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Abstract. The ubiquitin ligase ring finger protein 5 (RNF5) 
has previously been associated with the development of 
breast cancer. Patients with breast cancer and high RNF5 
expression have been demonstrated to have a shorter survival 
time compared with patients with low RNF5 expression. 
However, the role of RNF5 in human glioma has not been 
determined. The present study analyzed the role of RNF5 in 
gliomas using bioinformatics analysis. The results revealed 
that RNF5 was differentially expressed in non‑cancerous 
brain tissues and different grades of glioma. Furthermore, a 
high RNF5 expression in patients with glioma was associated 
with an improved prognosis compared with patients with low 
expression. Gene Set Enrichment Analysis revealed that RNF5 
was particularly associated with ‘Wnt signaling pathway’, 
‘apoptosis’, ‘focal adhesion’ and ‘cytokine‑cytokine receptor 
interaction’ in patients with glioma. Additionally, 4 potential 
ubiquitination substrates for RNF5 were predicted, including 
sorting nexin 10, proprotein convertase subtilisin/kexin type 1, 
leucine rich glioma inactivated 1 and solute carrier family 39 
member 12. These findings provided the basis for further 
investigation on the role of RNF5 in tumors.

Introduction

Gliomas are the most common primary brain tumors with an 
incidence rate of ~5/100,000). Despite comprehensive treatment 
strategies, including surgery, radiotherapy and chemotherapy, 
the prognosis of patients remains unsatisfactory, with a median 

survival time of 12‑18 months (1‑4). This poor outcome is 
largely associated with the difficulty of curing gliomas and the 
high relapse rates (5,6). Therefore, the identification of novel 
therapeutic targets has become a particular focus of research.

Ring finger protein 5 (RNF5) belongs to the ring finger 
family of ubiquitin ligases (7,8), which are anchored to the 
endoplasmic reticulum (ER) membrane and are important 
components of the ER‑associated degradation (ERAD) mech-
anism. RNF5 serves a role in monitoring the folding of CF 
transmembrane conductance regulator (CFTR), CFTRDF508 
and nascent CFTRΔF508 in the ER membrane  (9,10). 
Furthermore, a previous study reported that RNF5 regulates 
cell movement by targeting paxillin ubiquitination and altering 
its localization (11). RNF5 participates in the inflammatory 
response in viral infections by ubiquitinating transmembrane 
protein 173 and inhibiting the activation of virus‑induced 
interferon regulatory factor 3, expression of interferon β1 
and the cellular antiviral response  (12). In breast cancer 
cells, RNF5 ubiquitination degrades the L‑glutamine carrier 
proteins solute carrier family 1 member 5 and solute carrier 
family 38 member 2, which reduces glutamine uptake and 
levels of the tricarboxylic acid cycle components, decreases 
mechanistic target of rapamycin signaling and cell prolif-
eration, and increases autophagy and apoptosis (13). RNF5 is 
highly expressed in breast cancer and related cell lines, and 
inhibition of its expression decreases cell proliferation (13). 
The present study attempted to characterize the role of RNF5 
in human glioma and to determine its association with tumor 
grade and survival time in patients with glioma.

The present study revealed that RNF5 was differentially 
expressed in patients with different grades of glioma and was 
closely associated with the prognosis of patients with anaplastic 
glioma (AG) and glioblastoma multiforma (GBM). Moreover, 
Gene Set Enrichment Analysis (GSEA) identified the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) signaling 
pathways that were significantly associated with RNF5. 
Additionally, a correlation analysis was used to predict the 
potential ubiquitination substrates for RNF5 in human glioma.

