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Abstract. Accumulating evidence suggests that acetyl‑CoA 
acetryltransferase 1 (ACAT‑1) may mediate tumor develop-
ment and metastasis. However, the specific function served 
by ACAT‑1 in lung cancer is not well understood. Therefore, 
the present study initially verified that ACAT‑1 was overex-
pressed in Lewis lung carcinoma (LLC) tissues compared 
with non‑LLC mice and that this overexpression promoted the 
proliferation, invasion and metastasis of these LLC samples. 
Western blotting, immunofluorescence microscopy and flow 
cytometry allowed the present study to determine that the 
ACAT‑1 inhibitor avasimibe significantly reduced the expres-
sion of ACAT‑1 in LLC compared with LLC cells that are 
not treated with avasimibe (P<0.05). A combination of Cell 
Counting Kit‑8 and wound healing assays demonstrated that 
downregulating ACAT‑1 expression sufficiently inhibited 
the proliferation of LLC cells. Avasimibe promoted LLC 
cell apoptosis as assessed by a Annexin V/propidium iodide 
double staining assay. Furthermore, avasimibe inhibited tumor 
growth in vivo and improved immune responses, with tissue 
biopsies from LLC model mice exhibiting higher levels of 
ACAT‑1 compared with in healthy controls. Altogether, the 
results of the present study reveal that avasimibe may inhibit 
the progression of LLC by downregulating the expression 
of ACAT‑1, which may thus be a potential novel therapeutic 
target for lung cancer treatment.

Introduction

Lung cancer remains the most common form of cancer, 
with the highest mortality rate globally, making it a major 
public health threat (1,2). Surgery, chemotherapy, radio-
therapy and molecular targeted therapies are currently the 
primary treatment options for this disease (3). Whilst early 
lung cancer may be treated surgically, the treatment options 
for advanced metastatic lung cancer are limited. Although 
radiotherapy and chemotherapy postpone the progression 
of these advanced lung cancer types, the survival rate of 
patients is low, and patients are often unable to tolerate 
the side effects of these therapies. Molecular targeted 
therapies are only effective in patients with lung adeno-
carcinoma who have specific mutations in genes including 
epidermal growth factor receptor (EGFR) or ALK receptor 
tyrosine kinase (ALK) (4,5). Patients who have wild‑type 
EGFR or ALK and non‑adenovirus‑associated non‑small 
cell lung cancer lack effective targeted therapies. Thus, 
there remains a clear need for the identification of novel 
therapeutics suitable for treating patients with advanced 
lung cancer.

The enzyme acetyl‑CoA acetyltransferase 1 (ACAT‑1) is a 
central mediator of the cholesterol esterification pathway (6). 
Previous studies have identified that ACAT‑1 is abnormally 
expressed in certain cancer types, including prostate cancer, 
pancreatic cancer, leukemia, glioma, breast cancer and 
colon cancer (7‑12). However, the functions of ACAT‑1 in 
lung cancer are not well understood. In the present study, 
the effects of the inhibition of ACAT‑1 on Lewis lung cancer 
(LLC) growth and metastasis were investigated using in vitro 
cellular experiments and in vivo animal models. The effect 
of downregulation of ACAT‑1 expression on proliferation, 
migration and apoptosis of LLC cells was observed at the 
cell level in vitro. The effects of ACAT‑1 inhibitor avasimibe 
on tumor growth and metastasis in LLC mice were observed 
in an animal model in vivo, and the expression of ACAT‑1 
in Lewis lung carcinoma tissues was detected to add new 
content for lung cancer research and provide new strategies 
for clinical lung cancer treatment.
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Materials and methods

Ethics statement. The Research Ethics Committee of Bengbu 
Medical College (Bengbu, China) ethically approved this 
study.

