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Effect of apigenin on whole transcriptome profile of
TNFo-activated MDA-MB-468 triple negative breast cancer cells
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Abstract. The lack of hormone receptors in triple nega-
tive breast cancer (TNBC) is associated with the inefficacy
of anti-estrogen chemotherapies, leaving fewer options for
patient treatment and higher mortality rates. Additionally, as
with numerous types of inflammatory breast cancer, infiltra-
tion of tumor associated macrophages and other leukocyte
sub-populations within the tumor inevitably lead to aggressive,
chemo-resistant, metastatic and invasive types of cancer which
escape immune surveillance. These processes are orchestrated
by the release of potent cytokines, including TNFa, IL-6
and CCL2 from the stroma, tumor and immune cells within
the tumor microenvironment. The present study evaluated
apigenin modulating effects on the pro-inflammatory acti-
vating action of TNFa in TNBC MDA-MB-468 cells, derived
from an African American woman. Initially, cell viability
was determined to establish an optimal sub-lethal dose of
TNFa and apigenin in MDA-MB-468 cells. Subsequently,
various treatments effects were evaluated using whole tran-
scriptomic analysis of mRNA and long intergenic non-coding
RNA with Affymetrix HuGene-2.1-st human microarrays.
Gene level differential expression analysis was conducted on
48,226 genes where TNFa caused significant upregulation
of 53 transcripts and downregulation of 11 transcripts. The
largest upward differential shift was for CCL2 [+61.86 fold
change (FC); false discovery rate (FDR), P<0.0001]; which
was down regulated by apigenin (to +10.71 FC vs. Control;
FDR P-value <0.001), equivalent to an 83% reduction. Several
TNFa deferentially upregulated transcripts were reduced
by apigenin, including CXCL10, C3, PGLYRP4, IL22RA2,
KMO, IL7R, ROS1, CFB, IKBKe, SLITRK6 (a checkpoint
target) and MMP13. Confirmation of CCL2 experimentally

Correspondence to: Dr Karam F.A. Soliman, Division of
Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical
Sciences, Florida A&M University, 1415 ML King Blvd, Tallahassee,
FL 32307, USA

E-mail: karam.soliman@famu.edu

Key words: whole transcriptome, triple negative breast cancer,
apigenin, MDA-MB-468

induced transcript alterations was corroborated at the protein
level by ELISA assays. The high level of CCL2 transcript in
the cell line was comparable to that in our previous studies
in MDA-MB-231 cells. The differential effects of TNFa
were corroborated by ELISA, where the data revealed a
>10-fold higher releasing rate of CCL2 in MDA-MB-468 cells
compared with in MDA-MB-231 cells, both of which were
attenuated by apigenin. The data obtained in the present study
demonstrated a high level of CCL2 in MDA-MB-468 cells
and a possible therapeutic role for apigenin in downregulating
TNFa-mediated processes in these TNBC cells.

Introduction

Within the past several decades, we have seen an increase
in research on the infiltration of leukocyte sub-populations
(LSPs), being drawn, sequestered and embedded within
solid tumor tissue corresponding to elevated concentrations
of chemokines such as CCL2 (1). Both animal and in vitro
studies have shown CCL2 can sequester macrophages
and other immune components such as myeloid-derived
suppressor cells or regulatory T cells all of which promote
immune evasion, epithelial-to-mesenchymal transition, tumor
growth, metastasis, and immune evasion. High concentrations
of pro-inflammatory proteins such as CCL2, TNFa, matrix
metalloproteinase 9, interleukin-6 (IL-6), chemokine (C-X-C
motif) ligands (e.g., CXCL) (1-4), granulocyte-macrophage
colony-stimulating factor and other chemokine ligands (e.g.,
CCLs) (5-9) are commonly reported as tumor promoting
proteins in diverse cancers such as thyroid, brain, gastric, lung,
glioblastoma multiforme and breast (2-7,10-15).

