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Abstract. The growth and metastasis of tumors is dependent 
on angiogenesis. C‑type lectins are carbohydrate‑binding 
proteins with a diverse range of functions. The C‑type lectin 
family XIV members are transmembrane glycoproteins, 
and all four members of this family have been reported to 
regulate angiogenesis, although the detailed mechanism of 
action has yet to be completely elucidated. They interact with 
extracellular matrix proteins and mediate cell‑cell adhesion 
by their lectin‑like domain. The aim of the present study was 
to summarize the available information on the function and 
mechanism of C‑type lectin family XIV in angiogenesis and 
discuss their potential as targets for cancer therapy.
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1. Introduction

Vascular development begins with the differentiation of meso-
dermal cells into endothelial cell precursors (angioblasts), 
which form primary vessels de novo by a process known as 
vasculogenesis   (1). The primary vessels are subsequently 
remodeled by the sprouting and branching of new blood 
vessels, a process known as angiogenesis. Physiologically, 
angiogenesis establishes the first vascular tree and adequate 

vasculature for the growth and development of organs in the 
embryo  (2), whilst in adults, angiogenesis occurs during the 
ovarian cycle and wound healing (3). The process is controlled 
by balancing inducers and inhibitors of angiogenesis  (4). 
Cancer cells use angiogenesis to fulfil the increased need 
for nutrients and oxygen to the growing tumor. Angiogenesis 
also promotes tumor invasion and metastasis, and has been 
described as one of the six hallmarks of cancer (5).

Angiogenesis begins with the activation of quiescent 
endothelial cells (ECs) in response to angiogenic stimuli. A 
number of proteins are important for angiogenesis. The VEGF 
family of secreted proteins and their receptors, Fibroblast 
growth factors and Notch signaling are some of the most well 
studied regulators of angiogenesis. Platelet derived growth 
factor, the angiopoietins and tie receptors are associated 
with vessel maturation (6). The extracellular matrix (ECM) 
serves a pivotal role in the regulation of both physiological 
and pathological angiogenesis (7). Endothelial cell‑cell adhe-
sion and adhesion with the ECM are essential to establish the 
appropriate cellular configuration for growth, survival and 
differentiation. Cell adhesion molecules, including integrins, 
cadherin, immunoglobulin families and selectin are criti-
cally involved in angiogenesis (8). In absence of appropriate 
cell contact, the ECs may undergo programmed cell death 
or unable to form new capillary blood vessels and extension 
and maturation of new vessels (8,9). Activated ECs secrete 
proteinases to breakdown the surrounding basement matrix 
and invade the ECM (1,10). Once free from the ECM, ECs 
proliferate and migrate towards chemotactic and angiogenic 
stimuli. The newly formed vessels are stabilized by basement 
membrane synthesis and the recruitment of pericytes, and 
fresh sprouts fuse to establish blood flow (11‑13). 

The C‑type lectin family XIV members are expressed on 
angiogenic blood vessels and are vital for cell‑cell adhesion 
and cell‑ECM interactions during angiogenesis. The ECM 
also releases proteiolytic enzymes that results in degradation 
of matrix molecules and soluble factors that promote angiogen-
esis (7). The C‑type lectin family XIV members are associated 
with increased expression of ECM degrading enzymes like 
MMPs and plasminogen activators. They have been associated 
with increased rate of angiogenesis in a variety of cancers. 
These proteins are also implicated in other diseases involving 
endothelial dysfunction and have been used as a biomarker 
in these diseases. High plasma levels of thrombomodulin 
has been observed in preeclampsia, diffuse intravascular 
coagulation, Shiga toxin‑producing E. coli (STEC)‑induced 
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and atypical hemolytic uremic syndrome, thrombotic throm-
bocytopenic purpura, scleroderma‑associated pulmonary 
hypertension, and arterial hypertension (14‑19). The role of 
endosialin in rheumatoid arthritis and Salmonella infec-
tion is well established  (20,21). CD93 expression is found 
to be altered in systemic lupus erythematosus, rheumatoid 
arthritis and coronary artery disease (22‑24). In this review 
study, however, we have focused primarily on the role of these 
proteins in regulating tumour angiogenesis.

