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Abstract. Cervical, endometrial and vulvar cancer are three 
common types of gynecological tumor that threaten the health 
of females worldwide. Since their underlying mechanisms 
and associations remain unclear, a comprehensive and 
systematic bioinformatics analysis is required. The present 
study downloaded GSE63678 from the GEO database and 
then performed functional enrichment analyses, including 
gene ontology and pathway analysis. To further investigate 
the molecular mechanisms underlying the three types of 
gynecological cancer, protein‑protein interaction (PPI) 
analysis was performed. A biological network was generated 
with the guidance of the Kyoto Encyclopedia of Genes and 
Genomes database and was presented in Cytoscape. A total 
of 1,219 DEGs were identified for the three types of cancer, 
and 25 hub genes were revealed. Pathway analysis and the 
PPI network indicated that four main types of pathway 
participate in the mechanism of gynecological cancer, 
including viral infections and cancer formation, tumorigenesis 
and development, signal transduction, and endocrinology and 
metabolism. A preliminary gynecological cancer biological 
network was constructed. Notably, following all analysis, the 
phosphoinositide 3‑kinase (PI3K)/Akt pathway was identified 
as a potential biomarker pathway. Seven pivotal hub genes 
(CCNA2, CDK1, CCND1, FGF2, IGF1, BCL2 and VEGFA) 
of the three gynecological cancer types were proposed. 
The seven hub genes may serve as targets in gynecological 
cancer for prevention and early intervention. The PI3K/Akt 
pathway was identified as a critical biomarker of the three 
types of gynecological cancer, which may serve a role in 
the pathogenesis. In summary, the present study provided 
evidence that could support the treatment of gynecologic 
tumors in the future.

Introduction

A gynecological tumor is a type of malignant tumor that occurs 
in the female reproductive system and seriously threatens the 
life of the patient. Among the types of gynecological tumor, 
cervical cancer (CC), endometrial carcinoma (EC) and vulvar 
carcinoma (VC) are the top three most common tumors of 
the female genital system, besides ovarian cancer (1). Despite 
an overall decline in the incidence and mortality rates due to 
increased understanding of the disease, gynecological cancer 
remains a significant health care burden worldwide (1). Early 
detection and treatment are essential for improving patient 
outcomes; however, these require improved understanding of 
the molecular pathology of the disease, in addition to identi-
fication of appropriate biomarkers and drug targets. Previous 
studies have demonstrated that the occurrence of CC is 
closely associated with human papillomavirus (HPV) infec-
tion (2‑4). VC can be separated into two types, including one 
type that more frequently occurs in young females. This type 
involves the progression of a vulvar intraepithelial neoplasia 
caused by HPV infection, particularly HPV 16 and 18 (5). 
Based on pathogenetic perspectives, EC is also classified into 
two groups according to estrogen dependence (6). Although 
there have been a number of previous etiology studies, the 
exact pathogenesis of these three types of cancer remains 
unclear.

There are certain pathological and etiological associations 
between CC and VC, as both are squamous cell cancers and 
both are associated with HPV infection (2,5). Unlike CC and 
VC, EC is associated with sex hormones, which is similar 
to common invasive tumors in females, including breast and 
ovarian cancer (6). In addition, clinical diagnoses of these 
three cancer types rely predominantly on pathology  (7). 
Precise biomarkers in early stages of CC, EC and VC remain 
unknown.

It is understood that cervical, endometrial and vulvar 
tissues all originate from the same embryological origin, the 
paramesonephric ducts, which give rise to the whole female 
reproductive tract and develop into different organs, following 
complex regulatory process  (8). For this reason, although 
there a number of differences between CC, EC and VC, it 
has been hypothesized that these three types of gyneco-
logical tumor share a similar mechanism and certain specific 
marker molecules may be common to their tumorigenesis 
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and development. Therefore, a comprehensive analysis may 
improve understanding of these three types of tumor.

Advancements in biotechnology have improved the avail-
ability of high‑throughput data, including genomic, proteomic 
and metabolomics data, which supports in‑depth scientific 
research. High‑throughput data can assist with effective early 
diagnosis, prognosis prediction and investigations of molec-
ular mechanisms for numerous types of disease. The present 
study used GSE63678 microarray data downloaded from the 
Gene Expression Omnibus (GEO) to determine the differen-
tially expressed genes (DEGs, which were identified between 
cancerous samples and non‑cancerous samples) of CC, EC 
and VC (9). Subsequently, functional enrichment analyses 
were performed, including gene ontology (GO) and pathway 
analysis, and a protein‑protein interaction (PPI) network was 
generated to identify the significant biological terms associ-
ated with the DEGs. The genes that were screened out by the 
PPI network were considered as the hub genes, which may 
serve important roles in the mechanism of CC, EC and VC. In 
addition, a gene‑pathway network was constructed and further 
analysis was performed. The complete flowchart of the present 
study is presented in Fig. 1. In summary, the current study 
may provide a new perspective for elucidating the biological 
significance of three types of gynecological cancer, and assist 
with the identification of potential candidate biomarkers for 
diagnosis, prognosis and therapy.

Materials and methods

Microarray data. The gene expression profile GSE63678 
on the platform of the GPL571 Affymetrix Human Genome 
U133A 2.0 Array was downloaded from the GEO database 
(http://www.ncbi.nlm.nih.gov/geo/). GSE63678 is a dataset 
submitted by Pappa et al (9), containing 18 cancer samples, 
including five cervical, seven endometrial and six vulvar 
samples, and 17 normal samples, including, five cervical, five 
endometrial and seven vulvar samples.