What is evidently a critical situation is that these inflam-
matory proteins, in particular, the CCL2 and IL-6 are brought
about by the actual cancer treatments themselves (e.g., radio-
therapy (16) chemotherapy (8), which in turn are then associated
with tumor recurrence (17) and chemo-resistance (18,19),
Inflammatory events in general, whether it be from other
parts of the body such as the liver (9,20) adipose tissue in
obesity or arising from viral origin tend to elevate TNF-a,
IL -6 and CCL2 then becoming risk factors for the develop-
ment of diverse cancers (21) aggressive tumors with advanced
stage tumor grade and greater rates of mortality (22,23).
Meanwhile, it is believed that drugs or natural compounds
that can attenuate CCL2 and IL-6 would slow the aggressive
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nature of advanced cancers (24-26) to the inclusion of triple
negative breast cancer (TNBC) and hormone positive breast
cancers (27,28). It is believed that utilizing synthetic or natural
small molecules as CCR2 inhibitors (CCR21i) can increase
overall survival odds (29,30).

In our previous work, we found that apigenin, a pigment
naturally found in parsley, can modulate TNFa triggered
release of chemokines in a TNBC model using MDA-MB-231
cells (31). In the present study, we carried out a similar
experiment using a TNBC cell line derived from an African
American woman (MDA-MB-468, MDA-MB-468 cells),
which express enormously high levels of CCL2 upon impact
by TNFa as demonstrated by the current work.

Materials and methods

Triple-negative human breast tumor (MDA-MB-468) cells
were obtained from the American Type Culture Collection
(Rockville, MD, USA). Dulbecco's modified Eagle's medium
(DMEM), fetal bovine serum (FBS), and penicillin/strepto-
mycin were all obtained from Invitrogen. Recombinant human
TNFa and CCL2 ELISA kits were purchased from RayBiotech
(RayBiotech Inc.).

Cell culture. MDA-MB-468 cells were grown in high-glucose
DMEM (w/phenol red and glutamine) supplemented with
10% FBS and 1% [10,000 U/ml] penicillin G sodium +
[10,000 pg/ml] streptomycin sulfate. Cells were grown at 37°C
with humidified 95% air and 5% CO, and sub-cultured every
3-5 days.

Cell viability assay. Viable cell count was determined
by Alamar blue. Briefly, 96-well plates were seeded with
MDA-MB-468 cells at a density of 5x10* cells/100 ul/well
with various treatments. After 24 h, Alamar blue (0.1 mg/ml
in HBSS) was added at 15% v/v to each well and incubated for
6-8 h. Quantitative analysis of dye conversion was measured
using a Biotek Synergy multi-mode detection reader equipped
with Gen5 software 550/580 (excitation/emission). Data were
expressed as a percentage of the untreated control groups.

CCL2 detection by ELISA. Supernatants from experimental
treatments were collected, centrifuged at 1,000 x g for
5 min at 4°C and evaluated for MCP-1/CCL2 using Human
MCP1 ELISA from RaybioRayBiotech Life, following the
manufacturer's instructions. Briefly, a dilution from 10-50%
of supernatants was made with assay buffer (final working
volume = 100 pl), and standards was added to 96-well plates
pre-coated with the capture antibody. Samples were washed
4x between steps, and after adding the HRP-conjugate, the
substrate/stopping solutions were added, and plates were read
at 450 nm using a Biotek Synergy multi-mode detection reader
equipped with Gen5 software. All data were expressed as
concentration derived from a standard curve in pg/ml.

Microarray WT 2.1 human datasets. Cells were collected
by a 3X wash in ice-cold HBSS, then a rapid freeze with
storage at -80°C. Total RNA was isolated and purified using
the TRIzol/chloroform method, the quality was assessed,
and concentration was equalized to 82 ng/ul in nuclease-free
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water. Whole transcriptome analysis was conducted according
to the GeneChipTM WT PLUS Reagent Manual for Whole
Transcript (WT) Expression Arrays for human 2.1 Array
Strips (32). Briefly, RNA was synthesized to first strand cDNA,
second-strand cDNA and followed by transcription to cRNA.
cRNA was purified and assessed for yield, before 2nd cycle
single-stranded cDNA synthesis, hydrolysis of RNA and puri-
fication of 2nd cycle single-stranded cDNA. cDNA was then
quantified for yield and equalized to 176 ng/ml. Subsequently,
cDNA was fragmented, labeled and hybridized on to the arrays
before being subject to fluidics and imaging using the Gene
Atlas (Affymetrix- Thermo Fisher Scientific, Inc.).