Materials and methods

Patient samples. mRNA microarray expression for patients 
were obtained from the Chinese Glioma Genome Atlas 
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(CGGA; cgga.org.cn) and the Gene Expression Omnibus 
(www.ncbi.nlm.nih.gov/geo). The CGGA contains 301 glioma 
samples (including 84 astrocytoma, 89 oligodendroglioma 
and 128 glioblastoma samples). The grouping of low‑grade 
glioma (LGG), AG and GBM was performed as previously 
described (14). The GSE16011 dataset (www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE16011) contains 276 glioma 
samples (including samples from 8 patients with epilepsy and 
24 astrocytoma, 85 oligodendroglioma and 159 glioblastoma 
samples) and 8 control samples, totaling 284 specimens (15). 
The GSE4290 dataset (www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE4290) contains 23 samples from patients with 
epilepsy as non‑cancerous samples and 157 tumor samples, 
including 26 astrocytoma, 50 oligodendrogliomas and 81 glio-
blastoma samples (16). Gene mutation data were obtained from 
The Cancer Genome Atlas (TCGA; cancergenome.nih.gov).

RNF5 expression and its association with patient prognosis. 
The expression levels of RNF5 in the CGGA database and 
GSE16011 and GSE4290 datasets were analyzed using 
GraphPad Prism software version 6.01 (GraphPad Software, 
Inc.). In addition, the association between the expression level 
of RNF5 and the prognosis of patients was obtained using 
the CGGA database. In order to analyze patient prognosis, 
patients were equally divided into two groups according to 
RNF5 expression levels.

Cell culture. The glioblastoma cell line U251 was obtained 
from The Type Culture Collection of The Chinese Academy of 
Sciences. U251 cells were cultured using DMEM (Invitrogen; 
Thermo Fisher Scientific, Inc.) supplemented with 10% fetal 
bovine serum (Gibco; Thermo Fisher Scientific, Inc.) at 37˚C 
and 5% CO2.

Plasmid and transfection. The RNF5 cDNA sequence was 
inserted between the HindIII and XbaI restriction sites in 
the p3XFLAG‑CMV‑14 vector (Shanghai GenePharma 
Co., Ltd.). The p3XFLAG‑CMV‑14 plasmid was used as an 
empty vector. A total of 3 µg plasmid was transfected into 
U251 cells using 9 µl Polyjet transfection reagent (SignaGen 
Laboratories) according to the manufacturer's protocol. The 
culture medium was changed after 12 h and cells were trans-
fected for 72 h.

Reverse transcription‑quantitative PCR (RT‑qPCR). RNF5 
expression was assessed using RT‑qPCR. Total RNA was 
extracted from U251 cells using TRIzol® reagent (Invitrogen; 
Thermo Fisher Scientific, Inc.) and reverse‑transcribed into 
cDNA using the Quant One‑Step RT‑PCR kit (Tiangen 
Biotech Co., Ltd.). qPCR was performed using FastStart 
Universal SYBR Green Mix (Roche Diagnostics) and an 
ABI 7300 real‑time PCR instrument (Applied Biosystems; 
Thermo Fisher Scientific, Inc.). The primers for RNF5 and 
β‑actin were designed as follows: RNF5, forward 5'‑GTA​CCC​
ATA​CGA​TGT​TCC​AGA​TTA​CGC‑3', reverse 5'‑CTG​AGC​
AGC​CAG​AAA​AAG​AAA​AAG​ATG‑3'; and β‑actin forward, 
5'‑CAT​GTA​CGT​TGC​TAT​CCA​GGC‑3', and reverse, 5'‑CGC​
TCG​GTG​AGG​ATC​TTC​ATG‑3'. Thermocycling conditions 
included pre‑denaturation at 95˚C for 3 min, denaturation 
at 95˚C for 15 sec, annealing at 60˚C for 15 sec and extension 

at 72˚C for 1 min for 35 cycles. Expression level of RFN5 was 
calculated using the 2‑ΔΔCq method (17).

Cell colony formation assay. U251 cells (1x105) overex-
pressing RNF5 were seeded into 6 cm dishes and cultured for 
14 days at 37˚C. Cells were subsequently fixed in 4% parafor-
maldehyde for 30 min at room temperature and stained with 
0.05% crystal violet for 30 min at room temperature. A light 
Canon 70D camera (Canon, Inc.) was used to capture images 
(magnification, x1).