Identification of DEGs. GEO2R (http://www.ncbi.nlm.nih.
gov/geo/geo2r) is an interactive network analysis tool of the 
GEO database based on R, in which two sets of samples can 
be compared under the same experimental conditions (10). 
Associated gene data were divided into CC, EC and VC groups. 
Subsequently, the GEO2R (10) tool and limma package (11) 
available through Bioconductor (version  3.8) of R Studio 
(version 3.5) were used to compare the gene expression of the 
CC, EC and VC groups. P<0.05 and a fold‑change >2 were 
considered to indicate a DEG. The distribution of the DEGs in 
the three tumor types was presented as a Venn diagram using 
FunRich software (version 3.0) (12).

Construction of the PPI network and identification of hub 
genes. Search Tool for the Retrieval of Interacting Genes 
(http://string‑db.org/; version 10.5) is a software system that 
is commonly used to search for known proteins and predict 
interactions (13). The experimentally validated interactions 
with a combined score >0.7 were selected as significant and 
DEGs with a connection number <2 were removed. The PPI 
network was visualized using Cytoscape (https://cytoscape.
org/; version 3.6.0). The nodes with degree, closeness and 

betweenness scores higher than the mean, as calculated by the 
Cytoscape plugin Centiscape, were considered hub nodes.

GO analysis of the hub genes. WEB‑based Gene SeT 
AnaLysis Toolkit (http://www.webgestalt.org/; revision 2017) 
is a popular software tool for functional enrichment analysis, 
which covers seven biological contexts, including GO (14). 
Therefore, this software was used in the present study for GO 
enrichment analysis. The false discovery rate (FDR) was set at 
<0.05 to conduct the GO analysis of the DEGs.

Pathway enrichment analysis of the hub genes. The hub 
genes were uploaded to ToppGene (https://toppgene.cchmc.
org/,) for pathway enrichment analysis. The two frequently 
used databases, Kyoto Encyclopedia of Gene and Genomes 
(KEGG; www.genome.jp/kegg) and Biocarta (www.biocarta.
com), were used to perform this analysis (15). The FDR was 
set at <0.05.

Pathway crosstalk analysis. The enriched pathways were 
recruited for further crosstalk analysis to investigate the asso-
ciations between them. As described previously (15), to measure 
the association between two pathways, Jaccard coefficient 
(JC)=A∩B/A∪B and overlap coefficient (OC)=A∩B/min(|A|,|B|) 
were adopted, where A and B are the gene items contained in 
the two pathways, min is the minimum, ∩ is the intersection of 
A and B, and ∪ is the union of A and B. Since limited biological 
information was available, pathways containing <3 genes 
were excluded. Similarly, the pathway pairs with <2 overlap-
ping genes were removed. Subsequently, the pathway network 
was presented with Cytoscape according to the JC and OC 
value of each selected pair (16), and the MCODE plug‑in (17) 
(version 1.4.2; apps.cytoscape.org/apps/MCODE) for Cytoscape 
was used to find clusters and highly interconnected regions in 
any network was used to analyze the clusters.

Gene‑pathway network analysis. To further investigate 
the developmental mechanisms of CC, EC and VC, the hub 
genes were mapped into a crosstalk network. By analyzing 
the interactions between the genes and pathways with KEGG 
and Biocarta, the connected nodes were linked with arrows. 
The gene‑pathway network was constructed and visualized in 
Cytoscape. The degree was calculated and nodes with a degree 
greater than the mean degree of all nodes were selected to 
constitute a sub network.

Results

Identification of DEGs. Following screening with the criteria 
of P<0.05 and fold‑change >2, a total of 1,219 DEGs were 
identified. In the CC group 138 DEGs were revealed, including 
87 upregulated genes. In addition, 479 DEGs were identified 
in the EC group, including 272 upregulated genes. Finally, 734 
DEGs, including 172 upregulated genes, were revealed in the 
VC group. As demonstrated in Fig. 2A, 84, 378 and 630 DEGs 
were exclusively identified in CC, EC and VC groups, respec-
tively. However, 23 DEGs were present in both the CC and EC 
group, 73 DEGs were identified in both the EC and VC groups, 
and 26 DEGs were revealed in both the CC and VC groups. 
Furthermore, five mutual genes, including signal sequence 
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receptor subunit 1 (SSR1), flap structure‑specific endonuclease 
1 (FEN1), cyclin A2 (CCNA2), signal transducer and activator 
of transcription 1 (STAT1) and C‑X‑C motif chemokine ligand 
12 (CXCL12), were identified in all three groups.

Hub genes and PPI network. Following calculation by 
Centiscape, the mean values of degree, closeness and between-
ness were 12.64080, 3.73x10‑4 and 2081.81034, respectively. 
Additionally, 25 hub genes were identified, including six 
downregulated genes and 19 upregulated genes (Table  I). 
Three histone cluster family members were revealed as hub 

genes, including histone H2B type 1‑H (HIST1H2BH), histone 
cluster 1 H2B family member D (HIST1H2BD) and histone 
cluster 1 H2B family member K (HIST1H2BK), and the 
five hub genes were cell cycle regulatory proteins, including 
CCNA2, cyclin B1 (CCNB1), cyclin D1 (CCND1), aurora 
kinase A (AURKA) and cell division cycle 20 (CDC20). 
Furthermore certain genes associated with tumor progression 
were identified, including vascular endothelial growth factor 
A (VEGFA), FYN proto‑oncogene, Src family tyrosine kinase 
(FYN), baculoviral IAP repeat containing 5 (BIRC5) and the 
apoptosis regulator B‑cell lymphoma 2 (BCL2).