Statistical analysis. A Kruskal-Wallis test, followed by
a Dunn's multiple comparison test was used to evaluate
statistical differences from controls and a one-way ANOVA
followed by a Tukey's multiple comparisons test to evaluate
statistical differences between two cell lines both using
GraphPad prism software (GraphPad Software). The array
data quality control and initial processing from CEL to CHP
files were conducted using expression console, followed by
data analysis using the Affymetrix transcriptome analysis
console (Affymetrix-Thermo Fisher Scientific, Inc.). The data
have been deposited into the Gene Expression Omnibus for
public analysis at https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE133968.

Results

A non-lethal working concentration was established in
MDA-MB-468 cells for TNFo and apigenin (Fig. 1) to
where sub-lethal values were determined by a dose response
using apigenin [40 uM], and TNFa [40 ng/ml]. Whole tran-
scriptomic differential changes between untreated controls,
TNFa (40 ng/ml), apigenin (40 uM) and co-treatment (CoIx)
[TNFa (40 ng/ml) + apigenin (40 uM)] were acquired and the
summary by a number of deferentially expressed genes shown
in Fig. 2. Comparing the Control vs. TNFa only, we provide a
fold change (FC) scatter plot (Fig. 3) corresponding to signal
and processed data presented in Table I. Gene level differential
expression analysis was conducted on 48,226 genes where
TNFa caused significant up-regulation of 53 transcripts and
down-regulation of 11 transcripts.

The effects of apigenin on modifying TNFa induced genes
are presented in Table II. The table provides data on averaged
signals, processed data, and percent reduction of TNFa treated
cells. The largest upward differential shift was for CCL2
(+61.86-FC, false discovery rate (FDR) P-value <0.0001); which
was down regulated by apigenin (to +10.71 FC vs. Control, FDR
P-value <0.001), equivalent to an 83% reduction. The TNFa
deferentially up-regulated transcripts were reduced by apigenin
included; CXCL10, C3, PGLYRP4, IL22RA2, KMO, IL7R,
ROSI1,CFB,IKBKe, SLITRKG6 (a checkpoint target) and MMP13
Our previous studies in MDA-MB-231 cells according to both
mRNA and protein levels for CCL2 was meager in comparison.
In order to confirm a heightened level in this particular cell line,
and ELISA was conducted on both cell lines for all four groups
(Fig. 4). These findings match the current microarray data,
where CCL2 release in MDA-MB-468 cells was extremely high
in concentration in comparison to MDA-MB-231 cells.
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Figure 1. Preliminary determination of sub-lethal working concentra-
tions. The effect of TNFa and apigenin on cell viability of MDA-MB-468
cells at 5% CO,/Atm for 24 h. The data are presented as viability (% Ctrl),
mean = SEM (n=4). The significance of differences from the Ctrl were deter-
mined by a Kruskal-Wallis test, followed by a Dunn's multiple comparison
test. N.S. TNF-, tumor necrosis factor a; Ctrl, control.

Discussion

Limited therapeutic options are available for TNBC patients
and consequently can result in aggressive metastatic disease,
with greater mortality rates in African American (AA) women,
relative to Caucasian-American (33,34). This health disparity
may arise due to diagnosis at later stages of the disease (35)
or a predisposed racially distinct genetic or epigenetic
profile (36,37) with a propensity toward an overactive
oncogenic p38 MAPK, Wnt/f-catenin, IGF2/ERbeta
signaling axis (38-40). Additional factors to a health disparity
arising in AA women regarding TNBC include vitamin D
deficiencies (41) socioeconomic factors, later stage diagnosis,
obesity, or even breast feeding patterns (42-44).

