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Abstract. At present, methods of radiotherapy simulation for
breast cancer based on four-dimensional computerised tomog-
raphy (4D-CT) or three-dimensional CT (3D-CT) simulation
remain controversial. In the present study, 7 patients with
residual breast tissue received whole breast radiotherapy
based on 3D-CT and 4D-CT simulation. For the 4D-CT plan,
four types of CT images were produced, including images of
the end of inspiration and the end of expiration, and images
acquired by the maximal intensity projection (MIP) and
average intensity projection (AIP). In the 3D-CT plan, the
clinical target volume (CTV) and plan target volume (PTV)
were marginally higher compared with the 4D-CT plan.
In addition, the minimum point dose of the target volume
(Dpnin), the maximum point dose of the target volume (D,,,,)
and the mean point dose of the target volume (D,,.,,) of the
CTV and PTV in the MIP and AIP plans were marginally
higher compared with the 3D-CT plan. For the contralateral
breast (C-B), volumes of the 4D-CT plan were markedly lower
compared with the 3D-CT plan. Furthermore, D,,;,, D,.., and
D,..., of the 3D-CT plan were higher compared with the AIP
and MIP plans. For the ipsilateral lungs (I-L), volumes of the
3D-CT and AIP plans were higher compared with the MIP
plan. Furthermore, when breast lesions were on the left side,
for the heart, the volume receiving no less than 40% of the
prescription dose (V,,) and the volume receiving no less than
30% of the prescription dose (V) of the MIP and AIP plans
were slightly lower compared with those of the 3D plan. In
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conclusion, 4D-CT radiotherapy based on the MIP and AIP
plans provides a slightly smaller radiation area and slightly
higher radiotherapy dosage of the CTV and PTV compared
with 3D-CT radiotherapy for breast radiotherapy. Therefore,
the MIP and AIP plans prevent C-B radiation exposure and
improve sparing of the heart and I-L.

Introduction

The extensive use of whole breast radiotherapy has rendered it a
standard treatment for patients with early breast cancer under-
going breast-conserving surgery (1-4). Previous advancements
of individualised treatment for breast cancer have facilitated
the gradual application of whole breast radiotherapy to neoad-
juvant radiotherapy (5,6) and palliative radiotherapy (7,8),
which have enhanced opportunities for surgical intervention,
and improved the survival time and quality of life of patients
with breast cancer.

At present, radiotherapy techniques for breast cancer
are typically based on three-dimensional computerised
tomography (3D-CT) simulation. However, the 3D-CT plan
overlooks the target volume and radiotherapy dosage bias
induced by breathing movements. Reportedly, 3D-CT images
depend on different respiration phases when the CT scan
starts (9). Previous studies have established that the accuracy
and efficiency of radiotherapy in the chest and abdomen can
easily be reduced by motions of tumours and organs at risk
(OAR) (10,11). To overcome these problems, a novel techno-
logical innovation, four-dimensional (4D)-CT radiotherapy
technique, has emerged. Compared with conventional scan-
ning, more accurate images of tumours and normal organs can
be acquired by the 4D-CT process (11). At present, 4D-CT
radiotherapy has been extensively applied in the treatment of
lung cancer, liver cancer, oesophageal cancer, gastric cancer
and kidney cancer; however, it has rarely been applied for
breast cancer (11-19). For 4D-CT simulation, a breathing cycle
is evenly divided into ten respiration phases and ten sets of CT
images are acquired, respectively (10,11). Typically, the outline
of targets and OAR on all ten sets of images is delineated by
radiation oncologists, which increases the workload compared
with 3D-CT radiotherapy (17,20,21). A number of composite
methods have been used to decrease and optimise the work,
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including maximal intensity projection (MIP), average
intensity projection (AIP), minimum intensity projection and
two-extreme-phases fusion (21,22). While MIP and MIP-CT
images are acquired by finding the maximum and minimum
CT value along the slices at the same pixel location, AIP-CT
images are acquired by averaging all CT values along the slices
at the same pixel location (22,23). The two-extreme-phases
fusion method involves delineating target outlines on CT
images of the two extreme respiration phases (TOO for the end
of inhalation and T50 for the end of exhalation) and then fusing
them (21). Notably, MIP-CT images are effective for assessing
the motion of the organ but not for determining the tumour
boundary near the diaphragm and chest wall, which can be
readily demonstrated by AIP-CT and MIP-CT images (22).
For partial breast irradiation, previous studies have demon-
strated that 4D-CT radiotherapy improves the target definition
and decreases the radiation dose of OAR (18,19). Furthermore,
certain previous studies have compared different composite
methods for lung cancer and liver cancer (21,23-28); however,
to the best of our knowledge, at present, there is no study that
has been published in English for breast cancer.