Figure 1. Flowchart of the study. CC, cervical cancer; EC, endometrial cancer; VC, vulvar cancer, PPI, protein‑protein interaction.
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The PPI network of the 25 hub genes with 25 nodes and 
114 edges is presented in Fig. 2B. The top five genes with 
the highest degrees were CDK1, CCNB1, CDC20, CCNA2 
and AURKA. All five of these genes are associated with cell 
cycle regulation, which indicates that cell cycle dysfunction 
serves an important role in the development of gynecological 
tumors.

GO enrichment analysis. A total of 25 DEGs were used to 
perform GO enrichment analysis (Fig.  2C). For cellular 
component terms, 22 out of the 25 genes were revealed to be 
located in the ‘nucleus’ and approximately 80% were identi-
fied to participate in the ‘macromolecular complex’ (19 genes) 
and ‘membrane‑enclosed lumen’ (18 genes). In the biological 
process category, the DEGs were associated with ‘biological 
regulation’ (22 genes), ‘metabolic process’ (22 genes), ‘cellular 
component organization’ (21 genes) and ‘response to stimulus’ 
(21 genes). In the molecular function category all 25 DEGs 
were associated with ‘protein binding’ (25 genes).

Pathway enrichment analysis of the hub genes. By uploading 
the 25 genes into ToppGene, 86 significant pathways were 
identified. The biological processes involved in these path-
ways can be divided into the following five main categories: 
i)  viral infections and cancer formation, including ‘viral 
carcinogenesis’ and ‘hepatitis B’, ii) tumorigenesis and devel-
opment, including ‘colorectal cancer’ and ‘proteoglycans in 
cancer’, iii) signal transduction, including ‘PI3K‑Akt signaling 
pathway’ and ‘AMPK signaling pathway’, iv) endocrinology 
and metabolism, including ‘AGE‑RAGE signaling pathway 
in diabetic complications’ and ‘endocrine resistance’, and 
v) others, including ‘genes encoding secreted soluble factors’ 
and ‘NFAT and hypertrophy of the heart (transcription in the 
broken heart)’. In addition, 19 pathways were identified to be 
downregulated and 17 pathways were revealed to be upregu-
lated (Table II).

Pathway crosstalk analysis. To further investigate how 
the identified pathways interact with each other, a pathway 

Figure 2. DEGs in CC, EC and VC. (A) Venn diagram of three gynecological tumor types. The yellow circles represent the DEGs in CC, the blue circles 
represent the DEGs in EC and the red circles represent the DEGs in VC. The overlapping areas indicate the shared genes of any two or three groups. (B) The 
protein‑protein interaction network of the 25 hub genes. The circle nodes represent genes. Red indicates genes in CC, yellow represents genes in EC and green 
indicates genes in VC. The thickness of the line between any two nodes represents the strength of the connection. (C) Gene ontology analysis of 25 DEGs. The 
results are presented for the following three categories: Biological process, cellular component and molecular function DEG, differentially expressed gene; 
CC, cervical cancer; EC, endometrial cancer; VC, vulvar cancer.
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crosstalk analysis was conducted among the pathways that met 
the criteria. The approach was based on the assumption that 
two pathways can be considered to be associated if they share 
a proportion of genes (18). A total of 45 pathways contained 
more than two hub genes, of which 41 pathways met the crite-
rion for crosstalk analysis.

The network of crosstalk, which includes these 41 
pathways, is presented in Fig. 3A. The thickness of edge 
connecting two nodes represents the strength of the asso-
ciation between them, which was measured by the mean 
value of OC and JC. Using MCODE, two major clusters 
were identified from the whole network. The simple cluster 
involves three pathways associated with cell cycle, including 
‘Cell cycle’, ‘Oocyte meiosis’ and ‘Cyclins and Cell Cycle 
Regulation’. The complicated cluster containing a total of 32 
nodes and 376 edges is presented in Fig. 3B. The five afore-
mentioned types of pathways were interconnected to form 
the complex network, which indicates the complexity of the 
pathogenesis of CC, EC and VC.

Gene‑pathway network construction of DEGs. By 
mapping the hub genes into the complicated sub‑network 
according to the KEGG and Biocarta databases, a potential 

gene‑pathway network was constructed to verify the asso-
ciations between the candidate pathways and genes (Fig. 4). 
This network included 37 important pathways and 18 hub 
genes, including CCND1 presented in the middle with direct 
or indirect associations with all other genes. As the only 
overlapping gene of all three groups, CCNA2 possessed 
complicated connections with ‘viral carcinogenesis’, ‘hepa-
titis B’, ‘cell cycle’ and six other pathways. In addition, 
insulin‑like growth factor‑1 (IGF1), fibroblast growth factor 
2 (FGF2) and CCND1 were located close to the middle of 
the gene‑pathway network.