As with all human cancers, late stage diagnosis is associ-
ated with greater mortality rates to which the immune system
can play a critical role. In the case with solid tumors such as
breast cancer, inflammatory like secretion of cytokines to the
tumor microenvironment can drive infiltration of tumor-asso-
ciated macrophages (TAMs) and neutrophils (TANs) which
promote tumor survival, metastasis, invasion, angiogenesis,
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Figure 2. Transcriptome summary. Whole transcriptomic differential
changes between untreated controls, TNFa (40 ng/ml), apigenin (40 uM)
and CoTx [TNFa (40 ng/ml) + apigenin (40 uM)] after 24 h treatment in
MDA-MB-468 cells. A total of 48,226 gene transcripts were analyzed for
each group. Diferentially expressed genes (upregulated and downregulated)
that passed the filter criteria (FDR P-value and P-values <0.05) are presented
by number. FDR, false discovery rate; TNF, tumor necrosis factor; Cotx,
co-treatment; API, apigenin.
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Figure 3. TNF-a (40 ng/ml) induces alterations in MDA-MB-468 cells. The
data are presented by a scatterplot showing differentially expressed genes
meeting the filter criteria (FDR P-value and P-values <0.05) and FC <-2 and
>2 are presented (full description in Table I). Green represents upregulated
transcripts, gray represents genes omitted as significant falling below a 2-fold
change in either direction, red represents downregulated transcripts and pink
is the highest upregulated transcript. Genes relevant to the findings of the
present study are circled and presented along with their corresponding official
gene symbol. “attenuated by apigenin. FC, fold change; TNF-a, tumor necrosis
factor-a; FDR, false discovery rate; CCL2, C-C motif chemokine ligand 2;
CXCLI10, C-X-C motif chemokine ligand 10; PGLYRP4, peptidoglycan recog-
nition protein 4; C3, complement C3; KMO, kynurenine 3-monooxygenase.

resistance and turn off host immune surveillance, all equating
to poor survival rates (2,45-47). It is believed that use of drugs
or natural compounds that can suppress oncogenic cyto-
kines (e.g., CXCL1, CCL18, CCL8, CCL2, IL-4, IL-8, IL-6,
etc.) (17,48-53) such as apigenin, EGCG or butein can curtail
these biochemical driven events and provide therapeutic advan-
tages against aggressive inflammatory breast cancers (54,55).
In the present study, an inflammatory profile was evoked by
TNFa, where the highest induced transcript in MDA-MB-468
cells was CCL2, confirmed at both the mRNA and protein level.
The rise in CCL2 is reported throughout the literature, where it
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Table I. Differential whole transcriptome pattern induced by TNFa (40 ng/ml) relative to untreated controls in MM-468 cells.

Control TNFa Fold FDR Gene

(Avglog,) (Avglog,) change  P-value P-value symbol Description

2.52 8.47 61.86 237x10° 3.82x10° CCL2 Chemokine (C-C motif) ligand 2

241 7.29 2940 1.80x10'* 8.70x10® C=xCLI10 Chemokine (C- x-C motif) ligand 10

3.17 7.84 25.63 2.28x10° 3.82x10° CxCLS8 Chemokine (C- x-C motif) ligand 8

3.86 7.20 10.13  3.89x10"° 4.69x10° TNFAIP3 Tumor necrosis factor, alpha-induced protein 3

