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Abstract. DNA methylation at the 5 position of cytosine 
(5‑mC) is an epigenetic hallmark that is critical in various 
biological and pathological processes such as DNA meth-
ylation regulation, and initiation and development of cancers. 
5‑mC can be oxidized to 5‑hydroxymethylcytosine (5‑hmC) 
by the ten‑eleven translocation family of DNA hydroxylases. 
Accumulating evidence has reported that loss of 5‑hmC is 
associated with cancer development. However, its level in 
papillary thyroid carcinoma  (PTC) remains unclear. The 
present study reports that the loss of 5‑hmC is an epigenetic 
mark of PTCs, associated with their malignant biological 
behavior, providing diagnostic and predictive advantages over 
DNA hypomethylation (5‑mC), an acknowledged epigenetic 
alteration in cancer. In addition, the 5‑hmC staining levels 
were decreased in cases of micro‑carcinoma with lymph 
node metastasis, which suggests that 5‑hmC expression levels 
could be used as valuable biomarkers for predicting malignant 
potential and assist in the selection of therapeutic strategies 
in PTC; therefore, 5‑hmC has the potential to provide a more 
precise direction for PTC therapy.

Introduction

Thyroid cancer is a class of heterogeneous diseases that have 
various subtypes with different biological behaviors. Papillary 
thyroid carcinoma (PTC) is the most common subtype of 
thyroid cancer, and its incidence has been increasing consider-
ably in recent years (1). A majority of PTCs are considered 

to have a good prognosis, whereas others may behave more 
aggressively (2). The risk stratification in patients with PTC has 
important clinical implications for the selection of therapeutic 
strategies. Therefore, novel biomarkers are urgently required 
for predicting the malignant potential of primary lesions and 
clinical outcome. To the best of our knowledge, the present 
study is the first to provide an epigenetic biomarker to help 
identify the differences between benign and malignant lesions 
and to assist in predicting their biological behaviors.

Epigenetic modifications serve a key role in numerous 
biological and pathological processes. DNA methylation at 
the 5 position of cytosine (5‑mC) acts as a key epigenetic 
marker that serves essential roles in genomic imprinting and 
regulation of gene expression (3). Aberrant DNA methylation 
is frequently observed in cancer. Hypermethylation of tumor 
suppressors and hypomethylation of oncogenes triggers 
tumorigenesis and tumor development (4). Disrupted DNA 
methylation patterns at the 5 position of cytosine have been 
substantiated as mechanism‑based evidence in cancer (5). 5‑mC 
can become oxidized to 5‑hydroxymethylcytosine (5‑hmC) by 
the ten‑eleven translocation (TET) family of 5‑mC hydroxy-
lases, including TET1, 2 and 3 (6,7). Accumulating evidence 
has suggested that loss of 5‑hmC is an epigenetic hallmark in 
various types of cancer, with diagnostic and prognostic impli-
cations (5,8‑10). Aberrant methylation of various candidate 
genes have been reported potentially associated with thyroid 
carcinogenesis (11). However, the role of 5‑hmC with regard to 
thyroid cancer remains largely unknown. In the present study, 
it was observed that the global level of 5‑hmC is significantly 
decreased in PTC compared with benign thyroid disease. 
Furthermore, 5‑hmC reduction is associated with potential 
malignant biological behavior, contributing to our present 
understanding of thyroid cancer epigenetics.

Materials and methods

Ethics statement. Thyroid cancer and nodular goiter samples 
were obtained from the archives of the Pathology Department 
of the First Affiliated Hospital of Dalian Medical University 
(Dalian, China), following the approval of the institutional 
review board. The Committee of Research Ethics waived the 
requirement of informed consent for the tissue sections used in 
this study, as patient data were anonymized.
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Patient cohorts and tissue samples. Cancer tissue and adjacent 
matching healthy tissue samples from 88 patients with PTC 
and 20 patients with nodular goiter (NG) treated at the First 
Affiliated Hospital of Dalian Medical University (Dalian, 
China) between January  2015 and September  2017 were 
included in the present study. The cohort had an age range of 
23‑75 years with 26 males and 82 females. All tissue sections 
were reviewed by an expert pathologist for verification of 
the clinical diagnosis. Each tissue sample had at least three 
independent tissue sections for the following analyses.