Therefore, the present study aimed to compare the target
volumes and the dosimetric difference between the 3D-CT
and 4D-CT plans for whole breast radiotherapy to determine
the more effective radiotherapy technique for breast cancer.

Patients and methods

Patients and design. In the present study, seven female patients
with breast cancer with residual breast tissue received whole
breast radiotherapy based on 3D-CT and 4D-CT between
March 2016 and April 2017 at The First Affiliated Hospital
of Xi'an Jiaotong University (Xi'an, China). Inclusion criteria:
i) Female patients were digonsed with breast cancer by pathology
and and clinical examination; ii) patients were willing to accept
and could tolerate breast radiotherapy; and iii) patients had no
radiotherapeutic contraindication. Exclusion criteria: i) patients
with metastatic or recurrent breast cancer; and ii) patients who
had previously received chest radiotherapy. Table I summarises
the characteristics of all patients. The present study was
approved by The Ethics Committee of First Affiliated Hospital
of Xi'an Jiaotong University (approval no. 2015-101). Written
informed consent was obtained from all participants.

CT simulation. All seven patients were fixed in position using
thermoplastic sheets or breast brackets. Subsequently, 3D-CT or
4D-CT scans were received sequentially with free breathing in
the supine position. For each patient, images were obtained using
a Philips Big Bore CT-Simulator (Philips Medical Systems, Inc.,
Bothell, WA, USA) with 5-mm slice thickness and a scan range
from the submentum to the subphrenic, including the heart,
bilateral breasts and bilateral lungs. All CT images were then
uploaded and reconstructed on the Monaco 5.11.01 radiation
treatment planning system (TPS) (ELEKTA Co., Sweden).

In addition, the 4D-CT scan was acquired using the Cine
model and supplemented by the real-time position manage-
ment (RPM) system (Philips Co., Holland) during breathing.
Notably, the scan time was >1 respiratory cycle. For each
patient, the respiratory cycle was evenly divided into ten respi-
ration phases by the RPM system. TOO was defined as the end
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Table I. Characteristics of the patients (n=7).

Characteristic Median (range) n
Age, years 50.57 (39-76)
Disease stage
Ia 2
IIa 3
IIb 1
v 1
Radiotherapy location
Right breast 4
Left breast 3
Type of radiotherapy
Postoperative 4
Neoadjuvant 2
Palliative 1
Surgical treatment
Yes 5
No 2

Plan target volume, cm? 757.702 (500.37-1,063.08)

of inhalation and T50 was defined as the end of exhalation.
Furthermore, ten sets of 4D-CT images of the ten respiration
phases were acquired, and the MIP-CT and AIP-CT images of
each patient were fused and reconstructed.

Targets and OAR delineation, and dose prescription. All
acquired CT images were uploaded and rebuilt on the
Monaco 5.11.01 TPS. Clinical doctors delineated the outlines
of target areas and OAR, and medical physicists formulated
radiotherapy plans. In addition, all delineations and the five
types of plans (3D, T0O, T50, MIP and AIP) were separately
implemented for each patient by the same skilled doctor and
medical physicist.