Sub gene‑pathway network of DEGs. To screen the key 
factors, including genes and pathways, in the gene‑pathway 
network, the degrees of all of nodes were calculated and 
nodes with a degree greater than the mean degree of all nodes 
were selected (Fig. 5). Seven genes (CCNA2, CDK1, CCND1, 
BCL2, IGF1, FGF2 and VEGFA) and six pathways (‘Viral 
carcinogenesis’, ‘Hepatitis B’, ‘Focal adhesion’, ‘Pathways in 
cancer’, ‘PI3K‑Akt signaling pathway’ and ‘Proteoglycans in 
cancer’) were selected. Since these gene and pathways had 
more connections with other nodes, they were considered to 
more likely serve a role in CC, EC and VS.

Table I. Topological parameters of the hub genes.

Gene	 Degree	 Betweeness	 Closeness	 Group	 Regulation

Mean	   13	 2081.81034	 3.73x10‑4	‑	‑ 
CDK1	 115	 20448.4838	 5.21x10‑4	 CC/EC	 Up
CCNB1	 100	 16335.9142	 5.23x10‑4	 CC/EC	 Up
CDC20	   92	 8148.54809	 4.76x10‑4	 EC	 Up
CCNA2	   91	 8126.90458	 4.89x10‑4	 CC/EC/VC	 Up
AURKA	   90	 9181.94344	 4.76x10‑4	 EC/VC	 Up
TOP2A	   87	 21409.6376	 5.15x10‑4	 EC/VC	 Up
UBE2C	   82	 14916.6491	 4.82x10‑4	 EC/VC	 Up
BIRC5	   80	 16279.0157	 5.13x10‑4	 EC/VC	 Up
PCNA	   62	 26080.2036	 5.25x10‑4	 CC/EC	 Up
VEGFA	   56	 32712.0335	 5.43x10‑4	 VC	 Up
PIK3R1	   46	 24576.8505	 4.91x10‑4	 VC	 Down
HIST1H2BK	   43	 8689.20717	 4.70x10‑4	 CC/VC	 Up
HIST1H2BD	   43	 8689.20717	 4.70x10‑4	 VC	 Up
HIST1H2BH	   42	 8291.98846	 4.70x10‑4	 VC	 Up
ACACB	   41	 40853.547	 4.98x10‑4	 VC	 Down
CXCL8	   40	 28927.396	 5.16x10‑4	 VC	 Up
H2AFZ	   39	 8793.56814	 4.67x10‑4	 CC	 Up
IGF1	   38	 16278.2011	 5.07x10‑4	 CC/VC	 Down
ACLY	   37	 34157.4527	 4.81x10‑4	 EC	 Up
CCND1	   36	 28548.907	 5.39x10‑4	 EC	 Up
GAPDH	   33	 41598.1258	 5.39x10‑4	 EC	 Up
PPP2R5C	   32	 10238.8057	 4.75x10‑4	 CC	 UP
FYN	   32	 17254.3572	 5.22x10‑4	 CC/VC	 Down
FGF2	   32	 19465.3169	 5.20x10‑4	 EC	 Down
BCL2	   32	 17923.6004	 4.86x10‑4	 VC	 Down

CC, cervical cancer; EC, endometrial cancer; VC, vulvar cancer.
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Table II. Pathways enriched in three types of gynecological cancer.