2. C‑type lectin family XIV 

C‑type lectins are calcium (Ca2+)‑dependent carbohydrate 
binding proteins whose activity is mediated by a carbohydrate 
recognition domain (CRD), a compact module with a globular 
structure (25). It was later observed that not all CRD‑containing 
proteins require Ca2+, or bind carbohydrates, and such proteins 
are said to possess C‑type lectin‑like domains (CTLDs) (26). 
The CTLD‑containing proteins have been classified into 17 
groups based on their CTLD architecture and the evolutionary 
and functional associations (27‑29). The angiogenic roles of 
C‑type lectin family XIV members are not clearly understood. 
The family comprises of four members [C‑type lectin domain 
family 14 member A (CLEC14A), thrombomodulin, cluster of 
differentiation 93 (CD93) and endosialin] (30) (Fig. 1), which 
are cell surface glycoproteins with a single CTLD and a vari-
able number of epidermal growth factor (EGF)‑like repeats. 
CLEC14A, thrombomodulin and CD93 are expressed by 
ECs, whereas endosialin is expressed by endothelial proximal 
stromal cells. 

3. CLEC14A

CLEC14A is a transmembrane glycoprotein containing an 
extracellular signal peptide, a CTLD, a sushi‑like domain, a 
single EGF‑like domain, a mucin‑like domain, a single trans-
membrane domain and an intracellular cytoplasmic domain. 
Human CLEC14a is an intronless gene located on chromosome 
14q21.1, and CLEC14A is expressed specifically in the embry-
onic vasculature of mice and zebrafish, and by human ECs (31). 
Reverse transcription‑quantitative PCR analysis revealed that 
CLEC14A expression begins from 12 h post‑fertilization in 
zebrafish embryos, which coincides with the generation of 
hemangioblasts. Also, CLEC14A expression level was shown 
to increase in the later stages of angiogenic development (32). 
CRISPR‑Cas9‑mediated knockout of clec14a in zebrafish 
resulted in the malformation of inter‑segmental vessels (ISVs), 
and the knockout of both cd93 and clec14a resulted in the 
inhibition of cadherin 5 expression in ISVs (33). Furthermore, 
the CLEC14A expression level was significantly higher in 
the tumor vasculature compared with the normal vascula-
ture (32). CLEC14A is one of the primary genes of the tumor 
angiogenesis signature, highly expressed in head and neck 
squamous cell carcinoma, breast cancers and clear cell renal 
cell carcinoma (34), and is therefore considered to be a tumor 
endothelial marker (TEM). Its expression was also shown to 
increase in response to hypoxia in HUVECs (35).

CLEC14A has also been reported to regulate pro‑angio-
genic phenotypes such as filopodia formation, cell migration 
and tube formation in HUVECs (31,32); it localizes to the 

inter‑cellular boundary and regulates cell adhesion through 
its CTLD (31). Targeted neutralization of CLEC14A using 
an anti‑CTLD antibody was shown to inhibit endothelial cell 
migration, cell‑cell contact and tube formation by blocking 
CTLD‑CTLD interactions, and downregulating CLEC14A 
expression at the endothelial cell surface (36,37). A Stable 
Isotope Labelling with Amino Acids in Cell Culture‑based 
proteomics study showed the upregulation of CLEC14A 
expression during tubule morphogenesis, and the analysis 
of post‑translational modifications of CLEC14A identified a 
phosphorylation site at Ser483, near the PDZ‑binding domain 
in the cytoplasmic tail (38). The PDZ domain serves a vital 
role in protein‑protein interactions (39), although no functional 
studies have been reported for the phosphorylation site and the 
PDZ domain of CLEC14A.