Cell culture. The LLC cell line is a malignant murine lung 
cancer cell line which was obtained from the Type Culture 
Collection of the Chinese Academy of Sciences (Shanghai, 
China). LLC cells were grown in 25 cm3 cell culture vessels 
containing Dulbecco's modified Eagle's medium (DMEM; 
Hyclone; GE Healthcare Life Sciences, Logan, UT, USA), 
10% foetal bovine serum (FBS; Hangzhou Sijiqing Biological 
Engineering Materials Co., Ltd., Hangzhou, China) and 
penicillin/streptomycin in standard growth conditions (37˚C). 
After culturing for approximately 3 days, cell subculture was 
performed when the cell density reached ~80% of the bottom 
of the culture bottle.

Cell viability assessment. Cell proliferation was measured 
using a Cell Counting Kit‑8 (CCK‑8; Biosharp; Beijing 
Lanjieke Technology Co., Ltd., Hefei, China) assay, as previ-
ously described (13). Briefly, LLC cells in the logarithmic 
phase of growth were harvested, resuspended at 5x104/ml, and 
100 µl cells were added to a 96 well plate (5,000 cells/well) 
with five replicates per condition. Once adherence to the 
plates was achieved, a concentration gradient of avasimibe 
(Med Chem Express LLC, Monmouth Junction, NJ, USA) of 
0.0, 2.5, 5.0, 10.0 and 20.0 µM was added to the corresponding 
wells. Following 24, 48, 72 or 96 h of incubation at 37˚C, 
CCK‑8 solution was added to each well followed by a 1‑4 h 
incubation at 37˚C. The optical density at 450 nm was then 
determined via a microplate reader (BioTek Instruments, Inc., 
Winooski, VT, USA). Viability percentages were determined 
by comparing with the blank for control and treated samples.

Wound healing assay. This assay was conducted as described 
previously (14). Briefly, LLC cells were plated in 6‑well plates 
(5x105 cells/well). Subsequent to achieving 90% confluency, 
a vertical scratch (width, ~900 µm) was created in the mono-
layer using a sterile pipette tip. Plates were then washed using 
phosphate buffered saline (PBS) and serum‑free DMEM 
containing either 0, 5 or 10 µM avasimibe was added to the 
appropriate wells. After 48 h, cell migration was observed 
and photographed at 0 and 48 h after scratching. The width 
of the healing wound was calculated using ImageJ software 
(version 1.8.0; National Institutes of Health, Bethesda, MD, 
USA). The wound healing rate was determined based on the 
ratio of the change in the scratch width to the initial scratch 
width.

Flow cytometry. LLC cells were plated in a 6 well plate 
(5x105  cells/ml) and harvested after  72  h treatment with 
0, 10 or 20 µM avasimibe. Cells were then fixed at room 
temperature in 4% paraformaldehyde (Sigma‑Aldrich; Merck 
KGaA, Darmstadt, Germany) for 30 min, prior to permea-
bilization using 0.1% Triton X‑100 (Sigma‑Aldrich; Merck 
KGaA) for 20 min. The cells were then blocked in 5% goat 
serum (Hangzhou Sijiqing Biological Engineering Materials 
Co., Ltd.) and 0.3% Triton X‑100 for 30 min at 37˚C. Cells 

were incubated with anti‑ACAT‑1 antibody (pAb; 1:200; 
catalog no. #44276; Cell Signaling Technology, Inc., Danvers, 
MA, USA) for 30 min at 37˚C followed by fluorescein isothio-
cyanate (FITC)‑labeled goat anti‑rabbit immunoglobulin G 
(IgG; 1:200; catalog no. #4412; Cell Signaling Technology, 
Inc.) for 30 min at 37˚C. The cells were washed 2‑3 times with 
3 ml TPBS buffer. A Cytomics FC 500 flow cytometer (BD 
FACSCalibur; BD Biosciences, Franklin Lakes, NJ, USA) was 
then used to detect labeled cells. Mean fluorescence intensity 
was analyzed using FlowJo software (version 7.6; FlowJo LLC, 
Ashland, OR, USA).