5.78 8.69 756  6.07x10°  4.18x10° BIRC3 Baculoviral IAP repeat containing 3

323 5.94 6.55 2.62x107  6.00x10* IGFL1 IGF like family member 1

4.5 7.45 650 4.83x10° 4.18x10° C3 Complement component 3

3.57 6.20 6.18 1.10x107 4.00x10* PGLYRP4  Peptidoglycan recognition protein 4

5.12 7.71 6.02  7.79x107  1.10x10° KMO Kynurenine 3-monoo xygenase

272 527 586  2.80x107  6.00x10* AMY1B Amylase, alpha 1B

43 6.78 557  7.89x107  1.10x10® IL22RA2 Interleukin 22 receptor, alpha 2

3.16 5.60 542 8.11x10°  4.89x10° SAA24 Serum amyloid A2

2.87 5.23 5.13 1.85x10° 1.44x102% CCL20 Chemokine (C-C motif) ligand 20

4.46 6.69 469 1.09x107 4.00x10* CFB Complement factor B

432 6.48 448 5.63x10° 4.18x10° ABCC4 ATP binding cassette subfamily C member 4

5.56 7.71 443  225x107  6.00x10* TNFAIP2 Tumor necrosis factor, alpha-induced protein 2

3.37 5.49 433  371x107 8.00x10* IL7R Interleukin 7 receptor

398 6.07 427 837x107  1.20x10° ROS1 ROS proto-oncogene 1 , receptor tyrosine kinase

4.85 6.92 419 1.85x107  6.00x10* OLRI1 Oxidized low density lipoprotein receptor 1

391 5.90 399  635x107  1.00x10° TNF Tumor necrosis factor

2.07 4.04 391  4.86x10° 4.60x10° INHBA Inhibin beta A

2.64 458 3.84 631x10% 5.80x10° AMYI1B Amylase, alpha 1B

481 6.74 3.81 1.27x107 5.00x10* AKRIBI Aldo-keto reductase family 1, B1

291 4.83 379 431x10°  4.30x10° AMYI1B Amylase, alpha 1B

493 6.85 379 241x10%  2.80x10° SAAIl Serum amyloid Al

4.05 597 378 271x107  6.00x10* IKBKE Inhibitor of kappa LPGEK B-cells epsilon

4.36 6.27 377 1.01x10°  1.30x10° TNC Tenascin C

4.02 592 372  4.15x107  9.00x10* CI1QTNF1  Clq and TNF related protein 1

5.78 7.61 354 1.04x107  4.00x10* MMP7 Matri x metallopeptidase 7

7.11 891 348  2.62x10°  2.90x10° EDNI1 Endothelin 1

747 9.24 341 237x10%  2.80x10° ICAMI1 Intercellular adhesion molecule 1

1.71 3.38 3.17  1.86x107  6.00x10* MMPI13 Matri x metallopeptidase 13

4.04 5.69 3.15 1.00x10°%  1.30x10° SGPP2 Sphingosin x 10-1-phosphate phosphatase 2

6.40 7.99 301  730x107  1.10x10° SEMA3C Semaphorin 3C

3.75 5.33 298 2.03x10°  1.51x10% CHI3L2 Chitinase 3-like 2; DENN/MADD domain
containing 2D

3.6 5.17 2.97 145x10°  1.18x10% SOD2 Supero xide dismutase 2, mitochondrial

2.96 4.44 280 5.71x10®  3.00x10* KCCAT211 Renal clear cell carcinoma-associated
transcript 211

252 398 274 252x10%  2.90x10° LRRC55 Leucine rich repeat containing 55

471 6.10 2,62  3.87x10° 2.59x102 SLITRK6 SLIT and NTRK-like family, member 6

2.03 3.40 259  1.52x10°  1.21x102 KLHL38 Kelch-like family member 38

4.30 5.68 259  530x107  1.00x10° SLC2AI12 Solute carrier family 2 M, 12

297 432 254 282x10° 1.97x102 BBOx1 Gamma-butyrobetaine hydro xylase

299 4.32 251 1.41x10°  1.17x10> TNFSF15 Tumor necrosis factor (ligand) superfamily,
member 15

3.70 5.00 246  3.69x10°  251x102 GBP1 Guanylate binding protein 1, interferon-inducible

5.67 6.92 237  1.26x10° 1.11x10? NFKBIA NFK light polypeptide GE in B-cells inhibitor,
alpha

537 6.60 235 4.67x10°  450x10° CTSS Cathepsin S

345 4.66 2.31 1.40x10°  1.17x10? FIBIN Fin bud initiation factor homolog (zebrafish)

