy 
is needed to confirm the diagnosis, despite its associated 
invasiveness and costs. Early diagnosis and treatment are of 
paramount importance because it is locally destructive and 
can lead to disfigurement (29,30). RCM diagnostic features 
for various clinical types of BCC have been described (31-36), 
demonstrating a good correlation with certain dermoscopic 
and histopathologic findings (37,39). BCC consists of aggre-
gates of basaloid cells at the dermo-epidermal junction or 
papillary dermis that appear in RCM images either as ‘bright 
tumor islands’, cord-like structures surrounded by cleft-like 
dark spaces, either as ‘dark silhouettes’, hyporeflective dark 
areas outlined by bright stromal tissue  (36,38-40). These 
aggregates of basaloid cells often have nuclei that are oriented 
along the same axis, displaying a ‘peripheral palisading’ at 
the periphery of tumor islands (35,36). In the above stratum 
spinosum, the elongated nuclei of keratinocytes that are polar-
ized along the same axis form the typical ‘streaming of the 
epidermis’ (35). Additionally, prominent and tortuous blood 
vessels with intense leukocyte traffic are present in the dermis 
and numerous inflammatory cells with various shape and sizes 
(lymphocytes, melanophages) surround the tumor nests (36). 
In pigmented BCC, bright dendritic structures that correspond 
to dendritic melanocytes can be identified inside aggregates of 
basaloid cells (41) (Fig. 1).

A retrospective, multicenter study evaluated the 
sensitivity and specificity of five RCM criteria for BCC, 

including architectural alteration and cellular pleomorphism 
of the overlying epidermis, areas of refractile tumor cells 
with elongated, monomorphic nuclei, nuclear polarization, 
increased dermal vasculature and prominent inflammatory 
infiltrate  (35). Identification of two or more of these five 
criteria in a sample showed a sensitivity of 100% for BCC 
diagnosis, whereas four or more of these had a specificity 
of 95.7% and a sensitivity of 82.9% (35). Of these criteria, 
elongated, monomorphic nuclei proved to be the most sensitive 
(100%) and nuclear polarization the most sensitive (91.6%) and 
specific (97.1%) (35).

Furthermore, this novel technology may be a diagnostic 
guide in defining the margins of the lesion before surgical 
excision (42) or laser ablation (29). During Mohs micrographic 
surgery, FCM proved to be far superior than RCM for tumor 
margin assessment in BCC  (36). Moreover, it offers the 
advantage of monitoring noninvasive treatment in superficial-
type BCC, thus avoiding the discomfort associated with skin 
biopsy (43,44).

Squamous cell carcinoma (SCC) is the 2nd most frequent 
non-melanoma skin cancer after BCC and appears dominantly 
in sun exposed areas. Besides UV exposure, various risk 
factors, including immunosuppression, viral infections, expo-
sure to chemical agents, neuro-endocrine factors or chronic 
inflammation, have been proposed to be involved in SCC patho-
genesis (45-51). It has various clinical presentations including 
in situ lesions (Bowen's disease), invasive superficial lesions or 
highly infiltrative lesions (52). Actinic keratosis (AK) is the most 
common precancerous skin lesion with a risk of progression to 
a full-thickness SCC estimated at 5-10% (53), but some authors 
consider it as an early form of SCC as it appears (54). Under 
RCM evaluation, SCC and hypertrophic AK often present a 
pronounced hyperkeratosis that limits the depth of penetration 
considerably (55) and provides whitewashed images because 
of the strong back-reflectance at the keratin-rich surface of 
the tumor (39). A more pronounced disarranged honeycomb 
pattern in the spinous-granular layers and the presence of 
neoplastic aggregates in the dermis can distinguish SCC from 
AK (56). Moreover, nuclei are enlarged and pleomorphic (55) 
and roundish, nucleated bright cells with a pagetoid arrange-
ment are often observed in the suprabasal epidermis. When the 
thickness of the lesion allows the dermo-epidermal junction 
imaging, dermal papillae may appear elongated with looping, 
round vessels inside them (39,57) (Fig. 2). However, in case of 
infiltrative lesions, the level of invasion is usually inaccessible 
in CLSM (58). Even with ex vivo CLSM during Mohs surgery, 
the detection of residual SCC is rarely possible also because of 
the non-reflecting features of keratinization (58,59).