Western blotting. LLC cells were seeded (1x106 cells/ml) into 
60 mm culture dishes and harvested after 72 h treatment with 
0 or 10 µM avasimibe. Subsequent to washing three times 
with PBS, a cell lysis buffer (PMSF:RIPA=1:100; Beyotime 
Institute of Biotechnology, Shanghai, China) was used to 
harvest the cells, and protein was quantified via a BCA assay 
(Beyotime Institute of Biotechnology). Samples were then 
separated via SDS‑PAGE (10% gel) with 30  µg per lane 
and then transferred to a polyvinylidene fluoride membrane 
(Beyotime Institute of Biotechnology). A total of 5% skim 
milk was used for membrane blocking for 2 h at room temper-
ature, and membranes were incubated at 4˚C with the primary 
antibody (rabbit anti‑mouse ACAT‑1 polyclonal antibody; 
1:1,000; catalog no. #44276; Cell Signaling Technology, Inc.) 
overnight. A horseradish peroxidase‑conjugated secondary 
anti‑rabbit IgG antibody (goat anti‑rabbit IgG; 1:8,000; 
catalog no. BL003A; Biosharp; Beijing Lanjieke Technology 
Co., Ltd.) was then used for detection for 2 h at 37˚C. ACAT‑1 
was then visualized using an ECL (EMD Millipore, Billerica, 
MA, USA) chromogenic reaction in a dark room. Bands were 
quantified using ImageJ software (version 1.8.0; National 
Institutes of Health, Bethesda, MD, USA).

Immunofluorescence. LLC cells were seeded onto coverslips 
(1x105  cells/ml). Following treatment with 0  and  10  µM 
avasimibe for 72 h, the coverslips were fixed using 4% para-
formaldehyde and permeabilized as aforementioned, and 
were then blocked in 5% goat serum and 0.3% Triton X‑100 
for 30 min at 37˚C. The coverslips were then incubated with 
anti‑ACAT‑1 antibody (pAb; 1:200; catalog no. #44276; Cell 
Signaling Technology, Inc., Danvers, MA, USA) for 30 min 
at 37˚C and then incubated with FITC‑labeled goat anti‑rabbit 
IgG (1:50; catalog no. BL003A; Biosharp; Beijing Lanjieke 
Technology Co., Ltd.) for 30 min at 37˚C. DAPI (Beyotime 
Institute of Biotechnology) nuclear staining was then 
performed while samples were in the dark for 5 min at room 
temperature. Subsequent to rinsing with PBS, the coverslips 
were fixed on glass slides using 1:1 glycerol:water for 5 min at 
room temperature. Confocal microscopy (magnification, x600; 
FV‑1200MPE SHARE; Olympus Corporation, Tokyo, Japan) 
was used for imaging, and ImageJ software (version 1.8.0; 
National Institutes of Health, Bethesda, MD, USA) was used 
for quantitative analyses.

Apoptosis detection. Apoptosis was detected using an Apoptosis 
Detection kit (Nanjing KeyGen Biotech Co., Ltd., Nanjing, 
China) according to the manufacturer's protocol. Subsequent 
to LLC cell treatment with avasimibe (0 and 10 µM) for 72 h, 
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the cells were digested with EDTA‑free trypsin and resus-
pended in 500 µl binding buffer. Samples were then stained 
with 1:100 annexin V and propidium iodide for 10 min at 4˚C 
in the dark, and cells were detected using flow cytometry as 
described above. The rate of apoptosis was analyzed using 
FlowJo software (version 7.6; FlowJo LCC

In  vivo mouse model experiments. A total of 24  male 
C57BL/6 mice (age range, 8‑10 weeks; weight, 18‑22 g) were 
obtained from the Experimental Animal Center of Bengbu 
Medical College (Bengbu, China). The mice were housed in 
a pathogen‑free central animal facility (temperature, 20~26˚C; 
relative humidity, 40~70%; light‑dark alternate time, 12/12 h; 
food and water were disinfected and sterilized, the mice had 
continuous access to the food and water) at the Bengbu Medical 
College. The animal experiments were performed based on 
the recommendations provided in the National Institutes of 
Health Laboratory Animal Care and Use Guidelines  (15). 
LLC cells were washed twice with PBS and filtered through a 
40 µm filter membrane prior to being resuspended at a density 
of 2x107 cells/ml and subcutaneously injected into the left 
forelimbs of these mice. Following 10 days, a total of 34 mice 
meeting the experimental requirements, that the tumor sizes 
were similar, were identified.

