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Abstract. Hepatocellular carcinoma (HCC) is one of the 
most prevalent types of cancer worldwide. The present 
study attempted to identify a prognostic biomarker for HCC. 
RNA sequencing data from the GSE63863 dataset were 
downloaded from the Gene Expression Omnibus database. 
Differentially expressed genes (DEGs) were identified based 
on a protein‑protein interaction (PPI) network, and prognostic 
evaluation was subsequently conducted. Following lenti‑
viral transfection, the migratory, proliferative and apoptotic 
abilities of cells were evaluated using wound healing, Cell 
Counting Kit‑8, Transwell migration and apoptosis assays. A 
total of 192 DEGs were identified from 11 pairs of HCC and 
matched non‑tumor samples. The PPI network revealed the 
top three modules, and eight genes were identified from these 
modules. The expression levels of cytochrome P450 family 4 
subfamily  F member  2 (CYP4F2) were downregulated in 
50 HCC samples from The Cancer Genome Atlas and in the 
HCC Hep3B cell line. Low CYP4F2 expression was associated 
with a lower overall survival time. Functional studies revealed 
that CYP4F2 overexpression inhibited HCC cell proliferation 
and migration, and induced apoptosis. Furthermore, CYP4F2 
overexpression repressed the expression of genes in the 
nuclear factor, erythroid 2 like 2 (Nrf2) signaling pathway, 
including Nrf2, heme oxygenase‑1 and ferritin heavy chain 1, 

while increasing NAD(P)H quinone dehydrogenase 1 expres‑
sion, suggesting that CYP4F2 overexpression reversed the 
antioxidant response of liver cancer cells. Overall, the present 
findings indicated that CYP4F2 may be a potential prognostic 
biomarker for predicting tumorigenesis and long‑term survival 
rates in patients with HCC.

Introduction

Hepatocellular carcinoma (HCC) is currently the third 
leading cause of cancer‑associated mortality globally 
(8.2% in 2018) (1). The major cause of HCC is hepatitis B 
virus (HBV) or (HCV) infection (2), 73.4% of HCC cases are 
caused by virus (HCV) and HBV infections (3). Metabolic 
stress or viral infections lead to liver damage, resulting in 
conditions, such as chronic hepatitis and cirrhosis with depos‑
ited connective tissue, which are premalignant conditions for 
HCC (4). To improve the prediction of hepatocarcinogenesis, 
a number of studies are applying molecular profiling. In a 
previous study, Iizuka et al  (5) evaluated gene expression 
in hepatitis B virus‑positive and hepatitis C virus‑positive 
HCCs (HBV‑ and HCV‑HCCs) for an association with liver 
cirrhosis  (LC), by using oligonucleotide microarray data 
of 45 hepatocellular carcinoma (HCC) samples. In another 
study, Ye  et  al  (6) predicted hepatitis  B virus‑positive 
metastatic hepatocellular carcinomas using gene expression 
profiling.

To improve patient outcomes in HCC, it is important 
to understand the genetic features that influence the HCC 
phenotypes. The notable progress that has been made in next 
generation sequencing technology has enabled the evaluation 
of the interaction of multiple genes in all types of cancer (7‑10). 
Numerous novel mutations have been identified in genes, 
such as janus kinase 1 (11), interferon regulatory factor 2 (12) 
and AT‑rich interaction domain 1A (10). Genome‑wide tran‑
scriptome analysis has demonstrated that the upregulation of 
cluster of differentiation‑36 in HepG2.2.15 cells contributes 
to the metabolism and life‑cycle of HBV (13). Weighted‑gene 
co‑expression network analysis identified several hub genes, 
such as spexin hormone, α  fetoprotein and adhesion  G 
protein‑coupled receptor E1 (14). Despite the identification of 
several HCC‑associated genes, the association between gene 
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expression and HCC prognosis has not yet been fully eluci‑
dated.

In the present study, a bioinformatics analysis was 
performed using HCC gene expression profiling data and 
The Cancer Genome Atlas (TCGA) HCC RNA sequencing 
(RNA‑Seq) cohort. The study aimed to identify differentially 
expressed genes (DEGs) from these datasets in order to 
identify potential biomarkers by constructing protein‑protein 
interaction (PPI) networks, and to verify and investigate these 
in vitro.

Materials and methods

RNA‑Seq datasets of HCC. The FASTQ‑formatted files of the 
RNA‑Seq GSE63863 dataset (15) were downloaded from the 
Gene Expression Omnibus database (http://www.ncbi.nlm.
nih.gov/geo/). The dataset was based on the Illumina 2000 
platform and included 11 human primary HCC ith hepatitis B 
and matched adjacent non‑tumor liver tissues (3‑cm away 
from the tumor).