Immunohistochemistry (IHC) staining. IHC was employed to 
analyze 5 mm tissue sections, which had been fixed in 10% 
formalin for 24 h at room temperature and paraffin‑embedded. 
Sections were dewaxed and rehydrated following stan-
dard protocols  (12). Subsequently, antigen retrieval was 
performed by boiling the sections for 5 min in citric acid. The 
sections were dipped in the endogenous peroxidase blocker 
(cat.  no.  PV‑6000D; OriGene Technologies, Inc., Beijing, 
China) for 10 min at room temperature. For immunolabeling 
of 5‑hmC and 5‑mC, a rabbit monoclonal 5‑hydroxymethyl-
cytosine antibody (cat. no.  ab214728; Abcam, Cambridge, 
UK) and a mouse monoclonal 5‑methylcytosine antibody 
(cat. no. ab10805; Abcam) were applied at 1:200 and 1:100 
dilution, respectively for 1 h at room temperature. After the 
sections were washed with PBS, they were incubated with 
peroxidase‑conjugated anti‑rabbit/mouse immunoglobulin G 
(cat. no. PV‑6000D; OriGene Technologies, Inc.; undiluted) 
at room temperature for 20 min, followed by DAB chromo-
genic reaction performed according to the protocol of the 
DAB chromogenic reagent kit (cat. no. ZLI‑9019; OriGene 
Technologies, Inc.). The sections were then counterstained 
with hematoxylin at room temperature for 1 min, dehydrated 
with graded alcohol and xylene, and mounted onto coverslips. 
The stained cell images were captured under the light micro-
scope (Olympus, Tokyo, Japan), and cells were counted and 
assessed at a magnification of x100. 

Scoring system. Immunoreactivity of the nucleus was evalu-
ated for each tissue section. In the case of NG, sections that 
indicated strong immunostaining in follicular cell nuclei were 
further evaluated. In the case of PTC, adjacent non‑neoplastic 
cells were used as internal controls to evaluate the immunore-
activity. Thereafter, the H‑score system was applied to evaluate 
positive immunoreactivity (9). Briefly, nuclei staining intensity 
(0, 1, 2 or 3) was first determined for each cell in a fixed field 
corresponding to the presence of negative, weak, intermediate 
and strong staining, respectively. The percentage of cells at 
each staining intensity level was subsequently calculated, and 
an H‑score (0‑300) was assigned using the following formula: 
H‑score=0 x (% of cells staining 0) + 1 x (% of cells staining 1) 
+ 2 x (% of cells staining 2) + 3 x (% of cells staining 3). 
H‑scores for each case were calculated as the mean score of at 
least three individual section scores for each case, from which 
the mean score of all the individual field scores of each section 
was derived. In total 330 sections across 108 samples were 
analyzed. 

Statistical analysis. The data are presented as either 
median ± interquartile range or the mean ± standard deviation 

and were analyzed using GraphPad Prism 7.00 software 
(GraphPad Software, Inc., La Jolla, CA, USA). The χ2 test was 
used to analyze differences of clinical parameters between 
two groups of patients. A Student's t‑test was used to analyze 
differences in 5‑hmC level (H‑scores). Pearson or Spearman's 
rank correlation analysis was used to evaluate the correlation 
between 5‑hmC level and pathological parameters. P<0.05 
was considered to indicate a statistically significant difference. 

Results

5‑hmC expression level is high in NG and lost in PTC. To 
evaluate the global 5‑hmC landscape, 5‑hmC levels in the 
thyroid tissues were examined by IHC staining with a specific 
anti‑5‑hmC antibody in two representative cohorts (Table I), 
including PTC (n=88) and NG (n=20). IHC analysis of NG 
tissues indicated robust 5‑hmC staining of the nucleus, 
whereas the cancer cells in PTC tissues exhibited reduced 
5‑hmC staining by comparison  (Fig.  1A). The H‑scoring 
indicated that the 5‑hmC level was significantly decreased in 
PTC tissues compared with NG tissues (P<0.0001; Fig. 1B). 
Low nuclear 5‑hmC staining was also observed in thyroid 
cancer tissues compared with the adjacent non‑neoplastic 
tissues  (Fig. 1C and D). However, there was no difference 
in 5‑mC levels between NG and PTC, as well as cancer and 
adjacent normal tissue (Fig. 2). These data indicate that a high 
level of 5‑hmC is a distinct epigenetic signature in benign 
thyroid disease, and a significant loss of 5‑hmC is a distinctive 
hallmark of thyroid cancer. In addition, the 5‑hmC level has a 
more sensitive diagnostic value compared with 5‑mC in PTC.

5‑hmC is a useful molecular hallmark of potential PTC. 
5‑hmC levels between PTCs with lymph node metastases (N+) 
and PTCs without lymph node metastases (N‑) were analyzed 
by IHC in order to evaluate if 5‑hmC level correlates with 
malignancy of PTC. H‑score indicated that the 5‑hmC level 
was significantly lower in PTCs with N+ (n=45) compared with 

Table I. Clinical characteristics of NG and PTC cohort.