In the avasimibe treatment trial, 24 mice were randomized 
into 4 groups: A control group, a cyclophosphamide (CTX; 
20 mg/kg, once every other day) group, an avasimibe (15 mg/kg, 
once every 2 days) group and a CTX + avasimibe group. From 
days 10‑35 following tumor inoculation, CTX or avasimibe 
were injected intraperitoneally and mouse body weight was 
monitored once weekly. On day 35, all mice were euthanized 
and tumors, livers, lungs and spleens were harvested. Spleens 
were then weighed, tumor volume was determined, and liver 
and lung samples were inspected for evidence of metastases.

For the remaining 10 tumor model mice, the lungs were 
collected on day 35. In parallel, lung samples from 10 healthy 
tumor‑free mice were also collected. Lung tissue protein 
was then extracted and ACAT‑1 expression was detected by 
western blotting.

Statistical analysis. All in vitro experiments were conducted 
at least three times. SPSS v16.0 (SPSS, Inc., Chicago, IL, USA) 
was used for all statistical analyses. Data are provided as the 
mean ± standard deviation, and were assessed using one‑way 
analyses of variance and Student's t‑tests. The least significant 
difference‑t test was used as a post‑hoc test for comparison 
between multiple groups. P<0.05 was considered to indicate a 
statistically significant difference.

Results

Decreased expression levels of ACAT‑1 inhibit LLC cell 
proliferation. LLC cells were treated with different avasimibe 
concentrations to inhibit ACAT‑1, revealing a significant 
dose‑ and time‑dependent suppression of proliferation as 
revealed using a CCK‑8 assay (P<0.05; Fig. 1A and B). The 
cell viability rates in the blank group and the avasimibe 
(2.5, 5, 10 and 20 µM) groups were 100.00±0.00, 63.57±4.88, 
45.47±5.35, 37.66±3.72 and 30.59±1.24%, respectively 
(Fig. 1A). In addition, the viability of the control group and 

the groups at 1, 2, 3 and 4 days were 100.00±0.00, 72.21±4.50, 
58.60±5.25, 46.11±3.9 and 39.02±3.04%, respectively (Fig. 1B). 
These results therefore demonstrated that avasimbe inhibits 
LLC cell proliferation compared with the controls.

Decreased ACAT‑1 expression inhibits LLC cell migration. As 
presented in Fig. 2, cell migration was significantly reduced 
in the avasimibe group compared with the control group 
(P<0.01). The wound‑healing rates of the avasimibe‑treated 
(5 and 10 µM) groups and the blank group were 18.90±2.37, 
11.07±1.27 and 40.63±4.98%, respectively. This indicated that 
avasimibe inhibited the migration of LLC cells compared with 
the controls.

Avasimibe downregulates ACAT‑1 expression in LLC cells. 
LLC cells were treated with different avasimibe doses for 
72  h, following which the ability of avasimibe to inhibit 
ACAT‑1 expression was validated using flow cytometry, 
western blotting and immunofluorescence microscopy. As 
presented in Fig. 3, it was revealed that avasimibe treatment 
resulted in the significant downregulation of ACAT‑1 protein 
expression levels in LLC cells compared with the control 
groups (P<0.05).

Avasimibe promotes the apoptosis of LLC cells. Based 
on a flow cytometry‑based analysis, avasimibe (10  µM) 

Figure 1. Downregulating ACAT‑1 expression using avasimibe may inhibit 
the viability of LLC cells. (A) Effect of different concentrations of avasimibe 
(0, 2.5, 5, 10 and 20 µM) on LLC cell viability at 72 h, with 0 µM avasimibe 
used as a control. (B) Effects of avasimibe (10 µM) on the viability of LLC 
cells at 0, 24, 48, 72 and 96 h, with 0 h used as a control. *P<0.05 and **P<0.01 
with comparisons shown by lines. ACAT‑1, acetyl‑CoA acetyltransferase 1; 
LLC, Lewis lung cancer.
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treatment of LLC cells for 72 h significantly increased the 
apoptotic rate of these cells compared with the control group 
(P<0.05; Fig. 4).