Target delineation. The clinical target volume (CTV) consisted
of the whole residual breast tissue. The upper and lower bound-
aries of the CTV indicated the edges of breast tissue, the inner
boundary indicated the sternal line, and the outer boundary
indicated the anterior axillary line. The anterior boundary was
5 mm below the skin surface and the posterior boundary was
the ectopectoralis fascia. In addition, the plan target volume
(PTV) was attained by adding 5-mm isotropic expansion of
the CTV and the anterior boundary was refined 3 mm below
the skin surface simultaneously.

OAR delineation. In the present study, the delineation method
of the contralateral breast (C-B) was similar to the aformen-
tioned method of the CTV. The heart was delineated from
the right atrium and the right ventricle to the cardiac apex,
excluding the pulmonary trunk, ascending aorta and vena
cava. In addition, the right and left lungs were delineated by
the automatic function of the Monaco TPS and manual modi-
fication. Furthermore, the spinal cord and bilateral humeral
heads were delineated on all layers of the CT scans.
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Plan evaluation. The present study used a dose volume histo-
gram (DVH) to evaluate the quality of the radiation plan. For
the CTV and PTV, D, represents the minimum dose delivered
to x% of the target volume and V, represents the volume
receiving no less than x% of the prescription dose (29,30). In
addition, D,;,, D,... and D, ., of the CTV and PTV represent
the minimum, maximum and mean point dose of the target
volume, respectively.

The conformity index (CI) and the homogeneity index (HI)
of the PTV were automatically evaluated by the Monaco TPS
to assess the PTV coverage rate. The CI indicates the ratio
between the PTV and the irradiated volume at the prescription
dose, and the HI implies the uniformity of the dose distribu-
tion in the target volume (31). The computational formulas of
the CI and HI were as follows: CI=TV,%/TV x VR,, where TV,
represents the volume of the target that received the prescrip-
tion dose, TV represents the target volume and VR1 represents
the total volume of the prescription isodose. Notably, values
of CI closer to 1.0 represent a better dose conformity of the
PTV. HI=D,,,,/D,..., where D, represents the maximum
point dose and D,;, represents the minimum point dose of the
target volume. Notably, values of HI closer to 1.0 indicate a
plan with less heterogeneity. Definitions of D, D,;,, D,.., and
D, for all OAR and V, for the C-B are similar to definitions
for the target volume. Other V, represents the volume receiving
no less than x Gray (Gy) (29,30).

Dose prescription. Intensity-modulated radiotherapy (IMRT)
plans were performed with 6-mV x-ray, and 5-9 coplanar and
isocenter radiation treatment fields for five groups of each
patient. Subsequently, a dose of 50 Gy in 25 fractions of 2 Gy
was prescribed to the PTV. Notably, 95% of the target volume
should be included by 95% of the prescribed dose (4,750 centi-
gray, cGy) and not >5% should be encompassed by 105% of
the prescribed dose (5,250 cGy). In the present study, the dose
limits of OAR were as follows: For the ipsilateral lungs (I-L),
V,0<25% and D,,.,,<15Gy; for the bilateral lungs, V,,<20%;
and for the heart, V,,<10% and V,,<5%.

Statistical analysis. The disease stage of patients was evalu-
ated according to the 7th American Association of Cancer
(AJCC) staging system (32). D,,V,,CI and HI were extracted
using the Monaco system. All data were analysed using SPSS
software (version 21.0; IBM Corp., Armonk, NY, USA) with a
randomised block design. The Shapiro-Wilk test and Levene
test were used to evaluate the normality and homogeneity
of data. Data that are normaly distributed are expressed as
mean + standard deviation and presented as bar plots; all
other data are expressed as median (interquartile range) and
presented as box and whisker plots (Figs. 1-9). For each evalua-
tion index, analysis of variance followed by a Least Significant
Difference test were used when data satisfied normal distribu-
tion and homoscedasticity. Otherwise, a Friedman test and
pairwise comparison were used. P<0.05 was considered to
indicate a statistically significant difference.