Secretory CLEC14A co‑localizes with fibronectin (FN1), 
laminin alpha 4 (LAMA4) and multimerin 2 (MMRN2) in the 
ECM, and its expression is upregulated during tumor angiogen-
esis in spontaneous mouse tumors (38). FN1 and LAMA4 were 
also reportedly deregulated during tumor angiogenesis (40,41), 
and MMRN2 was shown to suppress vascular endothelial 
growth factor A (VEGFA)/Vascular endothelial growth factor 
receptor 2 (VEGFR2) signaling by sequestering VEGFA (42). 
However, the pro‑angiogenic properties of MMRN2 have also 
been reported  (38,43,44). Furthermore, antibody‑mediated 
disruption of the interaction between CLEC14A and MMRN2 
inhibited sprouting angiogenesis and tumor growth (45). As 
an ECM protein, MMRN2 binds to the CTLD of CLEC14A; 
CLEC14A‑CTLD is also reported to interact with Hsp70‑1A 
and to be crucial for Hsp70‑1A‑induced angiogenesis via 
extracellular‑signal‑regulated kinase (ERK) activation (46). 
Moreover, CLEC14A is cleaved by rhomboid‑like protein 2 
(a membrane‑embedded proteolytic enzyme), and the cleaved 
extracellular domain has sprout‑inhibiting and anti‑migratory 
properties. This inhibition is thought to have been due to 
competition between the cleaved extracellular domain and 
wild type forms of CLEC14A for the binding of MMRN2 (47). 

In contrast to the above observations, increased angiogenesis 
and lymphangiogenesis were observed in CLEC14A‑knockout 
mice, and CLEC14A‑deficient mice exhibited abnormal tumor 
vasculature and reduced survival of tumor‑bearing mice. 
Additionally, the loss of CLEC14A was attributed to the loss 
of VEGFR3 expression and suppressed Notch/Dll4 and Notch 
target gene expression  (48). Furthermore, the deletion of 
EC‑specific VEGFR3 was shown to induce hypervascularity, 
and VEGFR‑3 knockdown using siRNA, followed by VEGF 
treatment, increased the level of VEGFR‑2 phosphorylation in 
HUVECs (49). The role of CLEC14A may be context‑depen-
dent, and future studies to identify CLEC14A‑interacting 
partners (of both to the extracellular domain and the cyto-
plasmic domain) and their signaling pathways may enhance 
understanding of their precise roles in angiogenesis.

4. Thrombomodulin

Thrombomodulin (also known as CD141) is a membrane‑bound 
glycoprotein with an N‑terminal signal peptide, a CTLD, six 
tandem EGF‑like domain repeats, an O‑glycosylation site‑rich 
domain, a transmembrane domain and a short cytoplasmic 
C‑terminal loop (50,51). Thrombomodulin is an intronless 
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gene (location, chromosome 20p11.21) initially identified 
as a gene expressed in the vascular endothelium (52). It was 
later discovered to also be expressed in smooth muscle cell 
lines (53), and by both circulating and tissue mononuclear 
phagocytes  (54). Additionally, treatment with VEGF also 
increased the expression level of thrombomodulin in 
human aortic ECs (55). The CTLD of thrombomodulin was 
reported to mediate Ca2+‑dependent cell‑cell adhesion, and 
antibody‑targeted inhibition of the CTLD prevented cell‑cell 
contact, whereas an antibody towards the EGF domain of 
thrombomodulin did not (56). In addition, thrombomodulin 
was shown to co‑localize with actin filaments, and cell‑cell 
adhesion was abolished by mannose, chondroitin sulfate A and 
chondroitin sulfate C administration (56).

It was postulated that the lectin‑like domain of thrombo-
modulin (expressed at the tumor surface) interacted with cell 
membrane and ECM proteins, and also facilitated cell‑cell 
adhesion (57,58). The CTLD of thrombomodulin also interacts 
with the ECM protein fibronectin in the tumor vasculature, 
enhancing cell adhesion and migration. It has also been 
reported to promote the phosphorylation of focal adhesion 
kinase 1 (FAK) and the expression of matrix metalloproteinase 
9 (MMP9) (59). The role of FAK in angiogenesis has also been 
reported (60,61).

