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Abstract. Cholangiocarcinoma (CCA) is a primary malig-
nancy, which is often diagnosed as locally advanced or 
metastatic. Previous studies have revealed genomic charac-
teristics of CCA in Western patients, however comprehensive 
genomic features of CCA in Chinese patients have not been 
well understood. To explore the specific genomic characteris-
tics of Chinese patients with CCA, a total of 66 patients with 
CCA, including 44 intrahepatic CCA (iCCA) and 22 extrahe-
patic CCA (exCCA) cases, were studied. The most commonly 
altered genes in CCAs were TP53 (62.12%, 41/66), KRAS 
(36.36%, 24/66), SMAD4 (24.24%, 16/66), TERT (21.21%, 
14/66), ARID1A (19.70%, 13/66), CDKN2A (19.70%, 13/66), 
KMT2C (9.09%, 6/66) and RBM10 (9.09%, 6/66), ERBB2 
(7.58%, 5/66) and BRAF (7.58%, 5/66). Many gene mutations, 
including STK11, CCND1 and FGF19, were only found in 
iCCA. RBM10 mutations were found to be significantly higher 
in exCCA. The gene mutations of neurofibromin 1, STK11, 
CCND1 and FBXW7 specifically occurred in males, whereas 
gene mutations of ERBB2, AXIN2 and CREBBP specifically 
occurred in females. ERBB2 mutations were significantly 
associated with the sex of patients with CCA. Mutations in 
PIK3CA, FGFR2 and ZNF750 were significantly associated 
with the age of patients with CCA and TERT mutations were 
significantly associated with tumor differentiation. Alterations 
in KMT2C, PBRM1, AXIN2, MAGI2, BRCA2 and SPTA1 
were associated with tumor mutational burden. The findings 
of the present study suggest that targeted sequencing, using 

next‑generation sequencing technology, provides comprehen-
sive and accurate information on genomic alterations, which 
will provide novel potential biomarkers for the diagnosis of 
CCA and may guide precise therapeutic strategies for Chinese 
patients with CCA.

Introduction

Cholangiocarcinoma (CCA) is a primary malignancy origi-
nating from the intrahepatic (iCCA) or extrahepatic (exCCA) 
bile duct epithelium (1). Although the incidence of exCCA 
remains stable, the incidence of iCCA has increased over the 
last 15 years, worldwide (1). Due to atypical clinical presen-
tation and imaging, CCA is often diagnosed at advanced 
stages (2). CCA is a multifactorial disease based on a combina-
tion of genetic and environmental factors (3). Some biomarkers 
are considered to be an effective strategy for the diagnosis and 
treatment of cancer, however new biomarkers for CCA still 
need to be developed and explored for earlier identification 
and diagnosis.

Next‑generation sequencing (NGS) technology provides a 
more accurate and efficient genome sequencing method and 
has enabled large‑scale cancer genomics projects, such as 
The Cancer Genome Atlas (4) and the International Cancer 
Genome Consortium (5), to characterize the cancer genome 
and genomic alterations. The identification and exploration 
of cancer‑associated mutations has been greatly facilitated 
by NGS, due to the success of the aforementioned projects. 
Genomic sequencing studies in CCA have identified many 
driver gene alterations, such as in ELF3, ARID1 and ARID2 (6). 
Lin et al (7) previously screened survival‑associated genes of 
CCA and found that genes were significantly enriched in the 
Wnt signaling pathway, the apoptotic process and a number 
of oncogenic pathways, which may be altered in patients with 
poorer survival. The target genes SGSH, EIF5A, BET1L, 
GCNT4 and PLCG2 were identified, which may be associated 
with the prognosis of CCA (8). Furthermore, mutation profiling 
of iCCA and exCCA was identified by NGS, and notable 
differences included IDH1 mutations, which exclusively 
occurred in iCCA, and ERBB2 mutations, which occurred in 
exCCA (9). Moreover, KRAS mutations and the MAP/ERK 
pathway were significantly associated with progression‑free 
survival (PFS) in iCCA, whereas BAP1 mutations and aber-
rations in the fibroblast growth factor (FGF) pathway were 
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significantly correlated with PFS in exCCA (9). Based on the 
comprehensive molecular profiling of 194 patients with CCA, 
including Caucasian, Asian and African American patients, 
Lowery  et  al  (10) demonstrated that almost 50% of the 
patients were accompanied by therapeutic somatic alterations. 
These studies indicate that molecular profiling can facilitate 
biomarker‑based clinical trials in patients with CCA. Although 
several studies have revealed the genomic characterization of 
CCA in Western patients, the comprehensive genomic features 
of CCA in Chinese patients have not been well understood.