492 6.10 227 708x10°  427x10% NFE2L3 Nuclear factor, erythroid 2-like 3
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Control TNFa Fold FDR Gene

(Avglog,) (Avglog,) change P-value P-value symbol Description

4.12 5.29 2.25 2.48x10° 1.76x102 KRT6B Keratin 6B, type 11

3.78 4.89 217  6.63x10°  4.05x102 ATP6VIC2  ATPase, H+ transporting, lysosomal 42kDa V1
sub C2

6.24 732 212 2.89x10°  3.20x10° IFNGRI1 Interferon gamma receptor 1

3.38 442 205 343x10° 236x10% CYP7BI Cytochrome P450, family 7, sub B, polypeptide 1

5.16 6.19 204  199x10° 1.51x102 LACCI1 Laccase domain containing 1

641 535 208  4.62x10°  2.97x10> CD14 CD14 molecule

6.21 4.98 235 793x10°  4.56x102  P2RY2 Purinergic receptor P2Y, G-protein coupled, 2

9.25 8.01 -236  1.22x10°  1.09x10% GLYATL2  Glycin x 10-N-acyltransferas x 10-like 2

4.08 278 246  198x107  6.00x10* STAC2 SH3 and cysteine rich domain 2

5.98 4.61 -2.59 1.48x10° 1.19x102 SLC15A2 Solute carrier family 15, member 2

6.04 4.62 -2.69  330x10°% 3.50x10° TF Transferrin

485 34 274  486x10° 3.08x10% KRT4 Keratin 4, type II

8.11 6.61 -2.83  2.08x10° 1.52x102 CRISP3 Cystein x 10-rich secretory protein 3

7.51 5.96 -293  220x10°  2.70x10° SPDEF SAM pointed DC ETS transcription factor

5.31 3.63 -3.20 6.33x10%  5.80x103 SCGB2A2 Secretoglobin, family 2A, member 2

6.76 492 -359  1.48x107  5.00x10* CLCA2 Chloride channel accessory 2

The data are presented as official gene symbol, gene description, bi-weighted averages (n=3), fold change P-value and FDR P-value. Avg,

average; FDR, false discovery rate.

Relative CCL2 release by MDA-MB-231 vs. MDA-MB-468 cells
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Figure 4. CCL2 released by untreated controls, TNFa (40 ng/ml), apigenin
(40 uM) and CoTx [TNFa (40 ng/ml) + apigenin (40 uM)] after 24 h treat-
ment in MDA-MB-231 and MDA-MB-468 cells at equal plating density. The
data are expressed as CCL2 (pg/ml), and statistical differences between the
same treatments on different cell lines were determined by one-way ANOVA
followed by a Tukey's multiple comparisons test. A significant difference
was found in the TNF treatment group and the CoTx (API+TNF) treatment
group. “P<0.01; ““P<0.0001. TNF, tumor necrosis factor; CCL2, C-C motif
chemokine ligand 2; API, apigenin; CoTX, co-treatment.

serves to drive tumor invasion, metastasis, and recurrence (2,17).
CCI2 expression is also fairly consistent among breast cancer
subcategories: (luminal: ER+ and/or PR+) (56), HER2+ (27)
or basal like TNBC cell lines (6,57,58). Given that our studies
suggest a possible disparity with higher levels of CCL2 in the

African American cell line MDA-MB-468 vs. MM-231, we
reviewed oncomine.org Oncomine™ for CCL2 difference
among races, finding no obvious difference between African
American vs. Caucasian in this aspect. Similarly, in our work-we
find no difference in baseline CCL2 levels in the two cell lines,
with the disparity arising only with the treatment of TNFa which
is an experimental model of inflammatory breast cancer. Future
studies will be required to evaluate the inflammatory response
across racially divergent breast cancer cell lines or tissues.