When it comes to RCM evaluation of SCC localized on the 
lips, distinctive features were described (60). Moreover, RCM 
evaluation has the potential to distinguish between features of 
normal mucosa, dysplasia and lip SCC in real-time and there-
fore may be useful for the preoperative assessment of tumor 
resection margins (61).

Cutaneous melanoma is one of the most aggressive human 
malignancies, associated with high mortality rates, despite 
latest advances in therapy (62-65). An important genetic back-
ground and several environmental factors are key players in 
melanoma development and progression (66-70). Two crucial 
points have to be taken into account in this form of aggressive 
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skin cancer. One is particularly in high-risk patients, where 
melanomas may be complicated to distinguish from nevi (71) 
and the fact that numerous biopsy specimens for screening are 
associated with patient morbidity. Therefore, if a dermatolo-
gist is confronted with a lesion obeying the ABCDE rule of 
melanoma (72) or if the atypical lesion is solitary/is the ‘ugly 
duckling’ (73) there are no particular issues for a dermatologist. 
Conversely, in patients with numerous and clinically atypical 
nevi, visually identifying the lesion with the greatest atypical 
features that may represent a new or developing melanoma is 
almost impossible. Removing high numbers of nevi in such 
patients for finding one melanoma can be a screening method, 
but although there are extended publications on how many 
nevi should be removed in high-risk patients to identify one 
melanoma (74-77), there are still issues such as removing too 
few nevi can be associated with overlooked melanomas and/or 
significant medical system costs (78).

In particular, for this aggressive type of skin cancer RCM 
allows a noninvasive in vivo imaging at cellular-level from 

superficial melanomas to dermis invading melanomas. This 
important new tool has an emerging diagnostic role in the 
characterization of melanomas as a noninvasive in vivo histo-
morphological analysis and as an added device in following 
the clinical management of skin cancer patients (79).

In the case of melanoma, the melanocytic lesions have in 
the upper parts of the tumor pagetoid roundish or dendritic 
cells in the superficial epidermis, atypical nests at the 
dermo‑epidermal junction, non-edged papillae and atypical 
nucleated cells in the papillary dermis. The benefit of RCM 
in vivo examination in real-time is important also in particular 
cases of melanoma like lentigo maligna melanoma and 
amelanotic melanoma. Moreover, this technology can add 
information on management of subclinical margins, recur-
rences, or monitoring noninvasive treatment of tumors (80).

Studies that focused on the application of this technology 
in melanoma diagnosis have shown that melanocyte-derived 
tumor cells can be demarcated from non-melanocytic ones. 
Thus, our experience has shown that, while benign nevi 

Table I. Summary of the diagnostic reflectance confocal microscopy features for common skin cancers.

Type of skin cancer	 Reflectance confocal microscopy features	 Author, year (Refs.)

Basal cell carcinoma	 Bright tumor islands/dark silhouettes	 Caruntu et al, 2014 (33)
	 Peritumoral clefting	 Ghita et al, 2016 (31)
	 Streaming of the epidermis	 González and Tannous, 2002 (36)
	 Prominent and tortuous blood vessels	 Longo et al, 2014 (32)
	 Inflammatory cells ± bright dendritic structures	 Nori et al, 2004 (35)
	 Spoke wheel-like structures	 Peppelman et al, 2013 (34)
		  Segura et al, 2007 (41)
		  Stephens et al, 2013 (37)
		  Ulrich et al, 2010 (38)

Squamous cell	 Hyperkeratois	 Aghassi et al, 2000 (55)
carcinoma	 Disarranged honeycomb pattern with enlarged,	 Branzan et al, 2006 (58)
	 pleomorphic nuclei in the spinous-granular layers	 Peppelman et al, 2014 (56)
	 Round, nucleated bright cells in the suprabasal epidermis	 Que et al, 2015 (39)
	 Elongated dermal papillae with looping, round vessels	 Rishpon et al, 2009 (57)