The present study characterized the comprehensive 
genomic features of 66 cases of Chinese patients with CCA 
by using NGS, and aimed to identify the specific biomarkers 
for early diagnosis and prognosis, and for the development of 
potential therapeutic targets for CCA.

Materials and methods

Patient enrollment and sample collection. Between December 
2017 and March 2019, a total of 66 Chinese patients with CCA, 
aged between 43 and 82 years, (mean age of 62.38 years), 
including 45 males and 21 females, were enrolled from 
two hospitals located in North China, Tianjin Medical 
University General Hospital (3  cases) and the Affiliated 
Hospital of Qingdao University (63 cases). Informed consent 
was obtained in writing from each patient. Formalin‑fixed 
paraffin‑embedded (FFPE) tumor tissues and matched blood 
samples were collected and transferred to OrigiMed, Shanghai 
for genetic variation detection. Genomic DNA was prepared by 
using the QIAamp DNA FFPE Tissue kit and QIAamp DNA 
Blood Midi kit (Qiagen GmbH), according to the manufac-
turer's instructions. The concentration of DNA was measured 
by Qubit and normalized to 20‑50 ng/µl.

Identification of genomic alterations and tumor mutational 
burden (TMB). The genomic information was produced 
using the NGS‑based YuanSu™450 gene panel (OrigiMed), 
which covers all the coding exons of 450 cancer‑associated 
genes and 64 selected introns in 39 genes that are frequently 
rearranged in solid tumors. The genes were captured and 
sequenced with a mean depth of 800X, using Illumina 
NextSeq 500 (Illumina, Inc.). Genomic alterations (GAs) 
were identified by the alignment of sequences from tumor 
tissues and matched blood samples, following previously 
reported methods  (11). Single nucleotide variants (SNVs) 
were identified using MuTect (v1.7) (12). Insertion‑deletion 
polymorphisms (Indels) were identified using PINDEL 
(v0.2.5) (13). The functional impact of each GA was anno-
tated by SnpEff v3.0  (14). Copy number variation (CNV) 
regions were identified using Control‑FREEC (v9.7) (15) with 
the following parameters: Window=50,000 and step=10,000. 
Gene fusions were detected through an in‑house pipeline. In 
brief, aligned reads with a distance of over 2,000 bp or 0 bp 
(where 2 aligned reads are located on different chromosomes) 
were collected and used as discordant reads. Discordant reads 
with a distance <500 bp formed clusters that were further 
assembled to identify potential rearrangement breakpoints. 
The breakpoints were reconfirmed using the BLAST‑like 
alignment tool (http://genome.cse.ucsc.edu/cgi‑bin/hgBlat) 
and the resulting chimeric gene candidates were annotated. 

Gene rearrangements were assessed by Integrative Genomics 
Viewer (16). TMB was estimated by counting the somatic 
mutations, including SNVs and Indels, per megabase of the 
sequence examined in each patient. Driver mutations and 
known germline alterations were not counted.

Statistical analysis. Statistical analyses were performed 
using SPSS version 22.0 (SPSS Inc.). Fisher's exact test 
was used to analyze the significance of the differences. 
Mann‑Whitney U test from the Wilcox.test of R basic 
package (v3.5.0; https://cran.r‑project.org/src/base/R‑3/) 
was used to analyze the association between gene variations 
and TMB. P<0.05 was considered indicate a statistically 
significant difference.