Results

Dosage comparison of the CTV and PTV between the 3D-CT
plan and the 4D-CT plan. The present study compared the
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dosimetric characteristics between the 3D-CT radiotherapy
plan and four different 4D-CT radiotherapy plans (AIP, MIP,
TOO and T50) in the same order for the seven patients with
residual breast tissue. For target dose parameters, no significant
difference was observed in the CI and HI of the PTV between
the 3D-CT and 4D-CT plans (Table II; Fig. 1). In addition,
target volumes (including the total volume, V4, Vys, Vi and
Vso) of the CTV and PTV of the 4D-CT plan were slightly
lower compared with the 3D-CT plan (Table II; Figs. 2 and 3).
Furthermore, D, D, and D,,.,,, of the CTV and PTV in the
MIP and AIP plans were slightly higher compared with that of
the 3D-CT plan (Table II; Figs. 2 and 3).

Dosage comparison of OAR between the 3D-CT and 4D-CT
plans. In the present study, the following comparisons of
dose parameters of OAR were made. For the C-B (Table III;
Fig. 4), the total volume of the 4D-CT plan was markedly
lower compared with the 3D-CT plan. In addition, D,,;,, D,,.«
and D,,,, of the AIP plan were lower than those of 3D-CT
and MIP plans. No marked differences were observed in
dose parameters between the MIP and AIP plans. For the I-L
(Table IIT; Fig. 5), volumes (including the total volume, V,,
V,, and V) of the TOO plan were the highest, followed by
the 3D-CT and AIP plans, and the volumes of the T50 and
MIP plans were the lowest. For the contralateral lungs (C-L)
(Table III; Fig. 6), the total volumes of the MIP plan were
markedly lower compared with that of the 3D-CT, AIP and
TOO plans; however, the volume, of the TOO plan were higher
compared with the T50 plan. For the I-L and C-L (Table III;
Figs. 5 and 6), no statistical differences were observed in the
dosage among the five plans. In addition, for the contralateral
and ipsilateral humeral head (Table III; Fig. 7), no significant
differences were observed in dose parameters between the
3D-CT and 4D-CT plans. For the heart (Table III; Figs. 8 and
9), regardless of whether breast lesions were in the right or
left side, the volume of the MIP and AIP plans were slightly
higher compared with that of the 3D-CT plan, with no signifi-
cant difference in dose among the 3D-CT, MIP and AIP plans.
When breast lesions were on the left side, for the heart, V,, and
V;, of the MIP and AIP plans were slightly lower compared
with those of the 3D-CT plan (Table III; Fig. 8).

Discussion

Previous studies have established that radiotherapy based on
4D-CT simulation enhances the accuracy of dosage and deter-
mines the locations of tumour(s) and OAR in the chest and
abdomen (9-26,33). Certain previous studies have compared
the composite methods of 4D-CT radiotherapy for lung cancer
and liver cancer (9,17,20,23-26,33); however, at present, to
the best of our knowldege, there is no study that has been
published in English, which has investigated the same for
breast cancer. To the best of the our knowledge, the present
study is the first to compare the target volume and dosimetric
differences between the 3D-CT radiotherapy plan and four
4D-CT radiotherapy plans (T00, T50, MIP and AIP plans) for
whole breast radiotherapy.

For dose parameters of targets, all target volumes (including
the total volume, V,y,, Vo5, Voo and V) of the CTV and PTV in
the 3D-CT plan were slightly higher compared with four 4D-CT
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Figure 1. CI and HI values for the 3D computerised tomography and four-dimensional computerised tomography plans in 7 patients. (A) CI values. (B) HI
values. The horizontal axis represents the five different plans and the vertical axis represents the median values of the CI and HI. CI, conformity index; HI,
homogeneity index; AIP, average intensity projection; MIP, maximal intensity projection; TOO, end of inhalation; TS50, end of exhalation; 3D, three-dimen-