Melanoma	 Pagetoid spread of roundish or dendritic cells in the epidermis	 Carrera et al, 2012 (80)
	 Pleomorphic cells and atypical nests at the	 Guida et al, 2015 (16)
	 dermo-epidermal junction	 Pellacani et al, 2007 (15)
	 Non-edged papillae and atypical nucleated cells	 Pellacani et al, 2014 (17)
	 in the papillary dermis	 Ulrich and Lange-Asschenfeldt,
	 Poorly defined or absent keratinocytes cell borders	 2013 (79)

Mycosis fungoides	 Weakly refractile cells (lymphocytes),	 Agero et al, 2007 (90)
	 Vesicle-like spaces (Pautrier collections) within the epidermis	 Fabbrocini et al, 2017 (85)
	 Hypo-refractile papillary rings and dilated capillaries	 Koller et al, 2009 (89)
		  Lange-Asschenfeldt et al,
		  2012 (88)
		  Li et al, 2013 (87)
		  Mancebo et al, 2016 (86)

Primary cutaneous	 Round-shaped, highly-refractive tumor masses	 Unpublished study
folliculocentric	 Bright cells of various sizes and numerous bright small
lymphoma	 cells (lymphocytes) at the periphery of tumor masses
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Figure 1. RCM features of BCC. (A) RCM image (500x500 µm) showing polarization of keratinocytes along the same axis forming epidermal ‘streaming’; 
(B) RCM mosaic (1x1 mm) in the tumoral area of a pigmented BCC displaying elongated TI infiltrated by bright dendritic cells, peripheral palisading and 
peritumoral dark spaces (white arrowheads), also known as ‘clefting’; (C) RCM mosaic (1x1 mm) showing ‘dark silhouettes’ representing TI, in the tumor 
region of a nodular BCC; (D) RCM image (500x500 µm) of BCC showing TI infiltrated by dendritic cells and blood vessels (red arrowheads) surrounding the 
neoplastic dermal aggregates. TIs, tumor islands.

Figure 2. RCM features of SCC. (A) RCM image (500x500 µm) of an atypical honeycomb pattern in the stratum spinosum; (B) RCM image (500x500 µm) of 
dyskeratotic cells, also known as ‘targetoid cells’ (white arrows); (C) RCM image (500x500 µm) at epidermal level showing roundish, nucleated, bright cells 
with a pagetoid arrangement (red arrows); (D) RCM image (500x500 µm) showing looped vessels in the tumoral region of an SCC.
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have monomorphic cells, round to oval in shape, with bright 
appearance, in melanomas cells are bright, polymorphic 
and irregular, roundish or with branching dendrites (Fig. 3). 
In benign nevi, junctional and dermal nevus cell nests can 
be found, while in melanomas there is a disarray of the 
melanocytic cell architecture. Keratinocyte cell borders 
can be detected readily but are poorly defined or absent in 
melanomas. The horizontal optical sections in RCM offer 
a better visualization of malignant melanocyte morphology 
than classical hematoxylin and eosin stained histologic 
sections (15,81). In addition, based on their cell morphology 
in RCM, four types of melanomas have been identified, 
namely dendritic cell melanomas, melanomas with roundish 
melanocytes, melanomas with predominant dermal nesting 
proliferation and combined type melanomas, each with 
different tumor and patient characteristics (15).

More elaborated studies seeking to evaluate specificity 
and sensitivity of this technology have reported that there 
is a good differentiation between benign versus malignant 
tumors. Thus, depending on the observers, the sensitivity 
ranged from 90.42  to  97.62% and the specificity from 
96.67 to 100%. These values generated good performance 
of the investigation: sensitivity, 94.65%; specificity, 96.67%; 
positive predictive value 97.50%; and negative predictive 
value 92.99% (82).

Gathering important information from large studies, this 
quasi-histological in vivo evaluation has no restrictions for 
age, sex, ethnicity and has a good association with clinical, 
dermoscopic and histopathologic findings. Therefore, diag-
nostic accuracy, sensitivity and specificity of the technique 
were a good backbone to implement it in the diagnosis of 
melanoma (16). This new technology brings, besides non-inva-
siveness characteristics, new mapping possibilities of difficult 
melanomas like lentigo maligna of the face (78).