Results

Clinical characteristics of patients with CCA. The cohort 
of 66 Chinese patients with CCA included 45 males and 21 
females, with a median age of 62 years (range, 43‑82 years). 
The CCA samples included 44 (66.67%) iCCA and 22 (33.33%) 
exCCA cases, of which 64 (96.97%) cases were primary 
tumors from the bile duct epithelium and 2 (3.03%) cases were 
metastatic CCA samples from the liver and abdominal cavity. 
Clinical or pathological information was obtained and is 
presented in Table I. Histologically, 35 (53.03%) samples were 
well/moderately differentiated and 24 (36.36%) samples were 
poorly/undifferentiated. Histological information was not 
available for 7 (10.61%) samples (Table I).

Genomic alterations in CCA. A total of 431 clinically relevant 
GAs were identified using NGS sequencing targeting 450 
cancer genes, with a mean of 2.58 alterations per sample (range, 
0‑42) in 176 genes (Fig. 1). Of the 431 GAs, 316 (73.32%) were 
SNV/ShortIndel, 96 (22.27%) were CNV, 10 (2.32%) were 
fusion and 9 (2.09%) were LongIndel (Fig. 1; Table SI). The 
most frequent GAs were found in TP53 (62.12%, 41/66), KRAS 
(36.36%, 24/66), SMAD4 (24.24%, 16/66), TERT (21.21%, 
14/66), ARID1A (19.70%, 13/66), CDKN2A (19.70%, 13/66), 
KMT2C (9.09%, 6/66), RBM10 (9.09%, 6/66, ERBB2 (7.58%, 
5/66) and BRAF (7.58%, 5/66). All other gene mutations were 
detected <5 times (Table SI). Most genes were mutated once, 
whereas a few genes, including STK11, NF1, SMAD4, TP53, 
LRP1B, KEAP1 and ATM, had 2 or 3 mutations. Among 
them, NF1 and SMAD4 had multiple mutation sites and were 
detected in 2 cases of CCA. The most common GAs, TP53 
and KRAS, were detected in 17 cases (25.76%). TP53 was 
detected in a total of 42 GAs in 41 CCA samples, including 41 
SNV and 1 gene‑fusion. Of these GAs, R248Q was detected 
in 4 samples, R273C (L), R342*, R213*, R175H, and 993 + 
1G > A (splice site) were detected in 2 samples, and the rest 
were detected only in 1 sample (Table SII). KRAS GAs were 
detected in 24 samples, including 23 SNV and 1 amplification. 
Among them, substitution of the 12th amino acid was detected 
15 times, including 6 G12D, 6 G12V, 1 G12C, 1 G12R, and 
1 G12S. Substitution of the 13th amino acid was detected 5 
times (2 G13C and 3 G13D), substitution of the 61st amino acid 
mutation was detected twice (Q61H), substitution of the 146th 
amino acid (A146P) was detected once and gene amplification 
was detected once (Table SII).
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Genomic alterations in iCCA and exCCA. In 44 iCCA patients, 
290 GAs from 145 genes were detected. The most common 
gene mutations in iCCA were TP53 (56.82%, 25/44), KRAS 
(29.55%, 13/44), SMAD4 (18.18%, 8/44), TERT (20.45%, 
9/44), CDKN2A (18.18%, 8/44) and ARID1A (13.64%, 6/44) 
(Fig. 2A; Table SIII). By contrast, in 22 exCCA patients, a total 
of 141 GAs from 70 genes were detected. The most common 
mutations were TP53 (72.73%, 16/22), KRAS (50%, 11/22), 
SMAD4 (36.36%, 8/22), ARID1A (31.82%, 7/22), CDKN2A 
(22.73%, 5/22), RBM10 (22.73%, 5/22) and TERT (22.73%, 
5/22) (Fig. 2A; Table SIII). The mutations of TP53, KRAS, 
SMAD, CDKN2A, TERT and ARID1A were common in 
both iCCA and exCCA. The mutation frequency of RBM10 
was significantly higher in exCCA compared with iCCA (5/22 
vs. 1/44, respectively; P=0.01). Other gene mutations, such as 
STK11 (6.82%, 3/44), CCND1, FGF19, FGF3, FGF4, FGFR2 
and PBRM1 (all 9.09%, 4/44), were found only in iCCA 
(Table SIII).