sional; Gy, gray.
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Figure 2. Parameters of the CTV between the 3D and four-dimensional computerised tomography plans in seven patients. (A) CTV-Volume. (B) CTV-V,,.
(C) CTV-Vys. (D) CTV-Vy,. (E) CTV-Vy. (F) CTV-Dys. (G) CTV-Dy,. (H) CTV-Ds,. (I) CTV-Ds. (J) CTV-D,,,.. (K) CTV-D,,. (L) CTV-D,..,- The horizontal
axis represents five different plans and the vertical axis represents the mean or median dose size. CTV, clinical target volume; 3D, three-dimensional; AIP,
average intensity projection; MIP, maximal intensity projection; T0O, end of inhalation; T50, end of exhalation; D,, the minimum dose delivered to x% of the
target volume; V,, the volume receiving no less than x% of the prescription dose; D,,,,,, maximum point dose; D,;,, minimum point dose of the target volume;

D.,...» mean point dose of the target volume; Gy, gray.

plans, with no difference between the TOO and T50 plans. For
the C-B, the total volume in the 3D-CT plan was markedly
higher compared with the 4D-CT plan. Therefore, it could be
concluded that breast tissues exert little impact on the respira-
tion movement, which suggests that the volume changes of the
breasts should be ignored (34). In addition, differences in target

volumes between the 3D-CT and 4D-CT plans were not due to
respiration movement-caused displacement. In free breathing,
partial target areas of the 3D-CT plan were scanned recurrently
or missed due to uncertainty in the beginning time of the scan
and the whole scan time was longer compared with the 4D-CT
scan; therefore, 4D-CT images evaluated the location, size and



1804 ONCOLOGY LETTERS 18: 1800-1814, 2019

o PIY_ysiens
i ]
] E_
y —
—
I
a1 v
] ] L] L
HICH
o
—=H
—iE~
-
] L]
—
—
P
My 8
§ §
I

o
L] L] L] L]
%
I
—
'[ —
I B
'
m
o
]
L]
o
§ i i
WIE—
=
HI=-
—F
| E g
o
i 0§ &
il
La]
Hl
b
i

P ) ) - i —
Wimea » - - - e » - - - " " i - L L
Memady emad. Memede
1 N & ] K o L
: = | ]
T CTEBEEE 1
1:!* 1 | j = =) Em—- E S
H LF ) i H 1™

» Y - £ ™
.

Figure 3. Parameters of the PTV between the 3D and four-dimensional computerised tomography plans in seven patients. (A) PTV-Volume. (B) PTV-V,,. (C)
PTV-Vys. (D) PTV-Vy. (E) PTV-Vy,. (F) PTV-Dys. (G) PTV-Dy,. (H) PTV-Dy,. (I) PTV-D;. (J) PTV-D,,;,. (K) PTV-D,,,. (L) PTV-D,.,,. The horizontal axis
represents the five different plans and the vertical axis represents the mean or median dose size. PTV, plan target volume; 3D, three-dimensional; AIP, average
intensity projection; MIP, maximal intensity projection; T0O, end of inhalation; TS50, end of exhalation; D,, the minimum dose delivered to x% of the target
volume; V., the volume receiving no less than x% of the prescription dose; D,,,,, maximum point dose; D,;,, minimum point dose of the target volume; D, ..,
mean point dose of the target volume; Gy, gray.
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Figure 4. Parameters of the contralateral breast between the 3D and four-dimensional computerised tomography plans in seven patients. (A) Contralateral
Breast-Volume. (B) Contralateral Breast-Dys. (C) Contralateral Breast-Dy,. (D) Contralateral Breast-Dy,. (E) Contralateral Breast-D,;,. (F) Contralateral Breast-
D,..x- (G) Contralateral Breast-D,.,,. The horizontal axis represents the five different plans and the vertical axis represents the mean or median dose size. 3D,
three-dimensional; AIP, average intensity projection; MIP, maximal intensity projection; T0O, end of inhalation; T50, end of exhalation; D,, the minimum dose
delivered to x% of the target volume; V,, the volume receiving no less than x% of the prescription dose; D, ,,,, maximum point dose; D,;,, minimum point dose
of the target volume; D,,.,,, mean point dose of the target volume; Gy, gray.