GSEA to evaluate RNF5‑enriched KEGG pathways. In 
order to elucidate the signaling pathways associated with 
the possible actions of RNF5 in human glioma, enrichment 
analysis was performed using GSEA software version 6.2 
(software.broadinstitute.org/gsea/login.jsp) in the CGGA data-
base. RNF5‑enriched KEGG (www.genome.jp/kegg) signaling 
pathways were identified through this analysis.

Identification of differentially expressed genes (DEGs). To 
predict the potential substrate(s) of RNF5, CGGA, GSE16011 
and GSE4290 data were sorted according to RNF5 expression 
level from low to high. Data were subsequently divided into 
four groups: A, B, C and D according to the number of patients 
following RNF5 determination. To avoid data with no signifi-
cant differences from groups B and C, comparative analysis 
was performed between groups A and D to identify the DEGs 
from the three databases. To narrow the scope, the DEGs that 
overlapped among the three databases were identified using 
limma package of R software 3.4.4 (www.r‑project.org) and 
selected for subsequent analysis. A gene with |logFC|>1 was 
defined as DEG.

Correlation analysis between RNF5 and overlapping genes. 
To demonstrate the correlation between RNF5 and the five 
overlapping genes, analysis using R and GraphPad Prism 
software was performed. Correlation analysis was performed 
using Pearson's correlation coefficient test.

Statistical analysis. GraphPad Prism software was used 
for statistical analysis. Results are presented as the 
means ±  standard error of the mean. Statistical signifi-
cance was analyzed using Student's t‑test (two groups) and 
one‑way analysis of variance (multiple groups) followed 
by Dunnett's post hoc test. Kaplan‑Meier survival analyses 
for overall survival were performed and compared with 
the log‑rank test. P<0.05 was considered to indicate a 
statistically significant difference. For GSEA, a normalized 
enrichment score >1, nominal P<0.05 and false discovery 
rate q‑value <0.25 were considered to indicate a statistically 
significant difference.

Results

Expression of RNF5 and its association with prognosis. To 
characterize the expression of RNF5 and its association with 
patient prognosis, the CGGA database and the GSE16011 
and GSE4290 datasets were used. RNF5 was differentially 
expressed in LGG, AG and GBM. RNF5 expression was 
significantly higher in LGG and AG compared with GBM 
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(Fig.  1A). The GSE16011 and GSE4290 datasets were 
selected to investigate the difference in RNF5 expression 
between non‑cancerous brain tissue and glioma; however, 
a consistent conclusion was not reached owing to the small 
number of non‑cancerous brain tissue samples in the datasets 
(Fig. 1B and C). However, an association between RNF5 
expression levels and patient prognosis was determined using 
the CGGA database. In LGG, the expression level of RNF5 
and patient prognosis were not significantly associated, while 
in AG and GBM, patients with high RNF5 expression had 
an improved prognosis compared with patients with low 
expression (Fig. 1D‑F).

To further investigate the association between high RNF5 
expression and prognosis in patients with glioma, tumor 
protein 53 (TP53) mutations were analyzed as indicated by 
the literature (18‑21). An analysis of TCGA database revealed 
that TP53 has a high mutation rate in GBM, while only 

two RNF5 mutations were identified (Fig. 2A). Additionally, 
in  vitro analysis revealed that cells overexpressing RNF5 
exhibited increased colony formation compared with control 
cells (Fig. 2B‑D). Subsequently, the role of RNF5 in glioma 
and its possible target proteins were further analyzed using a 
bioinformatics approach.

GSEA of KEGG signaling pathways associated with 
RNF5 in human glioma. To further analyze the role of 
RNF5 in human glioma, GSEA of the CGGA database was 
performed. The expression levels of RNF5 in the samples 
were sorted from low to high, and the samples were divided 
into four groups: A, B, C and D. Group A contained samples 
with low expression of RNF5, while Group D contained 
samples with a high expression level of RNF5. The newly 
grouped data were subsequently analyzed by GSEA. The 
GSEA revealed that RNF5 was significantly associated with 