Knockdown of thrombomodulin in HaCaT cells inhibited 
E‑cadherin trafficking to the cell membrane, bestowing a more 
fibroblast‑like phenotype (62). In another study, the recombi-
nant lectin‑like domain of TM‑TM domain 1 (rTMD1) was 
found to inhibit HUVEC tube formation by Matrigel assays, as 
well as disrupting the interaction between rTMD1 and Lewis 
Y Ag (LeY)‑modified EGFR, resulting in the inhibition of 
EGF‑mediated EGFR signaling and angiogenesis. This was 
believed to be due to rTMD1‑associated interference of LeY 
(a cell surface tetra‑saccharide) in endothelial cell connection 
and capillary formation (63).

A soluble form of thrombomodulin containing the CTLD  
has been shown to retard tumor cell invasiveness, whereas 
soluble thrombomodulin lacking this domain was unable to 
inhibit cell invasion, suggesting an anti‑metastatic role for the 
CTLD of thrombomodulin (64). The CTLD of thrombomod-
ulin was also shown to suppress lipopolysaccharide‑induced 
ERK1/2 phosphorylation (65). Additionally, thrombomodulin 
expression was inversely correlated with tumor cell prolif-
eration in lung squamous cell carcinoma  (66), esophageal 
squamous cell carcinoma (67), hepatocellular carcinoma (57), 
colorectal cancer  (68), and malignant melanoma  (69); its 
expression level was also increased in a number of other 
cancer types, including colorectal cancer, pancreatic cancer, 
mammary carcinoma, leukemia (70) and glioblastoma (71).

The CTLD and the cytoplasmic domain of thrombo-
modulin were also discovered to be necessary for reduced 
cell proliferation (69); it was revealed that the cytoplasmic 
domain of thrombomodulin interacted with the N‑terminal 
membrane‑cytoskeleton linker ezrin/radixin/moesin (ERM) 
family protein ezrin. Thrombomodulin, ezrin and F‑actin 
were shown to co‑localize at intercellular filopodia, and the 
interaction between ezrin and CD44 has been reported to 
facilitate cancer cell migration. It was also hypothesized 
that the thrombomodulin‑ezrin interaction may prevent the 
binding of CD44 to ezrin, resulting in the reduced migration 
of thrombomodulin‑expressing cells compared with thrombo-
modulin knockdown cells (72).

In other epithelial and tumor cell lines, the expression of 
thrombomodulin and Snail was inversely correlated; Snail is a 
transcription factor involved in epithelial mesenchymal transi-
tion (EMT) that has been shown to bind the thrombomodulin 
promoter and suppress its expression (62). Thrombomodulin 
was also able to reverse EMT by upregulating E‑cadherin and 
downregulating N‑cadherin expression levels in lung cancer 
cells  (73). By contrast, the recombinant thrombomodulin 

Figure 1. C‑type lectin family XIV group. All the four members have a set of conserved domains such as the CTLD and different number of EGF like repeat 
domains. Some members also have a PDZ binding motif in the C‑terminal cytoplasmic tail. Location of the domains in the full‑length proteins with amino acid 
residues is given in numbers. SP, signal peptide; CTLD, C‑type lectin‑like domain; EGF, Epidermal growth factor‑like domain; TM, Transmembrane domain; 
Cyto, Cytoplasmic domain; PDZ, PDZ binding motif.
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fragment TMD23 (with a 6‑tandem EGF‑like domain and 
O‑glycosylation site‑rich domain) was reported to stimulate 
angiogenesis (63,74). The C loop of the C‑terminal sub‑domain 
of the fifth EGF‑like domain of TMD23 has pro‑angiogenic 
and cytoprotective effects, in a G protein‑coupled receptor 
15‑dependent manner (75). Angiogenesis was also mediated 
by the phosphorylation of ERK1/2, p38, protein kinase B 
(Akt) and Endothelial nitric oxide synthase (eNOS) (74), and 
by Fibroblast growth factor receptor 1‑A (76). rTMD23 was 
reported to stimulate the endothelial cell expression of MMPs 
and plasminogen activators that mediate ECM degradation, and 
subsequently, angiogenesis (74). This suggests that rTMD23 is 
responsible for cellular proliferation and migration, and that 
the CTLD may possess anti‑angiogenic properties.