Pathway	 Regulation	 P‑value	 Genes in the pathway

Viral carcinogenesis	‑	  3.43x10‑9	 HIST1H2BD, CCND1, CDK1, HIST1H2BH,
			   CDC20, PIK3R1, HIST1H2BK, CCNA2
Hepatitis B	‑	  9.66x10‑9	 BIRC5, CCND1, BCL2, PIK3R1, PCNA, 
			   CXCL8, CCNA2
AMPK signaling pathway	‑	  1.13x10‑7	 CCND1, PPP2R5C, IGF1, ACACB, 
			   PIK3R1, CCNA2
Oocyte meiosis	‑	  1.31x10‑7	 AURKA, PPP2R5C, IGF1, CDK1, CDC20, 
			   CCNB1
Cell cycle	 Up	 1.31x10‑7	 CCND1, CDK1, CDC20, PCNA, CCNA2, 
			   CCNB1
EGFR tyrosine kinase inhibitor resistance	‑	  4.35x10‑7	 FGF2, BCL2, IGF1, PIK3R1, VEGFA
Pathways in cancer	‑	  6.44x10‑7	 FGF2, BIRC5, CCND1, BCL2, IGF1, 
			   PIK3R1, CXCL8, VEGFA
Progesterone‑mediated oocyte maturation	‑	  1.15x10‑6	 IGF1, CDK1, PIK3R1, CCNA2, CCNB1
AGE‑RAGE signaling pathway in diabetic complications	‑	  1.35x10‑6	 CCND1, BCL2, PIK3R1, CXCL8, VEGFA
HIF‑1 signaling pathway	‑	  1.49x10‑6	 BCL2, IGF1, GAPDH, PIK3R1, VEGFA
Focal adhesion	‑	  2.13x10‑6	 CCND1, BCL2, IGF1, FYN, PIK3R1, 
			   VEGFA
PI3K‑Akt signaling pathway	‑	  3.48x10‑6	 FGF2, CCND1, BCL2, PPP2R5C, IGF1,
			   PIK3R1, VEGFA
p53 Signaling Pathway	‑	  3.94x10‑6	 CCND1, BCL2, PCNA
IL‑7 Signal Transduction	 Down	 4.77x10‑6	 BCL2, FYN, PIK3R1
Colorectal cancer	‑	  5.72x10‑6	 BIRC5, CCND1, BCL2, PIK3R1
p53 signaling pathway	‑	  1.00x10‑5	 CCND1, IGF1, CDK1, CCNB1
Melanoma	‑	  1.00x10‑5	 FGF2, CCND1, IGF1, PIK3R1
Cyclins and Cell Cycle Regulation	 Up	 1.23x10‑5	 CCND1, CDK1, CCNB1
Platinum drug resistance	‑	  1.25x10‑5	 BIRC5, BCL2, PIK3R1, TOP2A
Regulation of BAD phosphorylation	 Down	 1.80x10‑5	 BCL2, IGF1, PIK3R1
Prostate cancer	‑	  2.52x10‑5	 CCND1, BCL2, IGF1, PIK3R1
Endocrine resistance	‑	  3.71x10‑5	 CCND1, BCL2, IGF1, PIK3R1
Proteoglycans in cancer	‑	  4.47x10‑5	 FGF2, CCND1, IGF1, PIK3R1, VEGFA
Bladder cancer	 Up	 7.25x10‑5	 CCND1, CXCL8, VEGFA
Sphingolipid signaling pathway	‑	  8.32x10‑5	 BCL2, PPP2R5C, FYN, PIK3R1
FoxO signaling pathway	‑	  1.29x10‑4	 CCND1, IGF1, PIK3R1, CCNB1
Systemic lupus erythematosus	 Up	 1.32x10‑4	 H2AFZ, HIST1H2BD, HIST1H2BH,
			   HIST1H2BK
NFAT and Hypertrophy of the heart	 Down	 1.66x10‑4	 FGF2, IGF1, PIK3R1
(Transcription in the broken heart)
Breast cancer	‑	  1.80x10‑4	 FGF2, CCND1, IGF1, PIK3R1
Activation of Src by Protein‑tyrosine phosphatase alpha	 Up	 2.11x10‑4	 CDK1, CCNB1
Sonic Hedgehog (SHH) Receptor Ptc1 Regulates cell cycle	 Up	 2.11x10‑4	 CDK1, CCNB1
AKAP95 role in mitosis and chromosome dynamics	 Up	 2.52x10‑4	 CDK1, CCNB1
Glioma	‑	  2.75x10‑4	 CCND1, IGF1, PIK3R1
Pancreatic cancer	‑	  2.75x10‑4	 CCND1, PIK3R1, VEGFA
Expression of cyclins regulates progression through	 Up	 2.98x10‑4	 CCND1, CCNA2
the cell cycle by activating cyclin‑dependent kinases.
The IGF‑1 Receptor and Longevity	 Down	 4.00x10‑4	 IGF1, PIK3R1
Alcoholism	 Up	 4.22x10‑4	 H2AFZ, HIST1H2BD, HIST1H2BH,
			   HIST1H2BK
B Cell Survival Pathway	‑	  4.57x10‑4	 BIRC5, PIK3R1
Small cell lung cancer	‑	  6.12x10‑4	 CCND1, BCL2, PIK3R1
Stathmin and breast cancer resistance to antimicrotubule	 Up	 6.48x10‑4	 CDK1, CCNB1
agents



ONCOLOGY LETTERS  18:  617-628,  2019 623

Table II. Continued.