Figure 1. Expression levels of RNF5 in non‑cancerous brain tissue and glioma samples from patients with different disease grades and association with 
patient prognosis. (A) RNF5 was differentially expressed in different grades of glioma and exhibited the highest and lowest expression in AG and GBM, 
respectively. (B) RNF5 expression significantly differed between non‑cancerous brain and glioma tissues in the GSE16011 dataset. (C) Expression of RNF5 did 
not significantly differ between non‑cancerous brain tissue and glioma tissues in the GSE4290 dataset. Kaplan‑Meier survival curve analysis of the prognostic 
significance of RNF5 expression in patients with (D) LGG, (E) AG and (F) GBM. RNF5, ring finger protein 5; AG, anaplastic glioma; GBM, glioblastoma 
multiforme; LGG, low‑grade glioma; CGGA, Chinese Glioma Genome Atlas.
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the following KEGG signaling pathways: ‘Wnt signaling 
pathway’, ‘apoptosis’, ‘cell adhesion molecules CAMs’, 
‘cytokine‑cytokine receptor interaction’, ‘focal adhesion’ 
and ‘ECM‑receptor interaction’ (Fig. 3). Therefore, RNF5 
may affect the development of glioma through these KEGG 
signaling pathways.

Prediction of RNF5 ubiquitination substrates using a 
bioinformatics approach. In order to identify the potential 
ubiquitination substrates of RNF5 in human glioma, CGGA, 
GSE16011 and GSE4290 data were divided into groups of 
low and high RNF5 expression. Differential genetic analysis 
was then performed on these groups to identify the DEGs. 

Figure 2. RNF5 and TP53 mutations identified in low‑grade glioma and GBM and colony formation assay. (A) A total of 117 mutations in TP53 and two 
mutations in RNF5 in GBM were identified in The Cancer Genome Atlas. (B) Cell colony forming ability was increased in U251 cells overexpressing RNF5 
compared with control cells. (C) Cell colony formation analysis. (D) Reverse transcription‑quantitative PCR analysis of the expression levels of RNF5 in U251 
cells overexpressing RNF5 compared with control cells. **P<0.01. RNF5, ring finger protein 5; TP53, tumor protein 53; 3'UTR, 3'untranslated region; GBM, 
glioblastoma multiforme.
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To further clarify the possible ubiquitination substrates of 
RNF5, the overlapping genes between the CGGA database 
and GSE16011 and GSE4290 datasets were identified 
(Fig. 4A). A total of 4 overlapping genes were identified 
between the CGGA database and the GSE16011 dataset, 
1 overlapping gene was identified between the GSE16011 and 

GSE4290 datasets, and no overlapping genes were identified 
between the CGGA database and the GSE4290 dataset. The 
5 overlapping genes included contactin 3 (CNTN3), leucine 
rich glioma inactivated  1 (LGI1), proprotein convertase 
subtilisin/kexin type 1 (PCSK1), sorting nexin 10 (SNX10) 
and solute carrier family 39 member 12 (SLC39A12; Fig. 4B). 

Figure 3. GSEA to identify significant RNF5‑enriched KEGG signaling pathways. GSEA revealed that RNF5 is enriched in the following pathways: 
(A) The ‘Wnt signaling pathway’, (B) ‘apoptosis’, (C) ‘cell adhesion molecules CAMs’, (D) ‘cytokine‑cytokine receptor interaction’, (E) ‘focal adhesion’ and 
(F) ‘ECM‑receptor interaction’. GSEA, Gene Set Enrichment Analysis; RNF5, ring finger protein 5; KEGG, Kyoto Encyclopedia of Genes and Genomes; 
ECM, extracellular matrix; NES, normalized enrichment score; NOM, nominal; FDR, false discovery rate.

Figure 4. RNF5 ubiquitin substrate prediction. (A) Venn diagram showing 4 overlapping genes between the CGGA database and the GSE16011 dataset and 1 
overlapping gene between the GSE4290 and GSE16011 datasets. (B) Associations between RNF5 and these 5 genes. Red and blue dots indicate a negative and 
positive association, respectively. The greater the size and color intensity of the dot, the stronger the association. RNF5, ring finger protein 5; CGGA, Chinese 
Glioma Genome Atlas; CNTN3, contactin 3; LGI1, leucine rich glioma inactivated 1; SLC39A12, solute carrier family 39 member 12; PCSK1, proprotein 
convertase subtilisin/kexin type 1; SNX10, sorting nexin 10.
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RNF5 expression was positively associated with CNTN3, 
while a negative association was demonstrated for the 
remaining four genes (SNX10, PCSK1, LGI1 and SLC39A12) 
(Fig. 4B). In addition, the results from Fig. 5 demonstrated 
that RNF5 was negatively correlated with SNX10, PCSK1, 
LGI1 and SLC39A12.