What we do know, however, is that compounds like apigenin
that attenuate the CCL2/CCR?2 axis would slow the aggressive
nature of TNBC and hormone positive breast cancers (27,28)
by attenuating invasion, metastasis, EMT and the development
of drug resistance (59-62). CCL2 inhibitors have been tested in
various tumors, tumor cells and xenograft models with CCL2
lowering effects brought about by losartan (63) anlotinib (64)
imatinib (65) zoledronic acid (66) oroxylin A (67) aspirin (68)
natural compounds in coffee (kahweol acetate, cafestol) (69)
or conophylline from Ervatamia microphylla (70) which can
reduce invasive inflammatory tumor infiltration. The mecha-
nism of action for CCL2 reducing agents may center around
the modification of upstream or downstream targets such as
PLEK?2/EGRF (71) HER2-EGF/HRG, PI3K-NF-kB axis (27)
SRC, PKC (58) the neddylation pathway (72) or the well-known
mitogen-activated protein kinases and phosphatidylinositol
3-kinase/Akt cell signaling pathways (73). While others have
reported apigenin to have an effect on NF-kappaB/Snail
pathway (74), pSTAT3, pERK or PI3K/pAkt (75), our previous
studies suggest the effects of TNFa in TNBC cell lines, as it
relates to CCL2 are driven through the higher expression of
IKBK epsilon (31).
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It is important to note that when studying the effects of
natural compounds such as apigenin on the entire transcriptome
of cancer cells, there will most always likely be changes in both
directions for oncogenes and tumor suppressors, some of these
changes would not be advantageous. In this work, for example,
we show that apigenin suppressed the TNFa mediated rise in
a potent tumor suppressor: CXCL10. While previous studies
consistently that CXCLIO0 is up-regulated in normal vs. tumor
tissue (76,77) this particular protein acts as the major tumor
suppressor, evoked by IFN-y treatment and somehow plays
a role in the re-expression of MHC-1, PD-L1, the infiltration
of anti-tumoral CD4(+) and CD8(+) T cells (78,79), NK cells,
cytotoxic lymphocytes (CTLs) to the tumor to turn on immune
surveillance and heighted survival odds in diverse human
cancers (80-82). While the beneficial effects of apigenin in
cancer are consistently reported, any compound that would
turn off the CXCL9, -10, -11/CXCR3 axis could harm the host
immunes system to destroy self-malignant tumor tissue (83).

In contrast, the current study shows that apigenin turns
on host immune surveillance by its effect on reducing-TNFa
induced SLITRK6. SKITRK 6 is a membrane receptor, which
is elevated in many cancers [e.g., epithelial tumors, bladder,
lung, breast, and glioblastoma (84,85)] and has been deemed an
immune checkpoint for target amongst a relatively new class of
drugs approved by the FDA (86). SLITRK6 is the target of an anti-
body drug conjugate AGS15E currently in phase I clinical trials,
believed to reactivate the hosts immune surveillance against
self-malignant cells (87). While it is outside the scope of discus-
sion to elaborate on every transcript change, this work serves
as a general framework for public genomic data evaluation. Re:
Gene Expression Omnibus for public analysis at https:/www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE133968.

Previously reported data clearly indicate the existence
of disparity in the mortality rates associated with TNBC in
African Americans, and there a need for initiatives to estab-
lish novel and effective therapies to target aggressive tumors
marked by a propelling inflammatory component. Overall, we
believe there is enough support to warrant clinical trials for
the use of apigenin, as there is a growing body of researching
showing its antitumor effects from multiple stand points from
blocking mutagenic induced cancers [e.g., methyl-nitrosourea,
methyl-n-nitro-N-nitrosoguanidine, benzo(a)pyrene or
2-aminoanthracene] (88) to inhibition of ornithine decar-
boxylase (89) and its overall antioxidant, anti-inflammatory
effects (90,91). Data on the clinical efficacy of substances like
apigenin for human use to reduce CLL2 will also need to be
confirmed, as well as establishing its bioavailability, absorption,
therapeutic concentration and application (prevention, treat-
ment or for chemotherapy drug augmentation) (55,91-94).
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