Genomic alterations of CCA in male and female patients. 
In 45 male patients with CCA, 279 mutations were detected 
in 134 genes, and the most common mutated genes were 
TP53 (60%, 27/45), KRAS (33.33%, 15/45), TERT (24.44%, 
11/45), ARID1A (20%, 9/45), CDKN2A (15.56%, 7/45) and 
SMAD4 (15.56%, 7/45) (Table SIV). In 21 female patients, 
152 mutations were detected in 89 genes. The most common 
mutations were TP53 (66.67%, 14/21), SMAD4 (42.86%, 9/21) 
and KRAS (42.86%, 9/21), CDKN2A (28.57%, 6/21), ERBB2 
(23.81%, 5/21), ARID1A (19.05%, 4/21) and KMT2C (19.05%, 
4/21), RBM10 (14.29%, 3/21) and TERT (14.29%, 3/21) 
(Table SIV). Gene mutations in CCND1, FBXW7, FGF3/4/19, 
PIK3C1, NF1 and STK11 were specific to male patients 
(Table  II), whereas gene mutations in ERBB2, AXIN2, 

CREBBP, ERBB3, MTOR and MYB were specific to female 
patients (Table II).

Genomic alterations of CCA in different age groups. In order 
to study GAs in different age ranges, patients were divided 
into 4 age groups: Group I, patients aged 40‑49 (7.58%, 5/66); 
group  II, patients aged 50‑59 (27.27%, 18/66); group  III, 
patients aged 60‑69 (39.39%, 29/66); and group IV, patients 
aged 70‑82 (21.21%, 14/66). In group  I, 36 GAs from 29 
genes were detected (7.2 GAs/patient and 5.8 genes/patient). 
In group  II, 119 GAs genes from 84 genes were detected 
(6.6 GAs/patient and 4.7 genes/patient). In group III, 188 GAs 
from 95 genes were detected (6.5 GAs genes/patient and 
3.3 genes/patient). In group IV, 88 GAs from 59 genes were 
detected (6.3 GAs/patient and 4.1 genes/patient) (Table SV).

The mutation frequencies of CDKN2A, TERT ZNF750, 
PIK3CA and FGFR2 were highest in group  IV, while the 
mutation frequencies of TP53, ARID1A and SMAD4 were 
highest in group III. The mutations in LRP1B specifically 
occurred in group II, and the mutation frequencies of KRAS, 
NF1 and KMT2C were highest in group I (Fig. 2B). Statistical 
analysis revealed that the mutation frequencies of PIK3CA, 
FGFR2 and ZNF750 were significantly associated with age in 
patients with CCA (Fig. 2B).

Genomic alterations in different differentiated CCAs. To 
investigate the association between GAs and the differentia-
tion of CCA, patients were divided into 2 groups, based on the 
pathological diagnosis: Group I, patients with well/moderately 
differentiated CCA; and group II, patients with poorly/undif-
ferentiated CCA. Among the most frequently mutated genes, 
TERT mutations were significantly higher in group II, and 
STK11, GNAS2, KMT2D and MAGI2 mutations were only 
detected in group II patients (Fig. 2C).

Association between genetic variations and TMB. TMB is 
an emerging genomic biomarker that measures the number 
of gene mutations in the tumor genome (17). To explore the 
association between TMB and clinically relevant GAs, the 
TMB was determined in all samples. The median TMB of 
66 samples was 5.4 mutations/Mb (range 0‑36.7 muts/Mb; 
Table  I). A high TMB (>10 mutations/Mb) was found in 
9 patients (13.6%, 9/66). High TMB (TMB‑H) was signifi-
cantly associated with the GAs of KMT2C (P=0.012), AXIN2 
(P=0.017), MAGI2 (P=0.035), SPTA1 (P=0.047) and BRCA2 
(P=0.043), whereas low TMB was significantly associated 
with mutation of PBRM1 (P=0.013; Fig. 3). There were no 
significant associations between TMB and GAs of the other 
genes (data not shown).