shape of targets more precisely (35). However, Bedi et al (36)
reported no significant differences in the left breast volume
contoured on a 3D-CT scan (1,005+559 cm?), 4D-CT scan with
full inspiration phase (1,019+£563 cm?), 4D-CT scan with full
expiration phase (1,023+573 cm?®) and 4D-CT scan derived by
AIP (1023+573 c¢cm?®). The difference between the two studies
could be attributed to the following: i) Breast locations in

western females are more easily affected by the respiration
movement, as the breast size of western females is typically
larger compared with Chinese females; and ii) all breast lesions
in the previous study by Bedi et al (36) were in the left chest
where the impact of the cardiac motion could not be ignored;
however, in the present study, the number of lesions on the right
side was greater than that on the left side (right-to-left ratio, 4:3)
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Figure 5. Parameters of the ipsilateral lungs between the 3D and four-dimensional computerised tomography plans in seven patients. (A) Ipsilateral Lungs-Volume.
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Figure 6. Parameters of the contralateral lungs between the 3D and four-dimensional computerised tomography plans in seven patients. (A) Contralateral
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three-dimensional; AIP, average intensity projection; MIP, maximal intensity projection; T0O, end of inhalation; T50, end of exhalation; D,, the minimum dose
delivered to x% of the target volume; V,, represents the volume receiving no less than x Gy; D,,,,, maximum point dose; D,;,, minimum point dose of the target
volume; D, mean point dose of the target volume; Gy, gray.
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Figure 7. Parameters of the contralateral and ipsilateral humeral head between the 3D and four-dimensional computerised tomography plans in seven patients.
(A) Contralateral Humeral Head-Volume. (B) Contralateral Humeral Head-D,;,. (C) Contralateral Humeral Head-D,,,. (D) Contralateral Humeral Head-D,,,,.
(E) Ipsilateral Humeral Head-Volume. (F) Ipsilateral Humeral Head-D,;,. (G) Ipsilateral Humeral Head-D,,,,. (H) Ipsilateral Humeral Head-Dmean. The horizontal
axis represents the five different plans and the vertical axis represents the mean or median dose size. 3D, three-dimensional; AIP, average intensity projection; MIP,
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represents the mean or median dose size. 3D, three-dimensional; AIP, average intensity projection; MIP, maximal intensity projection; T0O, end of inhalation; T50,
end of exhalation; D,, the minimum dose delivered to x% of the target volume; V,, represents the volume receiving no less than x Gy; D,,,, maximum point dose;

D,;,» minimum point dose of the target volume; D, .., mean point dose of the target volume; Gy, gray.
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Figure 9. Parameters of the heart (breast lesions in the right) between the 3D and four-dimensional computerised tomography plans in seven patients. (A) Heart
(lesions in the right breast)-Volume. (B) Heart (lesions in the right breast)-D,;,. (C) Heart (lesions in the right breast)-D,,,,. (D) Heart (lesions in the right breast)-
D,...n- The horizontal axis represents the five different plans and the vertical axis represents the mean or median dose size. 3D, three-dimensional; AIP, average
intensity projection; MIP, maximal intensity projection; T0O, end of inhalation; T50, end of exhalation; D,, the minimum dose delivered to x% of the target volume;
V., represents the volume receiving no less than x Gy; D,,,,, maximum point dose; D,;,, minimum point dose of the target volume; D,,,, mean point dose of the
target volume; Gy, gray.
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Respiration movements not only affect displacements of
target volumes but also exert a considerable impact on the radia-
tion dose distribution (37-39). In the clinical setting, during the
process of treatment, changes in the dose distribution caused
by target bias in the 3D-CT plan cannot satisfy the treatment
requirements, which may increase the risk of local recurrence.
In the present study, D,.;., D,.., and D, of the CTV and PTV
in the MIP and AIP plans were slightly higher compared with
that of the 3D-CT plan. However, D,;,, D,.., and D,..,, of the
C-B in the 3D-CT and TOO plans were the highest and those of
the AIP and MIP plans were the lowest. In addition, no marked
difference was observed in dose parameters between the MIP
and AIP plans, indicating that the dose distribution of the
MIP and AIP plans is better compared with that of the 3D-CT
plan. In addition, this suggests that the MIP and AIP plans
can prevent and decrease radiation exposure to normal breast.
In the present study, no marked differences were observed in
the CI and HI between the 3D-CT and four 4D-CT plans. As
the target volumes in the five groups were similar, all plans
were achieved by IMRT with the same pattern. Reportedly,
the IMRT technique achieved improved CI and HI compared
with 3D conformal radiotherapy, and increased OAR sparing
and decreased the late effects, which enhanced the quality of
life of the patients (31,40,41).