5. CD93

CD93 (also known as complement component C1q receptor 
and AA4.1) is a type I transmembrane glycoprotein with one 
C‑type lectin‑like domain, five tandem EGF‑like domain 
repeats, a serine threonine‑rich mucin‑like domain, a trans-
membrane domain and a cytoplasmic domain (77). CD93 is 
located on chromosome 20p11.21 and has two exons separated 
by a single intron (78). CD93 was identified as one of the 
top 20 genes in the core human primary tumor angiogenesis 
signature (34). Its expression is prominent in ECs and certain 
hematopoietic subsets, including myeloid cells, platelets and 
hematopoietic stem cells (79‑81). It is also highly expressed in 
tumor ECs, but exhibits low expression levels in non‑prolifer-
ating ECs (34,82‑85). A soluble form of the CD93 ectodomain 
(containing the CTLD and EGF‑like domain repeats) was 

detected in normal human plasma (80) and during inflamma-
tory stimulation in vivo (86). In situ hybridization of mouse 
CD93 revealed its expression in the vascular endothelium of 9 
day old embryos; this correlated with the remodeling of blood 
vessels in the intersomitic branches of the dorsal aorta and 
developing perineural plexus, suggesting an angiogenic role 
for CD93 (87).

The CTLD of CD93 is essential for intercellular adhesion 
not sensitive to calcium chelators (79). Also, CD93 knockdown 
inhibited tube formation, migration and adhesion of ECs (82), 
and the growth of orthotopically‑implanted syngeneic GL261 
gliomas was retarded in CD93‑/‑ mice, which was associated 
with abnormal tumor vessel growth (82).

The cytoplasmic domain of CD93 interacts with the ERM 
protein moesin, establishing a link between CD93 and actin that 
contributes to cytoskeletal reorganization, an essential process 
for cellular adhesion (88). CD93 also interacts with dystro-
glycan, an ECM receptor and laminin‑binding protein. Through 
dystroglycan, the tyrosine residues in the cytoplasmic domain 
of CD93 are phosphorylated following adhesion to laminin, 
and this phosphorylation is necessary for endothelial cell 
migration (89). In addition to the CTLD, the DX domain (a 79 
residue‑long stretch situated between the CTLD and 5 EGF‑like 
domain repeats) is necessary for the interaction between CD93 
and MMRN2; blocking this interaction by targeting the DX 
domain retarded the angiogenesis (90). In endothelial filopodia, 
interaction with MMRN2 stabilizes CD93 to prevent the shed-
ding of its extracellular domain. This stable complex is required 
for the activation of β1 integrin, which initiates the phosphory-
lation of FAK and the organization of fibronectin into fibrillar 
structures (43).

Figure 2. Mechanism of regulation of angiogenesis by the members of C‑type lectin family XIV. (A) Interaction of CLEC14A with Hsp70‑1A leads to ERK 
phosphorylation and angiogenesis. CLEC14A interaction with MMRN2 promotes angiogenesis by unknown mechanisms. (B) Interaction between TM and 
fibronectin promotes angiogenesis by FAK phosphorylation and increased MMP9 production. (C) CD93 interaction with MMRN2, fibronectin fibril and α5β1 
integrin promotes angiogenesis by FAK phosphorylation. (D) The interaction of the cytoplasmic domain of CD93 with moesin leads to cytoskeletal reorganiza-
tion. (E) Endosialin interaction with MMRN2, collagen I/IV and fibronectin promotes angiogenesis by unknown mechanisms. Endosialin may have a role in 
expression of MMP9 and PlGF. TM, thrombomodulin; FN, fibronectin; Col. I/IV, collagen I/IV; Cyto, cytoplasmic domain.
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The recombinant CD93 protein rCD93‑D23 (containing 
the EGF domain and a serine‑threonine rich‑mucin‑like 
domain) induced HUVEC proliferation and migration via the 
ERK1/2, PI3K/Akt/eNOS pathways and EGFR signaling; the 
CTLD of this protein did not influence angiogenesis in vivo (or 
did so to a moderate degree only), as indicted by the removal 
of the entire ectodomain (including the CTLD), and suggesting 
that the CTLD of CD93 may possess an anti‑angiogenic func-
tion (91). Monoclonal antibody‑targeting of the extracellular 
domain of CD93 inhibited the proliferation, migration and 
sprouting of ECs without influencing endothelial cell survival 
and the inhibition of angiogenesis was suggested to result from 
the prohibition of cell adhesion. The epitope recognized by 
this antibody is in the region overlapping the CTLD and DX 
domain, and lies outside of the EGF domain; it does not impair 
CD93‑dependent EGFR activation (which is dependent on the 
EGF domain) suggesting that CD93 may possess a different 
angiogenic function as a membrane‑intercalated protein than 
insoluble form (92).