Difference in GAs between Chinese and Western patients 
with CCA. The most common mutations were IDH1, TP53, 
ARID1A, BAP1, KRAS, PBKM1, SMAD4 and ATM in 
Western patients with CCA (10). In 66 Chinese patients with 
CCA, the mutations of TP53, ARID1A, KRAS and SMAD4 
also frequently occurred. Based on statistical analysis, the 
mutations of TP53, KRAS and SMAD4 were significantly 
higher in Chinese patients, whereas the mutations of IDH1 
and BAP1 were significantly lower compared with Western 
patients (Fig. 4A).

Table  I. Clinicopathologic features of Chinese cholangiocar-
cinoma cohort.

Characteristics	 Number

Sex, (%)	
  Male	 45 (68.18)
  Female	 21 (31.82)
Median age, years (range)	 62 (43‑82)
Median TMB, (range)	 5.40 (0‑36.7)
Sample, (%)	
  Primary	 64 (96.97)
  Metastases	 2 (3.03)
Histology (%)	
  Intrahepatic cholangiocarcinoma	 44 (66.67)
  Extrahepatic cholangiocarcinoma	 22 (33.33)
Histological grade (%)	
  Well/moderately differentiated	 35 (53.03)
  Poorly/undifferentiated	 24 (36.36)
  Not available	 7 (10.61)

TMB, tumor mutational burden.
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The differences in mutation frequencies of exCCA and 
iCCA between Chinese and Western patients were also deter-
mined. Compared with the results of Lee et al (18), based on 
99 patients with exCCA, the mutation frequencies of TP53, 
SMAD4 and ARID1A in Chinese patients were higher 
compared with those in Western patients (Fig. 4B). Compared 
with a recent study by Lowery  et  al  (10) on 43  patients 
with exCCA, the mutation frequencies of KRAS, SMAD4 
and STK11 were similar in Chinese and Western patients, 
however, the mutation frequency of TP53 was significantly 
higher in Chinese patients compared with Western patients 
(Fig.  4C). In comparison with 152 Western patients with 
iCCA, a significantly higher frequency of TP53 mutations and 
a lower frequency of IDH1 and BAP1 mutations were detected 
in Chinese patients with iCCA (Fig. 4D).

Discussion

Since CCA is associated with poor prognosis, largely due to 
late diagnosis, the identification and exploration of biomarkers 

for early diagnosis has become important (19,20). The rapid 
development of NGS technologies allows for genomic profiling 
detection of multiple samples from different patients with multi-
plexed panels (21). The alignment of the sequences from tumor 
tissue samples and matched blood samples were considered to 
be an effective method for detecting somatic mutations (22‑24). 
To date, many studies on potential biomarkers for CCA have 
been reported (25‑27). Ong et al (28) identified and validated 
206 somatic mutations in 187 genes, including somatic muta-
tions in 10 newly implicated genes, using Sanger sequencing. 
Jiao et al (29) discovered frequent inactivating mutations of 
BAP1, ARID1A and PBRM1, with a high mutation rate in 
the sequenced tumor. Recently, Lowery et al (10) reported the 
genome profiling of patients with CCA, including 152 iCCA 
and 43 exCCA cases, from Caucasian (89.2%, 174/195), Asian 
(7.1%, 14/195), and African American (3.6%, 7/195) patients, 
and found that the most common mutations were IDH1, TP53, 
ARID1A, BAP1, KRAS, PBKM1, SMAD4 and ATM. In the 
present study, common high frequency mutations (>10%) of 
TP53, KRAS, SMAD4, TERT, ARID1A and CDKN2A were 

Figure 1. Most common genomic alterations of 66 cholangiocarcinoma. The x‑axis represents each case sample and the y‑axis represents each mutated gene. 
The top bar graph shows the gene mutation frequency of each sample, the percentages on the left represents the mutation frequency of each mutated gene, and 
the bar graph on the right shows the number of each mutated gene. Green represents substitution/Indel mutations, red represents gene amplification mutations, 
blue represents gene homozygous deletion mutations, yellow represents fusion/rearrangement mutations, and purple represents truncation mutations.
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detected in Chinese patients with CCA. In comparison with 
Western patients, TP53, KRAS and SMAD4 mutations were 
significantly higher, however, IDH1 and BAP1 mutations were 
significantly lower in Chinese patients with CCA.