Avasimibe inhibits LLC growth and metastasis in mice. In the 
present study, a subcutaneous mouse LLC model was estab-
lished in order to validate the anti‑tumor effects of ACAT‑1 
inhibition in vivo. The results revealed that avasimibe may 
significantly reduce tumor size (P<0.01; Fig. 5A and B), and 
resulted in a significant increase in spleen weights and spleen 
indexes (P<0.01; Fig. 5F and G) compared with the control 
groups. Compared with the CTX and avasimibe mono‑treat-
ment groups, the combination of CTX+avasimibe was able 
to significantly inhibit tumor growth more effectively than 
either single treatment (P<0.01; Fig. 5B). Avasimibe treatment 
did not result in notable changes in mouse body weight over 
time (Fig. 5C). Metastatic lesions in distant organs (liver and 
lung) were also assessed at the study endpoint, with at least 
one metastatic lesion being observed in the liver and lung 
of each control mouse, compared with the lack of evidence 
of metastatic lesions in other groups (Fig. 5D and E). These 
results further confirmed that avasimibe inhibited tumor 
growth and enhanced immune responses in mice with LLC 
tumor types. Furthermore, avasimibe enhanced the anti‑tumor 
effects of CTX.

Expression of ACAT‑1 in the tumor model mice is higher 
compared with in the control mice. As presented in 
Fig. 6, the expression levels of ACAT‑1 in LLC mice were 
significantly higher compared with that in the control mice 
(P<0.05).

Discussion

In the present study, an association between ACAT‑1 and 
lung cancer growth and metastasis was identified. ACAT‑1 
has primarily been studied in the context of cardiovascular 
diseases, with numerous ACAT inhibitors having been 
developed to treat diseases including cardiovascular diseases 
and Alzheimer's disease  (16,17). Recently, researchers 
have determined that ACAT‑1 expression and activity are 
upregulated in numerous tumor cells, and ACAT‑1 inhibitors 
exhibit anti‑tumor activity in certain experimental models 
in vivo and in vitro (9,18‑22), including in renal cell carci-
noma, colon cancer, breast cancer, glioma, pancreatic ductal 
adenocarcinoma, chronic myelogenous leukemia and lung 
cancer. A previous paper studied the function of ACAT‑1 
in lung cancer cells, uncovering results which differed from 
those of the present study (19). This may be due to a number 
of reasons; firstly, this may be that this previous study did 
not perform migration experiments to investigate the effect 
of avasimibe on lung cancer cell migration. Secondly, this 
previous study used A549 cells, which are distinct from LLC 
cells. Thirdly, this previous study did not conduct animal 
model experiments assessing lung cancer. Finally, this 
previous study investigated the anti‑tumor effects of avasimbe 
by detecting cholesterol in cells, whereas the present study 
focused specifically on the expression of ACAT‑1. Here, it 
was demonstrated that the inhibition of ACAT‑1 may be 
effective in treating lung cancer.

The present study provides novel insights into the impor-
tance of ACAT‑1 in LLC cells, suggesting that this protein 
serves an important function in the growth and metastasis of 
LLC cells and the development of LLC in mice. Targeting 
ACAT‑1 is thus a potential novel therapeutic strategy for 
treating lung cancer. By treating LLC cells with avasimibe, 
an ACAT‑1 inhibitor, it was revealed that avasimibe reduced 
the expression of ACAT‑1 and significantly inhibited LLC 
cell proliferation and migration compared with the control 
cells (P<0.05), further promoting the apoptosis of these LLC 
cells. The present study additionally established a mouse 
model of LLC to verify the anti‑tumor effects of ACAT‑1 
inhibitors in  vivo. Mice were treated with saline, CTX 
(20 mg/kg), avasimibe (15 mg/kg) or CTX+avasimibe. It was 
revealed that avasimibe did not cause weight loss in mice. 
No evidence of avasimibe toxicity in mice was observed, 
and avasimibe alone or in combination with the existing 
chemotherapy CTX was sufficient to inhibit tumor growth 
and metastasis, with avasimibe further increasing tumor 
sensitivity to CTX. Studies have reported that avasimibe may 
enhance the efficacy of gemcitabine as a means of combatting 
pancreatic ductal adenocarcinoma proliferation (22), and may 
additionally enhance the efficacy of imatinib as a means of 
disrupting the growth of chronic myelogenous leukemia (9). 
The present study further observed that the inhibition of 
ACAT‑1 enhanced immune responses in mice, as evidenced 