Pathway	 Regulation	 P‑value	 Genes in the pathway

Epstein‑Barr virus infection	‑	  6.64x10‑4	 BCL2, CDK1, PIK3R1, CCNA2
Skeletal muscle hypertrophy is regulated via	 Down	 7.19x10‑4	 IGF1, PIK3R1
AKT/mTOR pathway
Rap1 signaling pathway	‑	  7.54x10‑4	 FGF2, IGF1, PIK3R1, VEGFA
IGF‑1 Signaling Pathway	 Down	 7.94x10‑4	 IGF1, PIK3R1
Ras signaling pathway	‑	  1.01x10‑3	 FGF2, IGF1, PIK3R1, VEGFA
Erk and PI‑3 Kinase Are Necessary for Collagen Binding	 Down	 1.04x10‑3	 FYN, PIK3R1
in Corneal Epithelia
Cell Cycle: G2/M Checkpoint	 Up	 1.04x10‑3	 CDK1, CCNB1
Influence of Ras and Rho proteins on G1 to S Transition	 ‑	 1.22x10‑3	 CCND1, PIK3R1
Genes related to IL4 rceptor signaling in B lymphocytes	 Down	 1.32x10‑3	 BCL2, PIK3R1
Inactivation of Gsk3 by AKT causes accumulation of	 Up	 1.32x10‑3	 CCND1, PIK3R1
b‑catenin in Alveolar Macrophages
Cholinergic synapse	 Down	 1.41x10‑3	 BCL2, FYN, PIK3R1
Cell Cycle: G1/S Check Point	 Up	 1.42x10‑3	 CCND1, CDK1
VEGF, Hypoxia, and Angiogenesis	‑	  1.52x10‑3	 PIK3R1, VEGFA
HTLV‑I infection	‑	  1.57x10‑3	 CCND1, CDC20, PIK3R1, PCNA
Control of skeletal myogenesis by HDAC and	 Down	 1.63x10‑3	 IGF1, PIK3R1
calcium/calmodulin‑dependent kinase (CaMK)
Apoptosis‑multiple species	‑	  1.97x10‑3	 BIRC5, BCL2
How Progesterone Initiates Oocyte Membrane	 Up	 2.09x10‑3	 CDK1, CCNB1
Measles	‑	  2.36x10‑3	 CCND1, FYN, PIK3R1
Aldosterone‑regulated sodium reabsorption	 Down	 2.47x10‑3	 IGF1, PIK3R1
Apoptosis	‑	  2.56x10‑3	 BIRC5, BCL2, PIK3R1
IL‑2 Receptor Beta Chain in T cell Activation	 Down	 2.60x10‑3	 BCL2, PIK3R1
Signaling pathways regulating pluripotency of stem cells	 Down	 2.62x10‑3	 FGF2, IGF1, PIK3R1
Fluid shear stress and atherosclerosis	‑	  2.78x10‑3	 BCL2, PIK3R1, VEGFA
Phospholipase D signaling pathway	‑	  3.01x10‑3	 FYN, PIK3R1, CXCL8
Jak‑STAT signaling pathway	‑	  3.63x10‑3	 CCND1, BCL2, PIK3R1
Members of the BCR signaling pathway	 Down	 3.80x10‑3	 BCL2, PIK3R1
Hedgehog signaling pathway	‑	  3.96x10‑3	 CCND1, BCL2
T Cell Receptor Signaling Pathway	 Down	 3.96x10‑3	 FYN, PIK3R1
Endometrial cancer	‑	  4.47x10‑3	 CCND1, PIK3R1
Genes encoding secreted soluble factors	‑	  4.58x10‑3	 FGF2, IGF1, CXCL8, VEGFA
Acute myeloid leukemia	‑	  5.39x10‑3	 CCND1, PIK3R1
Non‑small cell lung cancer	‑	  5.97x10‑3	 CCND1, PIK3R1
VEGF signaling pathway	‑	  6.18x10‑3	 PIK3R1, VEGFA
Viral myocarditis	‑	  6.18x10‑3	 CCND1, FYN
Longevity regulating pathway‑multiple species	 Down	 6.80x10‑3	 IGF1, PIK3R1
Renal cell carcinoma	‑	  7.45x10‑3	 PIK3R1, VEGFA
Fc epsilon RI signaling pathway	‑	  8.13x10‑3	 FYN, PIK3R1
Prolactin signaling pathway	‑	  8.60x10‑3	 CCND1, PIK3R1
Chronic myeloid leukemia	‑	  8.84x10‑3	 CCND1, PIK3R1
Longevity regulating pathway	‑	  1.36x10‑2	 IGF1, PIK3R1
Genes related to Wnt‑mediated signal transduction	 Up	 1.36x10‑2	 CCND1, GAPDH
Rheumatoid arthritis	 Up	 1.39x10‑2	 CXCL8, VEGFA
NF‑kappa B signaling pathway	‑	  1.54x10‑2	 BCL2, CXCL8
Amoebiasis	‑	  1.57x10‑2	 PIK3R1, CXCL8
Cdc25 activates the cdc2/cyclin B complex to induce the	 Up	 1.60x10‑2	 CDK1
G2/M transition.
Inflammatory mediator regulation of TRP channels	 Down	 1.60x10‑2	 IGF1, PIK3R1
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Discussion

In the past few decades, gynecological cancer research has 
developed rapidly, particularly regarding the recognition of 
etiological factors. Although a number of studies have inves-
tigated CC, EC and VC separately, few studies have focused 
on these three types of cancer in combination. The aim of the 
present study was to perform a systematic and comprehensive 
analysis to investigate the pathogenesis of CC, EC and VC and 
make a preliminary assessment of the associations between 
these three cancer types.

By performing an analysis of microarray data, 1,219 DEGs 
were identified, including 138 in CC, 479 in EC and 734 in 
VC. Five DEGs were revealed in all three cancer types, which 
suggests these genes may participate in a number of important 
biological processes in gynecological cancer and may serve as 
crucial biomarkers following further research. Together with 
the 25 hub genes identified, these data may provide a direction 
for future research on gynecological cancer and assist with the 
identification of clinical biological targets.

Pathway enrichment analysis indicated that 86 pathways 
are closely associated with the 25 hub genes. In particular, it 

Figure 3. Pathway networks. (A) Model of the pathway network. The red circle nodes indicate a pathway and the lines represent the interactions between two 
pathways. The strength of the interaction is represented by the thickness of the line, according to the mean value of JC and OC. (B) Model of the core pathway 
network. Red circle nodes indicate a pathway and the lines represent the interactions between two pathways The strength of the interaction is represented by 
the thickness of the line according to the mean value of JC and OC. JC, Jaccard coefficient; OC, overlap coefficient.

Figure 4. Gene‑Pathway network. Orange diamonds indicate a pathway and circles represent a gene. Red indicates genes in cervical cancer, yellow represents 
genes in endometrial cancer and green indicates genes in vulvar cancer.
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was identified that viral infection and carcinogenesis pathways 
were significantly enriched, including ‘viral carcinogenesis’, 
‘HTLV‑1 infection’ and ‘hepatitis B’, which supports the 
association of virus with the three gynecological cancer types, 
particularly CC. Furthermore, cancer‑association pathways, 
including ‘pathways in cancer’ and ‘proteoglycans in cancer’ 
were revealed to be associated with the biological process of 
the three malignant tumor types. Notably, multiple different 
types of human cancer, including melanoma, prostate cancer, 
bladder cancer, breast cancer and glioma, were also identified 
to be associated with the 25 hub genes. This indicates that 
gynecological cancer types may exhibit homologous mecha-
nisms with tumor types of other systems.