Changes in the p53 gene have been reported in >50% of 
patients with cancer, including those with CCA (30,31). Studies 
have reported TP53 as a potential diagnostic biomarker in 
esophageal cancer and head and neck cancer (32,33). In iCCA, 
Simbolo et al (34) also demonstrated that the mutation of TP53 
is an independent predictor of poor prognosis. In the present 
study, TP53 mutations were detected at amino acid residues 
R273 and R248. Previous reports have shown that mutations 
at amino acid residues R273 and R248 of TP53 both resulted 
in oncogenic gain‑of‑function phenotypes (35). Based on these 
similar mutation types, it was suggested that the mutation 

of TP53 in this cohort might be a potential biomarker for 
predicting prognosis in Chinese patients with CCA. KRAS, 
the main subtype of the RAS gene family, has been reported to 
promote a variety of lethal human tumors, such as lung, colon 
and pancreatic cancer (36,37). Several studies have reported 
KRAS as a tumor biomarker (37‑39) and that the co‑mutation 
of TP53 and KRAS in many tumors (30,40). Consistent with 
previous studies  (41‑43), the most frequent mutations of 
KRAS occurred at the 12 and 13th amino acid sites in Chinese 
patients with CCA, and co‑mutations of TP53 and KRAS were 
also detected with a high frequency, suggesting that KRAS 
mutations are conserved in most tumors.

CCA can be divided into iCCA and exCCA based on the 
origin. iCCA usually originates from intrahepatic bile duct 
wall cells, whereas exCCA originates from tumors in the left 
and right hepatic ducts, common hepatic ducts and common 
bile ducts. Several studies have identified the different GAs 
in iCCA and exCCA. The most common mutations in iCCA 
were found to be IDH1/2, BAP1, KRAS, TP53, SMAD4 
and ARID1A, whereas common mutations in exCCA were 
identified in KRAS, TP53, SMAD4, SKT11, ERBB2, PTEN, 
ATM and NF1 (10,44). TP53 may play a key role in enabling 
hepatocyte‑derived iCCA (30,18), and KRAS mutations in 
the absence of TP53 mutations can drive exCCA (41,45). The 
present study demonstrated that the most frequent alterations 
of TP53, KRAS, SMAD4, CDKN2A, TERT and ARID1A 
were found in both iCCA and exCCA. CDKN2A, which is 
associated with the cell cycle process, and TERT, which is 
involved in DNA stability, were reported to be associated 
with the tumor progression, invasion, and metastasis (46,47). 
To the best of our knowledge, this is the first study that 
detected CDKN2A and TERT alterations in Chinese patients 
with CCA. In contrast to previous studies on iCCA, SKT11 
mutations occurred more frequently, whereas IDH1/2 and 
BAP1 mutations occurred less frequently; whereas in exCCA, 
both SKT11 and PTEN mutations were not detected. This 

Figure 2. Most common mutated genes (>10%) in different patient groups. 
Most common mutated genes in (A) iCCA and exCCA, (B) different age 
groups, and (C) among the differentiated tumor groups (Group I, well/moder-
ately differentiated CCA; Group II: Poorly/undifferentiated CCA). *P<0.05, 
**P<0.01. iCCA, intrahepatic cholangiocarcinoma; exCCA, extrahepatic 
cholangiocarcinoma.

Table II. Specific mutated genes in male and female patients 
with cholangiocarcinoma.