Figure 2. Downregulating acetyl‑CoA acetyltransferase 1 expression using 
avasimibe may inhibit LLC cell migration. Scale bars=5,000 µm. The effects 
of avasimibe (5 and 10 µM) on LLC cell migration ability at 48 h post‑treat-
ment, with 0 µM avasimibe used as a control. **P<0.01 with comparisons 
shown by lines. LLC, Lewis lung cancer.
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by measuring the spleen weight and spleen indexes of treated 
mice. Additionally, it was revealed that the expression 
of ACAT‑1 in the lung tissue of the LLC mice was higher 
compared with in healthy mice. These results will provide 
the basis for further biological research to fully understand 
the function of ACAT‑1 in the occurrence and development 
of cancer.

The mechanisms linking ACAT‑1 to lung cancer growth 
and metastasis require further study. One potential link is 
the fact that ACAT‑1 may reduce the levels of the pyruvate 
dehydrogenase complex (PDC) (23). As early as the 1950s, 
German scientists proposed the Warburg effect (24); unlike 
the oxidative metabolism of normal cells, tumor cells undergo 
extensive aerobic glycolysis to provide the energy necessary 
for growth in an oxygen‑rich environment. PDC is extremely 
important mediator of the interface between glycolysis and 
oxidative phosphorylation  (25). Studies have demonstrated 
that decreased PDC levels are able to enhance glycolysis in 

tumor cells, thus providing a metabolic advantage for tumor 
growth (26‑28). ACAT‑1 is an upstream regulator of pyruvate 
dehydrogenase and pyruvate dehydrogenase phosphatase 
(PDP), which acetylates pyruvate dehydrogenase E1‑a subunit 
and PDP‑1 to downregulate PDC levels (23). In the present 
study, the expression of ACAT‑1 was successfully inhibited 
using avasimibe, which in theory may increase PDC levels and 
thereby inhibit tumor growth.

In addition to promoting glycolysis, ACAT‑1 serves a key 
role in cholesterol metabolism, catalyzing free cholesterol 
conversion into cholesterol esters (29). ACAT‑1 may increase 
cholesterol ester levels and elevate blood sugar in the body, 
resulting in insulin secretion which may in turn increase the 
activity of insulin‑like growth factor (IGF). Increased IGF 
function may promote cell mitosis, thereby accelerating cell 
proliferation and promoting tumor growth (30‑32). Studies 
have demonstrated that IGF is closely associated with lung 
cancer progression (33,34). Thus, the inhibition of ACAT‑1 

Figure 3. Avasimibe regulates the expression levels of ACAT‑1 in LLC cells. (A) ACAT‑1 protein levels were quantified by flow cytometry. The effect of 
avasimibe (10 and 20 µM) on the expression levels of ACAT‑1 in LLC cells subsequent to treatment for 72 h was determined, with 0 µM used as a control. 
(B) ACAT‑1 protein levels in LLC cells were quantified by western blotting (normalized to β‑actin) in order to assess the effects of treatment with 10 µM 
avasimibe for 72 h, with 0 µM used as a control. (C) ACAT‑1 protein levels were quantified by immunofluorescence microscopy following 72 h treatment with 
10 µM avasimibe, with 0 µM used as a control. Scale bars=20 µm. *P<0.05 and **P<0.01 with comparisons shown by lines. ACAT‑1, acetyl‑CoA acetyltrans-
ferase 1; LLC, Lewis lung cancer; FITC, fluorescein isothiocyanate; NS, not significant.
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Figure 4. Effect of 72 h treatment with 10 µM avasimibe on the apoptotic rate of Lewis lung cancer cells, with 0 µM used as a control. *P<0.05 with comparisons 
shown by lines. FITC, fluorescein isothiocyanate. 