	NG (%), 	 PTC (%), 	 P‑value
Parameter	 n=20	 n=88	 (χ2 test)

Age at surgery (years)			   0.354
  <50	 8 (40)	 48 (54.5)
  ≥50	 12 (60)	 40 (45.5)
Sex (%) 			   0.329
  Male	 7 (35)	 19 (21.6)
  Female	 13 (65)	 69 (78.4)
Nodule size, cm			   0.068
  ≤1	 6 (30)	 49 (55.7)
  >1	 14 (70)	 39 (44.3)
Location			   0.183
  Left lobe	 7 (35)	 48 (54.5)
  Right lobe	 13 (65)	 40 (45.5)

PTC, papillary thyroid carcinoma; NG, nodular goiter. 
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PTCs with N‑ (n=43; P=0.0039; Fig. 3A and B). Consistently, 
there was a negative correlation between 5‑hmC staining and 
the number of metastatic lymph nodes, a predictor of malignant 

potential (Fig. 3A; r2=0.2104; P<0.0001). A correlation analysis 
was subsequently conducted comparing the 5‑hmC level to 
tumor size (the largest diameter the tumor), with no correlation 
indicated, while the 5‑hmC levels of micro‑carcinomas with N+ 
(n=22) were lower compared than those of macro‑carcinomas 
with N‑ (n=21; P=0.0086; Fig. 3C). In addition, in the limited 
number of patients that exhibited tumor development during 
the follow‑up duration (12‑42 months), no significant correla-
tion between cancer 5‑hmC levels and cancer recurrence was 
indicated (P=0.3679; data not shown). Therefore, these results 
support the conclusion that a reduction in 5‑hmC serves as a 
distinctive epigenetic event in the initiation and progression of 
PTC, suggesting it may represent a novel epigenetic hallmark 
for PTC recognition and prediction of malignancy.

Discussion

DNA methylation is an essential epigenetic modification 
that is often altered in cancer (13). In general, global 5‑mC 
reduction at specific sites of the genome is associated with 
cancer progression (14,15). Current evidence suggests that the 
oxidation of 5‑mC to 5‑hmC serves a critical role in epigenetic 
plasticity (16‑18). The family of TET enzymes are 5‑meth-
ylcytosine oxidases that transform 5‑mC to 5‑hmC  (19). 
5‑hmC is a key intermediate of DNA demethylation that can 
affect global gene expression in mammals (20). A number of 
previous studies have reported that the amount of 5‑hmC is 
substantially decreased in various types of cancer, including 
in brain, lung, breast, liver, pancreatic, colon and prostate 

Figure 1. The level of 5‑hmC is reduced in PTC. (A) Representative histology for immunohistochemistry staining of 5‑hmC in representative cases of benign 
and malignant thyroid disease. (B) Boxplot depicting 5‑hmC H‑score distribution in patients with NG (n=20) and PTC (n=88). Each case has duplicated tissue 
cores. (C) Normal thyroid follicular epithelium indicates strong nuclear 5‑hmC staining (arrow); cancer cells exhibit reduced staining intensities (arrowhead). 
(D) Boxplot depicting 5‑hmC H‑score distribution in adjacent non‑neoplastic tissue and carcinoma (n=88). Each case has duplicated tissue cores. The boxplot 
lines from top to bottom represent maximum, 75th percentile, median, 25th percentile and minimum, respectively. Magnification, x200; scale bar, 100 µm. 
Magnification, x400; scale bar, 50 µm. 5‑hmC, 5‑hydroxymethylcytosine; NG, nodular goiter; PTC, papillary thyroid carcinoma. 

Figure 2. The level of 5‑mC in PTC. (A) Boxplot depicting 5‑mC H‑score 
distribution in patients with NG (n=20) and PTC (n=30). (B) Boxplot indi-
cating no significant difference between cancer and adjacent tissues (n=30) 
(left). 5‑mC staining of one representative field (right). The boxplot lines from 
top to bottom represent maximum, 75th percentile, median, 25th percentile 
and minimum, respectively. Scale bar, 50 µm. 5‑mC, 5‑methylcytosine; 
PTC, papillary thyroid carcinoma; NG, nodular goiter.
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cancer, and myeloid leukemia (5,21‑26). However, the 5‑hmC 
level in PTC remains unknown. In the present study, it was 
indicated that reduced 5‑hmC is a characteristic epigenetic 
event in PTCs that is associated with malignant biological 
behavior. Given that 5‑hmC is oxidized from 5‑mC, and 
hypomethylation is an acknowledged epigenetic altera-
tion in cancer (27), it was hypothesized that the underlying 
mechanism for the global decrease in 5‑hmC levels in PTC 
is due to a reduction in 5‑mC. However, it was indicated that 
5‑mC levels were similar between PTC and NG, therefore the 
mechanism is derived from the oxidation process rather than 
5‑mC loss. As TET enzymes mediate the oxidation process 
of 5‑mC to 5‑hmC, and partial or complete loss of 5‑hmC is 
frequently associated with significantly decreased expression 
of the three TET genes, suggesting a potential mechanism to 
explain the loss of 5‑hmC in cancer cells (21). In addition, the 
catalytic oxidation reaction through TET enzyme requires the 
cofactor α‑ketoglutarate (6,7), which is mainly controlled by 
isocitrate dehydrogenase (IDH). Therefore, understanding the 
role of 5‑hmC, TET and IDH involved in PTC initiation and 
progression is crucial. Further examination of the underlying 
mechanism of this epigenetic marker is required, in addition to 
the role of the associated enzymes involved in PTC.