		  Mutant	 Male/female
Gene	 Sex	 number	 ratio, %	 P‑value

ERBB2	 Female	 5	 23.81	 0.006331
AXIN2	 Female	 2	 9.52	 0.140075
CREBBP	 Female	 2	 9.52	 0.140075
ERBB3	 Female	 2	 9.52	 0.140075
MTOR	 Female	 2	 9.52	 0.140075
MYB	 Female	 2	 9.52	 0.140075
CCND1	 Male	 4	 8.89	 0.293039
FBXW7	 Male	 4	 8.89	 0.293039
FGF19	 Male	 4	 8.89	 0.293039
FGF3	 Male	 4	 8.89	 0.293039
FGF4	 Male	 4	 8.89	 0.293039
PIK3CA	 Male	 4	 8.89	 0.293039
NF1	 Male	 3	 6.67	 0.286891
STK11	 Male	 3	 6.67	 0.286891
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implies that the genome profiling of Chinese CCA patients 
may differ from Western patients. RBM10 has been reported 
to regulate the Notch pathway by interacting with NUMB in 
cancer (48). The present study demonstrated a significantly 
higher mutation frequency of RBM10 in exCCA compared 
with iCCA, suggesting that RBM10 mutations may be specifi-
cally associated with exCCA in Chinese patients with CCA. In 
addition, mutations of STK11, CCND1, FGF19, FGF3, FGF4, 

FGFR2 and PBRM1 were found only in iCCA, suggesting that 
the mutations of these genes may be specific and are potential 
tumor biomarkers in iCCA.

Previously, Bhagat and Somasundar (49) assessed the risk 
of CCA incidence in patients of different genders. However, 
little is known about gender‑associated specific genomic 
characteristics in patients with CCA. The present study identi-
fied CCND1, FBXW7 FGF3/4/19, PIK3C1, NF1 and STK11 

Figure 3. Median TMB value of 66 patients. Cholangiocarcinoma was significantly associated with (A) KMT2C, (B) BRCA2, (C) AXIN2, (D) MAGI2, 
(E) SPTA1 and (F) PBRM1. TMB, tumor mutational burden; WT, wild‑type.
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mutations that were specific to male patients with CCA, and 
that the mutations in ERBB2, AXIN2, CREBBP, ERBB3, 
MTOR and MYB were specific to female patients. Notably, 
a significantly higher mutation rate of ERBB2 was found in 
female patients. Thus, it can be speculated that ERBB2 may be 
a potential biomarker for female patients with CCA.

Different age groups have different risks of cancer (50). 
The CCA patients were divided into 4 groups, based on age 
and analyzed gene mutations. TP53, KRAS, CDKN2A, TERT 
and ARID1A mutations were detected in all 4 age groups, 
however, PIK3CA, FGFR2, and ZNF750 mutations were 
mainly detected in group IV (>70 years), implying that these 
genes may be potential predictors and therapeutic diagnostic 
biomarkers in elderly patients (>70 years) with CCA. PIK3CA 
mutations have been reported to be associated with age, 
tobacco use and clinical stage in Chinese patients diagnosed 
with esophageal squamous cell carcinoma (ESCC)  (51). 
Furthermore, it was reported that PIK3CA mutations 
frequently occur in Chinese patients with CCA, determined by 
PCR method (52). Although the number of cases was limited, 
a significant association was detected between PIK3CA muta-
tions and age in the present study. This result also confirms the 
reliability of our large PANEL test for genetic variation. The 
FGFR2 GTGT haplotype was reported to be associated with 
breast cancer in younger women, but not older women (53), 
indicating that FGFR2 may be associated with the age of 
patients with cancer. FGFR2 mutations have been reported in 
iCCA (18,54). The present study also detected FGFR2 muta-
tions in iCCA, and demonstrated that they mainly occurred in 
patients older than 70 years, which implies that the mutation of 
FGFR2 was associated with the age of Chinese patients with 

CCA. ZNF750 has been reported as a prognostic biomarker 
in ESCC (55). Although only two mutations of ZNF750 were 
detected in the present study, notably, both mutations occurred 
in group IV (>70 years).

STK11 is a tumor suppressor gene and the methylation 
of its promoter in renal cell carcinoma was reported as a 
risk factor for prognosis (56). The mutations of KMT2D and 
TERT have been reported to be associated with prognosis in 
different tumors (57‑59). Histopathological grade is considered 
to be associated with the clinical characteristics of lympho-
vascular invasion, perineural invasion, tumor differentiation, 
lymph node and metastasis, as well as the prediction of prog-
nosis (60,61). In the present study, the mutations of STK11, 
GNAS, KMT2D, MAGI2 and TERT were mainly detected in 
poorly differentiated CCA, indicating that these genes might 
be potential biomarkers to predict the differentiation of CCA 
tumors.