Figure 5. Therapeutic effect of avasimibe in a mouse model of Lewis lung carcinoma. (A) Images of the tumor; (B) ex vivo measurements of the tumor 
size; (C) monitoring of the mouse body weight over time (0‑5 weeks); (D) Images of metastatic lesions of the lung; (E) ex vivo measurements of spleen 
weights; (F) Images of metastatic lesions of the liver; (G) ex vivo measurements of spleen indexes. **P<0.01 with comparisons shown by lines. CTX, 
cyclophosphamide.
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expression reduces cholesterol ester levels, and may thereby 
result in decreased IGF activity, resulting in the inactiva-
tion of phosphoinositide 3 kinase/protein kinase B or RAS 
type GTPase family/mitogen‑activated protein kinase 
signaling pathways, thereby inhibiting tumor growth and 
metastasis (35).

Recent studies (36‑38) have also identified an association 
between ACAT‑1 and the immune system, as inhibiting 
ACAT‑1 expression may enhance the anti‑tumor activity of 
cluster of differentiation (CD)8+ T cells. During T cell activa-
tion, lipid metabolism is required for membrane biosynthesis 
and cell growth. Cholesterol regulates membrane protein 
function, participates in membrane trafficking and regulates 
transmembrane signaling (39,40). Previous studies have also 
reported that ACAT‑1 inhibitors potentiate the anti‑tumor 
effects of human chimeric antigen receptor‑modified T 
cells, and that CD8+ T cell responses to melanoma may be 
enhanced by inhibiting cholesterol esterification in mice 
via ACAT‑1 inhibition (41,42). The present study similarly 
observed that avasimibe may improve immune responses 
in tumor‑bearing mice, which may additionally be associ-
ated with ACAT‑1 affecting immune system function. The 
avasimibe and CTX+avasimibe group exhibited increased 
spleen weights and spleen index values compared with the 
control group, but these values were higher in the avasimibe 
treatment group compared with the CTX+avasimibe group, 
which may be due to the effects of CTX on the immune 
system in these mice. CTX is commonly used as an immu-
nosuppressant to inhibit tumor growth, which may inhibit 
immune system function (43‑45). Furthermore, the inhibition 
of ACAT‑1 by avasimibe may improve the immune function 
in mice (38,41,42). Therefore, the regulation of cholesterol 
metabolism may have a profound impact on anti‑tumor 
responses through these other signaling pathways. Further 

research will therefore be required to fully elucidate the 
underlying molecular mechanisms.

The safety and toxicity of avasimibe and CTX have been 
evaluated in clinical trials. In prior clinical trials for the treat-
ment of atherosclerosis, avasimibe proved to have good safety 
in humans (46,47). CTX is a commonly used chemotherapeutic 
drug, and its clinical safety has also been confirmed (48‑50). 
At present, to the best of our knowledge there has been no 
clinical trial assessing the combination of avasimibe and CTX. 
It is therefore necessary to conduct clinical trials to confirm 
the effectiveness and safety of this combination.

In summary, a preliminary conclusion may be drawn from 
the present study; that inhibiting the expression of ACAT‑1 
may weaken the proliferation and metastasis of LLC cells. 
Avasimibe may not only inhibit the tumor growth and devel-
opment of distant metastases in mice, but may additionally 
enhance the anti‑tumor efficacy of chemotherapeutic drug 
treatment and enhance immune responses in vivo. Therefore, 
targeted blocking of the ACAT‑1 metabolism pathway has 
potential for use as a novel treatment strategy for lung cancer 
that may be combined with chemotherapy to provide novel 
treatment strategies for this disease. This treatment has the 
potential to delay the progression and metastasis of cancer, 
thereby prolonging patient survival time and improving 
quality of life. However, the further study of ACAT‑1 is still 
required in order to fully understand the function of ACAT‑1 
in the development and progression of lung cancer.
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