6. Endosialin 

The extracellular domain of endosialin [also known as tumor 
endothelial marker 1 (TEM1) and CD248] comprises a CTLD, 
a Sushi domain (also known as a short consensus repeat or 
complement control protein domain) and three EGF‑like 

domains, followed by a transmembrane and a cytoplasmic 
domain  (93). Endosialin was initially identified as a cell 
surface glycoprotein and TEM (94), though further studies 
have suggested endosialin as a marker of cancer‑associated 
fibroblasts (CAFs) and tumor vessel associated mural cells, 
rather than a mesenchymal stem cell (MSC) marker. The 
expression of endosialin by both CAFs and MSCs indicates 
the involvement of the latter in tumor stroma formation 
via differentiation into tumor stromal fibroblasts  (95). 
Furthermore, endosialin‑downregulated fibroblasts showed 
a platelet‑derived growth factor‑BB‑mediated reduction in 
migration and proliferation (96).

The reported binding partners of endosialin are metas-
tasis‑related protein Mac2‑BP/90K (97) and MMRN2 (44). 
Its CTLD interacts with ECM proteins such as collagen type 
I/IV and fibronectin, both of which mediate cell adhesion and 
migration. CHO cells overexpressing endosialin proliferated in 
clusters to form web‑like structures, that formed larger clusters 
over time compared with normal CHO cells, which proliferate 
as singular cells (98). Endosialin‑null mice showed normal 
physiological angiogenesis; however, there was a reduction in 
tumor growth, an increased number of small and immature 
tumor vessels and a decreased number of larger and mature 
vessels, highlighting the importance of endosialin in tumor 
microvasculature maturation (99). Moreover, mice lacking the 
cytoplasmic domain of endosialin exhibited reduced expression 

Table I. Function of C‑type lectin family XIV members in different cancers.

C‑type lectin family XIV	 Cell type	 Effect

CLEC14A	 Squamous cell carcinoma (34,38), cervical cancer	 Increased angiogenesis and metastasis
	 (38), pancreatic neuroendocrine tumors (38), clear
	 cell renal cell carcinomas (34), breast cancer (34)
Thrombomodulin	 Lung squamous cell carcinoma (66), oesophageal	 Decreased tumor cell proliferation and
	 squamous cell carcinoma (67), hepatocellular	 invasion
	 carcinoma (57), colorectal cancer (68), malignant 
	 melanoma (69)
	 Leukaemia (70), pancreatic cancer (70), colorectal	 Increased invasion and angiogenesis
	 cancer (70), mammary carcinoma (70), 
	 glioblastoma (71)	
CD93	 Glioblastoma (43), nasopharyngeal carcinoma (83)	 Increased angiogenesis and tumor growth
Endosialin	 T241 fibrosarcomas (100), Lewis lung Carcinomas	 Increased tumor growth and angiogenesis, 
	 (100), cervical cancer cell line HeLa (94),	 tumor microvasculature maturation
	 amelanotic melanoma cell line A375 (94), 
	 neuroblastoma cell line LA1‑5s (94)

Table II. Co‑localization/binding partners of C‑type lectin family XIV members. 