Similar to Western patients with exCCA (18), the most 
frequently mutated genes that were detected in 66 Chinese 
patients were TP53, KRAS, SMAD4 and ARID1A. However, 
the mutation rate of TP53, SMAD4 and ARID1A in the present 
study was significantly higher compared with Western patients. 
Multiple studies have investigated the mutational landscape in 
CCA by NGS. Borger et al (62) investigated the mutational 
profiling of 287 gastrointestinal tumors from Massachusetts 
General Hospital, including a total of 50 iCCA and 22 exCCA 
cases, and found that the IDH mutations represent the first 
hotspot variants in iCCA patients. Jiao et al (29) demonstrated 
a total of 1,128 mutated genes in 32 American patients with 
iCCA, and confirmed several inactivating alterations of BAP1, 
ARID1A, IDH1 and IDH2. Lowery et al (10) also reported 

Figure 4. Comparative analysis of high frequency mutant genes in Chinese and Western patients with CCA. (A) Comparative analysis between Chinese 
patients and 194 reported (2018) Western patients with CCA (10). (B) Comparative analysis between Chinese patients with exCCA and 99 reported (2016) 
Western exCCA patients (18). (C) Comparative analysis between Chinese patients with exCCA and 43 reported (2018) Western patients with exCCA (10). 
(D) Comparative analysis between Chinese patients with iCCA and 152 reported (2018) Western patients with iCCA (10). *P<0.05, **P<0.01, ***P<0.001. 
iCCA, intrahepatic cholangiocarcinoma; exCCA, extrahepatic cholangiocarcinoma.
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high mutation frequency of IDH1, ARID1A, TP53, BAP1 and 
FGFR2 in 152 Caucasian patients with iCCA. Compared with 
previous studies, a significantly higher frequency of TP53 
mutations was detected in Chinese patients with both iCCA 
and exCCA, however, a lower frequency of IDH1 and BAP1 
mutations. Notably, Zou et al  (63) detected high mutation 
frequencies of IDH1/IDH2 in 103 Chinese patients with iCCA. 
Since the patients enrolled in the present study were mainly 
from North China, the difference in IDH1 and BAP1 muta-
tions appears to be a local feature of iCCA in China; however, 
further studies are required with a larger cohort to confirm 
this finding.

TMB is a measure of the number of somatic mutations 
occurring in a tumor. The TMB pattern may further guide 
the selection of checkpoint inhibitors (CPI) for patients (64). 
TMB is correlated with clinical outcome in multiple 
cancer types treated with CPI  (65,66). Previous studies 
indicated that TMB levels correlated with gene mutations 
in tumors  (25,40,67,68). TMB‑H has been reported to 
correlate with the generation of neoantigens and potential 
clinical responses to immunotherapies (69). Mou et al (70) 
reported that a Chinese patient with iCCA, TMB‑H and a 
high expression of PD‑L1 responded to the combination of 
chemotherapy and pembrolizumab. In the present study, the 
association between TMB and gene mutations was analyzed 
in Chinese patients CCA, which identified that mutations 
in KMT2C, BRCA2, AXIN2, MAGI2, PBRM1 and SPTA1 
were significantly associated with TMB. TMB‑H was found 
to be associated with the response rate, PFS and overall 
survival of patients with cancer (71). KMT2C, AXIN2 and 
MAGI1 mutations were also reported to be associated with 
poor prognosis (72‑74). These reports support the associa-
tion between TMB and the mutations of KMT2C, AXIN2 
and MAGI1. Furthermore, the significant association of 
these genes with TMB suggests that they may be potential 
predictive biomarkers in Chinese patients with CCA.

In conclusion, the comprehensive genomic features of 66 
Chinese patients with CCA was investigated, which identi-
fied that TP53 mutations were significantly higher in Chinese 
patients compared with Western patients with CCA. This 
suggests that TP53 may be more suitable as a predictive 
and diagnostic biomarker in Chinese patients with CCA. 
Furthermore, gene mutations that were associated with age, 
disease staging and high TMB were detected. Overall, these 
data provide an insight into the diagnosis, prognosis and 
therapeutic strategies, both targeted and immune therapies, in 
Chinese patients with CCA.
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