Discussion

Previous studies have demonstrated that ubiquitin ligase 
is closely associated with tumor development and metas-
tasis (13,22‑25). The present study used human glioma data 
to reveal that RNF5 was differentially expressed in patients 
with different levels of glioma and was correlated with prog-
nosis in patients with AG and GBM. Specifically, an improved 
prognosis was observed in patients with AG and GBM with 
a high expression of RNF5 compared with a low expression. 
Subsequently, RNF5 was overexpressed in U251 cells in vitro, 
and it was revealed that colony forming ability was enhanced 
in cells overexpressing RNF5 compared with controls. The 
authors speculate that silencing RNF5 reduces the colony 
forming ability. Through GSEA enrichment analysis, KEGG 
signaling pathways that were significantly associated with 
RNF5 were identified. To further explore possible ubiquitina-
tion substrates for RNF5 in human glioma, correlation analysis 
were performed. A total of 4 genes were negatively associated 

with RNF5 expression, and may serve as potential RNF5 ubiq-
uitination substrates.

Previous studies revealed that RNF5 was highly expressed 
in breast cancer specimens and cell lines. Additionally, tumor 
cell proliferation was inhibited after silencing RNF5, and 
patients with breast cancer with high RNF5 expression have 
a poor prognosis compared with patients with low expres-
sion (13,21). Cell proliferation was inhibited after silencing 
RNF5 expression in MCF‑7 cells. However, cell proliferation 
was not affected in MDA‑MB‑231, MDA‑MB‑435 and BT‑474 
cells following RNF5 silencing due to differences in TP53 
status, as TP53 is only functional in MCF‑7 cells (21,26,27). 
Furthermore, TP53 expression was increased following the 
silencing of RNF5 in MCF‑7 cells, suggesting that RNF5 
may be involved in the inhibition of TP53 by Rho GTPase, 
Src networks or ERAD (21). The present study demonstrated 
that higher RNF5 expression was associated with an improved 
prognosis in patients with glioma, which may be consistent 
with TP53 mutations in glioma, particularly in GBM (28,29). 
Previous studies revealed a higher rate of TP53 mutations in 
patients with glioma compared with healthy subjects (30‑33). 
Therefore, it is possible that in patients with glioma, mutations 
in TP53 may reverse the inhibition of proliferation induced by 
RNF5 silencing. The apparently opposite prognostic effect of 
RNF5 expression levels in patients with glioma necessitates 
further investigation of the mechanism of action of RNF5. The 

Figure 5. Correlation between RNF5 and the 4 negatively correlated genes. Correlation between RNF5 and (A) SNX10, (B) PCSK1, (C) LGI1 and (D) SLC39A12. 
RNF5, ring finger protein 5; SNX10, sorting nexin 10; PCSK1, proprotein convertase subtilisin/kexin type 1; LGI1, leucine rich glioma inactivated 1; SLC39A12, 
solute carrier family 39 member 12.
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present study investigated cell colony formation of U251 cells 
overexpressing RNF5. However, experiments on apoptosis, 
invasion and migration should be performed in future studies. 
Furthermore, the lack of validation on clinical samples is a 
limitation of the present study.

In summary, the present study revealed that RNF5 is 
differentially expressed in patients with glioma with different 
disease grades and is associated with patient prognosis. 
Moreover, GSEA revealed KEGG pathways that are signifi-
cantly associated with RNF5. Through correlation analysis, 
possible ubiquitin substrates for RNF5 in patients with glioma 
were predicted. These results provided a meaningful insight 
into the treatment of glioma.
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