With the gene‑pathway sub‑network model, seven critical 
hub genes and six important pathways of the three gyneco-
logical cancer types were identified. The hub genes with 
the highest degrees included CDK1, which was enriched in 
CC and VC. As reported, CDK1 is a member of the Ser/Thr 
protein kinase family and is encoded by cell division cycle 
gene 2 (cdc2) (19). In addition, CDK1 has been revealed to 
serve a role in numerous types of cancer, including EC (20), 
breast cancer (21) and ovarian cancer (22). Consistent with the 
present bioinformatics results, CDK1 has been demonstrated 
to serve a comprehensive role in mediating genetic networks 
involved in the progression of CC; therefore, it may be an 
important therapeutic target for improving prognosis (23). A 
study regarding ovarian cancer identified that CDK1 is associ-
ated with proliferation and can serve as a prognostic factor 
in epithelial ovarian cancer (22). In EC, the overexpression of 
CDK1 in endometrial carcinoma cells is closely associated 
with the occurrence of tumors, indicating a role in tumor 

prognosis (24). The CDK1 gene can contribute to the carcino-
genesis of HPV (25), and CC and VC are associated with HPV 
infection; therefore, CDK1 may be an important molecule in 
the pathogenesis of gynecological tumors.

Another cell cycle regulatory gene, CCNA2, was revealed 
as a shared DEG of CC, EC and VC, and complicated connec-
tions were identified between it and other nodes. According to 
recent studies, CCNA2 belongs to the highly conversed cyclin 
family and is expressed in multiple tissues in the human body, 
including numerous types of cancer, which indicates it may 
serve a role in cancer transformation and progression (26,27). 
Gao et al (28) revealed that CCNA2 is a prognostic biomarker 
for estrogen receptor‑positive breast cancer and is associated 
with Tamoxifen resistance. Combined with another biological 
analysis of EC that demonstrated CCNA2 is one of the top 
two upregulated nodes (29), the present study hypothesizes 
that CCNA2 serves a role as a biomarker in gynecological 
tumors (29). In addition, a study associated with ovarian cancer 
revealed a similar result, in which CCNA2 was upregulated in 
the chemo‑resistant epithelial ovarian cancer (30). Therefore, 
it can be suggested that CCNA2 is a potential biomarker in 
gynecological cancer; however, this requires in vivo or in vitro 
experimental verification. CCND1 is an important positive 
regulator of the G1/S phase of the cell cycle and has been 
identified as a co‑factor of HPV in the initiation of cervical 
carcinogenesis (31). Similar studies regarding EC and VC have 
also widely been reported (32‑34).

BCL2 and IGF1 were revealed as the only two down-
regulated genes in the sub‑network. BCL2 is an intracellular 
membrane protein that prevents apoptotic cell death and over-
expression of BCL2 can block p53‑mediated G1 arrest (35). 

Figure 5. Sub‑molecular network of CC, EC and VC. Orange diamonds indicate a pathway and circles represent a gene. Red indicates genes in CC, yellow 
represent genes in EC and green indicates genes in VC. CC, cervical cancer; EC, endometrial cancer; VC, vulvar cancer.
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Kamaraddi et al  (36) demonstrated that BCL2 expression 
is higher in malignant lesions compared with premalignant 
lesions, which differs from the current findings. It has been 
suggested that alterations of BCL2 expression are associated 
with early events in cervical tumorigenesis and a lower BCL2 
expression level has also been demonstrated to be associated 
with an improved 5‑year survival rate and prognosis  (37). 
The significance of BCL2 in gynecological tumors requires 
further investigation. Furthermore, IGF1 is closely associated 
with the occurrence of numerous tumor types; however, its 
exact mechanism remains unclear. Iyer et al (38) identified 
that IGF‑1 expression levels in advanced CC increase with 
chemo‑radiotherapy and decline during follow‑up (38). With 
a limited specificity in gynecologic tumors, IGF1 is of limited 
value in the early prediction of gynecological tumors; however 
it may serve a role in targeted treatment strategies, and the 
assessment and improvement of prognosis (39,40).

Angiogenesis serves an important role in tumor growth, 
development, progression and metastasis (41). As a pro‑angio-
genesis factor, VEGFA is involved in the proliferation, 
differentiation and migration of endothelial cells, and partici-
pates in the invasion and metastasis of numerous types of 
cancer (42). Chen et al (43) demonstrated that VEGFA may be 
a target for inhibiting angiogenesis in EC 42). Similarly, Hua 
and Tian (44) revealed that CCL4 can promote cell prolifera-
tion, invasion and migration of EC by targeting the VEGFA 
signal pathway (44). Combined with the present results, this 
indicates that VEGFA serves an important role in gyneco-
logical tumor invasion and metastasis.