Cutaneous lymphomas are a heterogeneous group of 
lymphoproliferative disorders involving the skin that are 
characterized by clonal proliferation of mature T-lymphocytes 
(>60% of all cases), B-lymphocytes or NK cells  (83,84). 
Histopathological examination combined with immunohis-
tochemistry of the skin biopsy specimen is the mainstay of 

the diagnosis, although sequential biopsies are often needed, 
especially in case of early stage lesions.

RCM has already been reported to be useful for the in vivo 
diagnosis  (85-91) and therapeutic follow-up of cutaneous 
T-cell lymphomas (92), with the majority of studies referring 
to its most common type, mycosis fungoides (85-90) and one 
to lymphomatoid papulosis (91).

Mycosis fungoides, early patch lesions in particular, can 
imitate a wide variety of erythematosquamous skin diseases 
and its clinical and histopathological diagnosis is often a chal-
lenge. Most commonly reported RCM features of mycosis 
fungoides correlate with histopathologic findings and include 
weakly refractile cells (lymphocytes) and vesicle-like spaces 
(Pautrier collections) within the epidermis, hypo-refractile 
papillary rings and dilated capillaries with thick walls at the 
dermo-epidermal junction (90). Detection of Pautrier collec-
tions with RCM is associated with improved histopathologic 
diagnosis and presence of TCR gene clonality (86).

The rest of the RCM findings are non-specific and reflect 
the heterogeneous clinical and histopathologic presentation of 
the lesions (86). However, in vivo RCM seems to be reliable in 
guiding skin biopsy collection, therefore reducing the number 
of unsuccessful histopathological examinations for mycosis 
fungoides lesions (85,87).

In contrast to cutaneous T-cell lymphomas, to date 
no RCM features have been described for the diagnosis of 
B-cell lymphomas. Our research team recently described the 
in vivo RCM features observed in primary cutaneous follicu-
locentric lymphoma lesions (unpublished results). These 
correlate with histopathology and include round-shaped, 
highly-refractive tumor masses in the dermis, bright cells of 
various sizes dispersed throughout the dermis and aggregates 
of bright small cells (lymphocytes) at the periphery of tumor 
masses (Fig. 4).

3. Application of confocal scanning laser microscopy for 
skin oncology research

Skin carcinogenesis is a complex, multifactorial process 
and the topic of intensive research given the continuously 

Figure 3. RCM features of cutaneous melanoma. (A) RCM image (500x500 µm) displaying big, roundish and dendritic, bright, pagetoid cells infiltrating the 
epidermis; (B) RCM mosaic (1x1 mm) showing large heterogeneous nests of melanocytes with the presence of numerous atypical cells in the tumoral region 
of a cutaneous melanoma.
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increasing incidence of skin cancer. In addition to the recog-
nized genetic and environmental factors  (93), prolonged 
exposure to pro-inflammatory cytokines and chemokines 
within chronic inflammation is experimentally sustained to 
favor initiation and progression of skin cancer (94).

Mouse models of chemically induced skin carcinogenesis 
are one of the most available and cost-effective models to 
analyze early alterations and pathways involved in skin 
tumorigenesis (95). The two-stage skin carcinogenesis model 
has been used to study mechanisms of epithelial cancers (96) 
and it refers to the two-step topical administration of chemicals 
to mouse skin for the initiation and promotion phases of 
skin tumorigenesis. This delimitation of phases allows the 
observation of premalignant lesions (96) and it offers more 
reliable results when testing the effects of environmental 
factors and drugs on skin tumors (95).

In vivo CLSM is a new imaging technology, not yet fully 
explored for investigating murine skin structures within exper-
imental tumorigenesis. Reflectance mode CLSM was reported 
to allow real-time observation of abnormal tissue architecture, 
atypical structures, as well as the blood flow and vasculature 
that accompanies skin tumors (95) (Fig. 5). Dendritic immune 

cells are difficult to differentiate from melanocytes under RCM 
as they have similar morphologic features (97), but activated 
Langerhans cells seem to have a more superficial epidermal 
localization (41).