Previous studies have compared different composite methods
for lung cancer and liver cancer (21,23-28). Zhao et al (27)
reported that lung volumes of the AIP plan were close to the
3D-CT volume in lung cancer and that of the MIP plan was
smaller compared with the AIP plan by 11.4+2.3%. In addition,
the DVH of the MIP plan revealed that the MIP plan was less
sensitive to breathing movements (27). However, Simon et al (28)
reported that the internal target volume of the MIP plan was
closer to the actual volume compared with that of the AIP plan.
Similarly, a previous study determined that the GTV of the MIP
plan was markedly higher compared with that of the AIP plan
for stereotactic body radiotherapy planning in lung cancer (20).
The differences in the aforementioned studies may have resulted
from different evaluated standard and research methods. MIP
images are acquired by finding the maximum CT value of
images from all respiratory phases. A previous study reported
that MIP images include the motion and position extent of a
lung tumour as the density of a tumour was higher compared
with that of the surrounding normal lung tissue (42). However,
Mohatt et al (25) reported that in clinical lung tumour cases with
displacements ranging between 0.1 and 2.2 cm, the MIP plan
typically underestimated target volumes and resulted in a PTV
ratio of 0.95+0.15. When tumours were located close to the chest
wall, MIP images were more easily affected by the surrounding
structures with high or equal density, including the cartilage
tissues and muscles, compared with AIP images (22,27).
Park et al (43) reported that the MIP plan was markedly different
from the ten-phase fusion plan when breathing was irregular or
a tumour was close to similar-density tissues. However, in the
present study, no marked dosimetric difference was observed
between the MIP and AIP plans, which could be attributed to the
fact that breast tissue movements are less sensitive to breathing;
therefore, the impact of MIP images caused by surrounding
structures was low.

In addition to improving the sparing of the
C-B, another objective of breast radiotherapy is to

T50
0.830 (0.040)
1.050 (0.030)

TOO
0.840 (0.050)
1.050 (0)

4D-CT

MIP

0.840 (0.060)
1.050 (0.010)

AIP
0.840 (0.050)
1.050 (0.020)

1.050 (0)

3D-CT
0.840 (0.080)
volume; D,;,, minimum point dose of the target volume; D,, minimum dose delivered to x% of the target volume; V,, the volume receiving no less than x% of the prescription dose; HI, homogeneity index;

PTV, plan target volume; cGy, centigray.

sional computed tomography; AIP, average intensity projection; CI, conformity index; CTV, clinical target volume; D,,,, maximum point dose of the target volume; D,,,,, mean point dose of the target

Data that are normaly distributed are expressed as mean + standard and all other data are expressed as median (interquartile range). 3D-CT, three-dimensional computed tomography; 4D-CT, four-dimen-

B, Comparisons of the CTV between the 3D-CT plan and 4D-CT plans

Table II. Continued.
Dose parameters

CI
HI
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Table II1. Continued.