Protein 	 Intracellular	 Extracellular

CLEC14A	 Not reported	 Fibronectin (38), Laminin alpha 4 (38), MMRN2 (38,44,45), Hsp70‑1A (46)
Thrombomodulin	 Actin (56), Ezrin (72)	 Fibronectin (59)
CD93	 Moesin (88)	 Dystroglycan (89), MMRN2 (43,44,90), β1 integrin (43), Fibronectin (43)
Endosialin	 Not reported	 MMRN2 (44), Mac2‑BP/90K (97), Collagen type I, IV (98), Fibronectin (98)
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levels of VEGF, hypoxia‑inducible factor‑1α (HIF1α), placental 
growth factor (PlGF), MMP9 (20), and increased expression 
levels of the tumor suppressor transgelin (SM22α) and the 
downstream effector of Notch (100). VEGF, HIF1α, P1GF 
and MMP9 are pro‑angiogenic, whereas SM22α is known to 
have tumor suppressive properties (101). Depending on the 
tissue and cellular context, Notch can be either oncogenic or 
tumor suppressive (102). It was also revealed that endosialin 
expression was induced in hypoxic conditions and regulated 
by HIF2α; endosialin transcription was also enhanced by 
the interaction of HIF2α with the proto‑oncoprotein protein 
C‑ets‑1 (103).

7. Conclusions and prospects

As a number of pathways are able to compensate for the 
VEGF‑targeted inhibition of angiogenesis, anti‑angiogenic 
therapies that target VEGF alone are not sufficient  (104). 
Acquired resistance to the inhibition of VEGF signaling, 
and its toxicity towards normal physiology demand a broader 
range of therapeutic approaches, targeting multiple aspects of 
angiogenesis.

The members of the C‑type lectin family XIV are transmem-
brane proteins expressed at the cell surface, and are therefore 
relatively easy to target. With the exception of thrombomodulin, 
C‑type lectin family XIV members are predominantly expressed 
by tumor ECs. Endosialin is expressed by the tumor vasculature, 
tumor stromal cells and MSCs, making it an attractive target 
for anti‑angiogenic therapy in various types of tumor  (95). 
CLEC14A induces filopodia and tube formation (32), and its 
interaction with MMRN2 promotes tumor growth and angio-
genesis (45). Thrombomodulin interacts with fibronectin during 
tumor angiogenesis and maintains the endothelial tube struc-
ture (59). CD93 interacts with MMRN2, fibronectin fibrils and 
α5β1 integrin, promoting angiogenesis via FAK phosphoryla-
tion (43). The interaction between the cytoplasmic tail of CD93 
and moesin induces cytoskeletal reorganization (88), and the 
interaction between endosialin, collagen and fibronectin medi-
ates cell adhesion and migration (98). 

As discussed, all members of the C‑type lectin family 
XIV interact with ECM proteins and support endothelial cell 
migration. Inhibiting the function of these proteins may lead to 
reduced endothelial cell migration and angiogenesis. Particular 
family members also promote downstream signaling mecha-
nisms, such as the phosphorylation of FAK and an increase 
in the expression levels of MMP9 and plasminogen activators 
(Fig. 2). The C‑type lectin family XIV members have been 
reported to enhance angiogenesis in different cancer types 
(Table I); however, these findings do not clearly illustrate the 
mechanisms by which they regulate angiogenesis. The CTLD 
has been shown to exert both pro‑and anti‑angiogenic activity 
in different members of C‑type lectin family XIV. Additionally, 
the EGF‑like domain is necessary for their angiogenic capacity, 
and may be a potential target for anti‑angiogenic therapy. 

 Improved characterization of the structural motifs and 
domains of members of C‑type lectin family XIV will aid in 
the understanding of their mechanisms of signal transduction 
and angiogenesis. Specific binding partners of the family are 
known (Table  II), yet detailed mechanisms of the roles of 
these proteins in angiogenesis require further elucidation. It is 

evident that members of C‑type lectin family XIV are impor-
tant regulators of physiological and pathological angiogenesis, 
and therefore present as attractive therapeutic targets.
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