PTC is a unique cancer, and the prognosis varies widely. 
PTCs measuring <10 mm at the largest diameter are termed 
micro‑carcinomas (28). Due to the advent of high‑resolution 
ultrasound detection and increasing regular fine‑needle aspira-
tion biopsies, the incidence of micro‑carcinomas has increased 
worldwide (29). Micro‑carcinomas are often considered as 
indolent tumors and have a good prognosis; however, a small 
proportion of these tumors are capable of metastasizing when 

the volume of the original tumor is estimated to be as little 
as 1 mm3 (29). Accumulating evidence indicates that surgical 
excision is not recommended for micro‑carcinomas, particu-
larly indolent micro‑carcinomas  (30,31). Radiofrequency 
ablation can effectively eliminate low‑risk micro‑carcinomas 
with a low complication rate (32,33). Therefore, distinguishing 
aggressive from indolent micro‑carcinomas has important 
clinical implications for the selection of therapeutic strategies. 
Current routine characteristics, based on clinical assess-
ment and pathology, cannot explicitly distinguish aggressive 
from indolent PTCs at an early phase (34), and, therefore, 
uncovering novel prognostic biomarkers is required. In the 
present study, it was indicated that 5‑hmC expression levels 
in micro‑carcinomas with metastasis (high risk) is lower 
compared with macro‑carcinomas without metastasis (low 
risk), which suggests that the level of 5‑hmC may serve as a 
valuable biomarker for predicting the malignant potential of 
PTC and assist in the selection of therapeutic strategies. 

This study also endeavors to evaluate the patients' survival 
data by directly associating the low 5‑hmC levels with PTC 
prognosis. However, recurrence of PTC following optimized 
surgery is uncommon, and the latent durations prior to detec-
tion of distant and lethal metastases may vary from years to 
decades (35). The follow‑up duration of the current study is 
not long enough to observe the prognostic value of 5‑hmC 
in PTC. Studies of hallmarks used for predicting clinical 
outcome of thyroid cancer also have this limitation, as investi-
gation is hindered by the barriers of the follow‑up interviews. 
Consequently, clinically annotated biospecimen archives can 
serve as valuable substitutes for theoretical and impractical 
prospective strategies.

Figure 3. Loss of 5‑hmC is associated with malignant potential of PTC. (A) Analysis of 5‑hmC levels between PTCs with N+ (n=45) and N‑ (n=43), represented 
by H‑score (left). Spearman correlation analysis between 5‑hmC staining and the number of metastatic lymph nodes (right). At least three tissue sections 
were analyzed for each case. (B) Representative IHC staining of 5‑hmC in the individual cases of PTC with N‑ and PTC with N+. Left: Low‑power images 
(magnification, x200); scale bars, 100 µm. Right: High‑power images (magnification, x400); scale bar, 50 µm. (C) Pearson correlation analysis between 
5‑hmC staining and tumor size (left). Analysis of 5‑hmC levels between macro‑carcinoma with N‑ (n=21) and micro‑carcinoma with N+ (n=22), represented by 
H‑score (right). At least three tissue sections were analyzed for each case. Data are presented as the mean ± standard error. 5‑hmC, 5‑hydroxymethylcytosine; 
PTC, papillary thyroid carcinoma; 5‑ N+, lymph node metastases; N‑, no lymph node metastases. 
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The present study demonstrates that global 5‑hmC levels 
are greatly diminished in the majority of PTCs. Ongoing 
mechanistic investigations and identification of target genes 
through comprehensive genome‑wide mapping will shed 
further light on cancer epigenetics (5,36‑38). In the present 
study, 5‑hmC loss in PTC was a basic epigenetic event that 
suggested that fundamental molecules in the 5‑hmC biological 
pathway can be therapeutically targeted to re‑establish the level 
of 5‑hmC, and therefore reveal novel approaches in the therapy 
of aggressive PTC. With the significance of clinical therapeu-
tics, the current study provides a novel direction for cancer 
prevention and treatment, by targeting the cellular molecules 
and biochemical pathways that restore the landscape of 5‑hmC 
in PTC.
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