G, Comparison of Heart (lesions in the right breast) between the 3D-CT plan and 4D-CT plans

4D-CT

3D-CT AIP MIP TOO T50

Dose parameters

3,350.775+758.403 3,313.925+541.515 3,262.275+808.223 3,658.650+588.156 3,764.050+865.463

VD,,.x» <Gy
Dmean ’ CGy

852.950+128.064

745.275+£169.622 809.375+44.920

809.775+92.947

839.850+83.354

*P<0.05 vs. 3D-CT plan; *P<0.05 vs. AIP plan; °P<0.05 vs. MIP plan; “P<0.05 vs. TOO plan; °P<0.05 vs. T50 plan. Data that are normaly distributed are expressed as mean + standard and all other data are expressed as median

ONCOLOGY LETTERS 18: 1800-1814, 2019

(interquartile range). 3D-CT, three-dimensional computed tomography; 4D-CT, four-dimensional computed tomography; AIP, average intensity projection; CI, conformity index; CTV, clinical target volume; D, , maximum

point dose of the target volume; D, ..., mean point dose of the target volume; D,,;,, minimum point dose of the target volume; ID_, minimum dose delivered to x% of the target volume; V., the volume receiving no less than X

Gy; cGy, centigray; Gy, gray.

decrease the irradiation dose and volume of the heart and
bilateral lungs. In the present study, for the I-L, marked differ-
ences were identified in volumes (including the total volume,
Vao, Vags Vi and V) among the five plans (3D-CT, T00, T50,
MIP and AIP). Additionally, volumes of the TOO plan were
the highest, followed by the 3D-CT and AIP plans, and those
of the T50 and MIP plans were the lowest. For the C-L, total
volumes of the MIP plan were markedly lower compared with
those of the 3D-CT, AIP and TOO plans, and total volumes of
the TOO plan were higher compared with those of the T50 plan.
Whether in the I-L or C-L, no statistical difference of dosage
was observed among the five plans, indicating that in free
breathing, although no apparent breast displacements occurred
between the two extreme respiratory phases, the sufficiently
apparent difference of bilateral lungs volumes resulting from
thoracic movements were easily observed. Total volumes of the
lungs in the MIP plan were easily affected by the surrounding
structures with high or equal density (22,27), which induced
smaller volumes in the MIP plan compared with others and
then induced the smallest V,,, V,,, V,, and V. Therefore, the
present study could not completely establish that the MIP plan
is superior to the others. For the heart, dosimetric parameters
of plans are affected not only by respiratory movements but
also by their own rhythm. In the present study, whether breast
lesions were in the right or left side, heart volumes of the MIP
and AIP plans were slightly higher compared with that of the
3D-CT plan, with no marked differences in dose among the
3D-CT, MIP and AIP plans. However, for hearts of patients
with lesions in the left breast, V,, and V5, of the MIP and AIP
plans were slightly lower compared with that of the 3D-CT
plan. These results indicated that the MIP and AIP plans may
improve sparing of the heart, particualy lesions in the left side,
and the I-L. However, Bedi et al (36) reported that dosimetric
results for the heart and the I-L exhibited no statistically
significant differences between the 3D-CT and 4D-CT plans
for patients with left-sided breast cancer, and that improved
sparing of the heart and the lungs could only be attained by
decreasing the posterior margins of the breast target volumes.
For contralateral and ipsilateral humeral heads, no marked
differences were observed in dose parameters between the
3D-CT and 4D-CT plans as humeral heads were far away from
the targets and could not be affected by therapy plans.

In conclusion, for whole breast radiotherapy of breast
cancer with residual tissues (including postoperative radio-
therapy, neoadjuvant radiotherapy and palliative radiotherapy),
4D-CT radiotherapy techniques based on the MIP and AIP
plans provide a slightly smaller radiation area and slightly
higher radiotherapy dosage of the CTV and PTV compared
with 3D-CT radiotherapy. For the C-B, the dose distribution
in the MIP and AIP plans is better compared with the 3D-CT
plan; therefore, MIP and AIP plans prevent and reduce radia-
tion exposure to normal breast. The MIP and AIP plans also
improve sparing of the heart (particularly breast lesions in the
left side) and the I-L. Furthermore, the dosimetric differences
between the MIP and AIP plans are not significant. Therefore,
these plans are worth considering for whole breast radiotherapy.
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