FGF2 is a typical fibroblast growth factor that stimulates 
the growth of various cell types, from fibroblasts to tumor 
cells  (45). In addition, FGF2 is a fundamental signaling 
molecule in tumor‑induced angiogenesis  (46). It has been 
demonstrated that FGF2 is mitogenic in various cell types and 
is associated with the regulation of tumor angiogenesis and 
metastasis (47). Certain studies regarding the receptor family 
of FGF2 have revealed that it is associated with the occurrence 
and development of CC, in addition to HPV16 infection (48,49). 
Aberrant FGF/FGF receptor signaling has been demonstrated 
in multiple types of tumor (50,51). The expression level of FGF2 
has been revealed to be higher in EC compared with normal 
tissues, and the highest expression level was observed in tumors 
with dedifferentiation, myometrial invasion and advanced 
staging (52). Therefore, angiogenesis has an important impact 
in the pathogenesis of gynecological cancers.

‘PI3K‑Akt signaling pathway’, ‘hepatitis B’, ‘pathways in 
cancer’, ‘focal adhesion’, ‘viral carcinogenesis’ and ‘proteo-
glycans in cancer’ were located in the sub‑network, which 
indicates that these processes serve an important role in 
the pathogenesis of CC, EC and VC. It is understood that 
the PI3K/Akt signaling pathway serves a central role in cell 
growth and proliferation, and it has also been suggested that 
its deregulation is associated with cancer (53). Yung et al (54) 
demonstrated that the activation of AMPK could signifi-
cantly inhibit CC cell growth. Similar studies regarding the 
PI3K/Akt pathway in EC have also been reported (55,56), and 
it has been considered as a therapeutic target (57). According 
to previous studies, the PI3K/Akt signaling pathway can serve 
as a therapeutic target in EC (57) and ovarian cancer (58,59), 
and can be mediated by molecules, including VEGFA (40). 

FGF2 has also been reported to serve an angiogenic role by 
the PI3K/Akt pathway (60). Furthermore, BCL2 is a major 
downstream mediator of the PI3K/Akt pathway and serves 
a pivotal role in tumor response (61,62). It has been reported 
that CCNA2 expression promotes the migration, invasion and 
metastasis of hepatocellular carcinoma and ovarian cancer 
cells via the PI3K/Akt signaling pathway (63). Therefore, this 
crucial pathway in cancer cells may be involved in the early 
developmental stages of formation and invasion. As indicated 
by the present results, the molecular mechanisms underlying 
CC, EC and VC are complicated, and further studies are 
required to fully understand their pathological mechanisms.

Similarly, Suman and Mishra (64) identified that the aurora 
kinase pathway has a crucial function in the pathogenesis of 
five gynecological cancer types, including breast cancer, EC, 
CC, ovarian cancer and VC, by analyzing the common core 
genes from the GSE63678, GSE57297 and GSE26712 datasets. 
Furthermore, the present study identified seven genes (CCNA2, 
CDK1, CCND1, BCL2, IGF1, FGF2 and VEGFA) and six 
pathways (‘viral carcinogenesis’, ‘hepatitis B’, ‘focal adhesion’, 
‘pathways in cancer’, ‘PI3K‑Akt signaling pathway’ and ‘proteo-
glycans in cancer’) that may serve an important role in CC, EC 
and VC. A number of factors are involved in the progression 
of cancer; the present study focused on the factors associated 
with the female reproductive system. The results may provide 
comprehensive evidence that promotes the understanding of 
cancers of the female genital tract. While previous studies have 
focused on co‑expressed DEGs (23,64), the present study aimed 
to establish a gene‑pathway network based on the analysis 
of DEGs. Additionally, previous studies investigated genes 
co‑expressed by the five cancer types (breast cancer, EC, CC, 
ovarian cancer and VC). However, the current study not only 
investigated the co‑expressed DEGs of CC, EC and VC, but also 
examined the DEGs co‑expressed by any combination of two of 
the cancer types. In summary, the current study focused of the 
associations between three types of tumor, which may make it 
more comprehensive compared with previous studies.

Notably, there are certain limitations to the present study. 
The sample number was relatively small, which to a certain 
extent reduces the credibility of gene enrichment. Subject 
to conditions, long‑term assessments of the patients' clinical 
conditions were not available. In addition, the literature 
regarding the pathways associated with CC, EC and EC, 
except for the PI3K/Akt pathway is limited; therefore, the 
present study lacked a solid foundation to adequately discuss 
the current results. Finally, certain genes that are associated 
with the pathogenesis of gynecological types of cancer may 
not have been statistically analyzed, possibly due to the exclu-
sion criteria that was applied.

In conclusion, the pathogenesis of CC, EC and VC is 
complicated. By performing a comprehensive analysis, the 
present study revealed a library of DEGs in CC, EC and VC, 
and identified 25 hub genes. Subsequently, viral infection, 
tumorigenesis, inflammation and the endocrine system were 
revealed to be involved in the development of these three types 
of cancer. Finally, a molecular network of CC, EC and VC was 
constructed. Most notably, it was identified that the PI3K/Akt 
pathway serves an important role in the three types of gyneco-
logical cancer and seven hub genes (CCNA2, CDK1, CCND1, 
FGF2, IGF1, BCL2 and VEGFA) present in the sub‑network 
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may act as therapeutic targets, and assist with early diagnosis 
and prevention. The present study may support the elucidation 
of the underlying mechanisms in CC, EC and VC, which would 
promote early detection and the development of targeted therapy. 
Further investigations that aim to improve understanding of 
the mechanisms of these three cancer types will be vital for 
developing highly sensitive and multifactorial strategies for the 
prevention, diagnosis and treatment of CC, VC and EC.
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