Fluorescence mode CLSM studies have been done on 
transgenic mice using green fluorescent protein marker to 
visualize cellular details of the skin (11). As it allows sequen-
tial noninvasive examination of the same skin area, CLSM 
technology seems to be ideal for monitoring tumor progres-
sion (98) and therapeutic effects of anticancer agents in mouse 
models of skin carcinogenesis (95). Recently, a dual mode 
in vivo reflectance and fluorescence CLSM has been developed 
and holds significant promise for imaging tumor progression 
in murine skin (98). This system combines the fluorescence 
contrast of targeted tumor cells with the acquired reflectance 
contrast of examined cells and tissues and place them within 
a histologically meaningful framework (98). In addition to the 
in situ visualization of tumor cell proliferation and vascular 
structures, it has been shown that combined reflectance/fluo-
rescence in vivo CLSM has the ability to image dendritic 
immune cell trafficking to inoculated tumors and to monitor 
tumor induced immune response in the skin (98).

Figure 5. Chemically induced carcinogenesis in CD1-Foxn1nu mouse. (A) RCM mosaic (2x2 mm) showing a tumor with multi-lobular structure with altered 
keratinocyte architecture (white asterisks) and numerous blood vessels (white arrowheads); (B) detailed RCM image (500x500 µm) showing atypical cells 
(white asterisk) and an enlarged, tortuous blood vessel (white arrowheads).

Figure 4. RCM features of cutaneous lymphoma. (A) RCM mosaic (5.5x5.5 mm) showing well-demarcated, round-shaped, highly-refractive tumor masses; 
(B) RCM mosaic (1x1 mm) displaying aggregates of bright small cells (white arrows) at the periphery of a tumor mass.
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4. Limitations and future perspectives

Despite the great advantages CLSM adds to dermatological 
practice, it also has some limitations, the most recognized 
being the restricted depth of penetration to 200-300 µm, that 
allows imaging only of the epidermis and upper dermis (3,4). 
Therefore, the deeper part of the dermis and the hypodermis 
cannot be visualized using the currently commercially 
available confocal microscopes. Examination of deeper 
skin structures could be achieved using higher laser power, 
but at the expense of damaging the skin area under evalu-
ation (52). There are attempts to develop new devices that 
improve light collection from the examined plane in order to 
increase depth of penetration (99). Moreover, examination of 
skin lesions by means of CLSM is more time consuming than 
clinical evaluation or dermoscopy and it needs training and 
experience for the interpretation of CLSM images. Recent 
technological breakthroughs have led to the development of 
new, smaller and more practical hand-held devices that offer 
faster image acquisition and allow the examination of lesions 
located in less accessible body areas  (52). Unlike vertical 
sections obtained in conventional histology, CLSM enables 
virtual sectioning of the skin at different depths, in horizontal 
planes (en face), parallel to the skin surface (3). For a better 
correlation with histology sections, current efforts are aimed 
at developing devices that could also perform optical sections 
of vertical planes and then compile 3-D reconstructions of 
the lesions (100). In addition, CLSM does not require tissue 
processing or coloring and images are obtained in greyscale, 
similar to X-rays or ultrasonography  (2,3). To improve 
contrast of epidermal and dermal structures and toward 
color-enhanced in vivo CSLM imaging, fluorescent dyes like 
indocyanine-green are being tested (101).

5. Conclusions

CLSM is a modern imaging technique that enables the 
noninvasive characterization of skin lesions located in the 
epidermis and superficial dermis with a high resolution. 
Currently, it is considered to be the most promising imaging 
technique for the quasi-microscopic morphological and 
dynamic characterization of superficial skin tumors. The 
in vivo mode adds the advantage of noninvasive, dynamic, 
in real-time assessment of the tumor associated vascula-
ture and inflammation. It allows sequential noninvasive 
examination of the same skin area without causing any 
damage and to monitor disease progression and treatment 
outcome. Furthermore, CLSM technology seems to be ideal 
for monitoring tumor progression and therapeutic effects 
of anticancer agents in mouse models of experimental skin 
carcinogenesis.
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