RNA‑Seq data analysis. TopHat  v2.0.9  (16) was used to 
align and process raw sequencing readswith UCSC hg19 
(https://genome.ucsc.edu). Bowtie  v0.12.8 algorithm  (17) 
was incorporated with TopHat to perform this alignment. 
Subsequently, Cufflinks v2.2.1 (18) was used to analyze the 
aligned read files. Normalized RNA‑Seq fragment counts 
were used to assess the abundance of transcripts. The unit of 
measurement was fragments per kilobase of exon per million 
fragments mapped (FPKM). The Bayesian inference method 
was used to calculate the confidence intervals for FPKM. After 
Cufflinks was used to assemble the read sequences, the output 
GTF files and the reference GTF annotation file, which was 
downloaded from the Ensembl database (http://www.ensembl.
org/info/data/ftp/index.html) [Homo sapiens (H.  sapiens); 
GRCh  37.55.gt], were imported into Cuffcompare  v2.0.9 
(http://cole‑trapnell‑lab.github.io/cufflinks/cuffcompare/) . A 
combined GTF file was produced using Cuffcompare, which 
was later imported into Cuffdiff v2.0.9 (http://cole‑trapnell‑lab.
github.io/cufflinks/cuffdiff/), together with the BAM docu‑
ments generated by TopHat. Subsequently, the differentially 
expressed genes (DEGs) from Cuffdiff were screened with the 
FDR<0.05 and fold change (FC)>1 criteria and visualized using 
the CummeRbund program  v2.30.0 (https://www.biocon‑
ductor.org/packages/release/bioc/html/cummeRbund.html). 
All programs were used with the default parameters.

Gene Ontology (GO) and pathway enrichment analysis. 
Functional annotation clustering of all genes that were up‑ or 
downregulated in the 11 liver cancer and matched non‑tumor 
samples with a false discovery rate  (FDR)<0.05 was 
performed using the DAVID v6.8 software tool (https://david.
ncifcrf.gov/) (19). Annotations from the GO resource (20) and 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) (21) 
were used to measure the level of enrichment.

PPI network and module analysis. ClusterOne is a platform 
used to detect potential overlapping protein complexes in 
a High‑quality INTeractomes (HINT; http://hint.yulab.org) 
database (22). ClusterOne (v1.0) covers 18,864 proteins from 

H. sapiens. To assess the interactive associations between 
DEGs, these were mapped using ClusterOne, and the plug‑in 
module in ClusterOne was performed for the ‘s’ (minimum 
size) and ‘d’  (minimum cluster density) parameters. The 
default parameters were s=4 and d=0.1.

Survival analysis. OncoLnc is a tool used to interactively 
explore survival associations (23). Additionally, this tool allows 
the clinical data to be downloaded, coupled with the expres‑
sion data. The tool stores the data of 8,467 patients collected 
from 21 cancer studies conducted by TCGA, including the 
RNA‑Seq expression profiling data of TCGA HCC cohort 
(n=360), 50 HCC and 50 matched adjacent non‑tumor liver 
samples were included. The 360 cases were ordered according 
to the relative expression of the key genes from high to low. 
The expression of eight key genes (RNF41, SMYD3, ABAT, 
GHR, SLC22A3, FCGR2B, CYP4F2 and FCGR2C) were 
divided into four parts, with cut‑off values defining ‘high’ as 
expression above the upper quartile (n=90) and ‘low’ as expres‑
sion below the lower quartile (n=90). The remaining 180 cases 
were excluded from the analysis. The Kaplan‑Meier method 
was used to generate the survival curves and the log‑rank 
test was used to examine the significance. In cases where 
late‑stage crossover of survival curves occurred, the two‑stage 
test method was applied (24). According to this method, sepa‑
rate log‑rank tests were used to compare the curves before and 
after the late‑stage crossover event, generating two P‑values. 
For each separate P‑value before and after crossover, P<0.05 
indicated significant differences in survival for that phase of 
the study. Expression levels of the six key genes (SMYD3, 
ABAT, CYP4F2, SLC22A3, RNF41 and GHR) in 50 HCC and 
50 matched adjacent non‑tumor liver samples were compared 
separately, paired t‑tests were used to examine the significance. 
The protein expression levels of the six key genes (SMYD3, 
ABAT, CYP4F2, SLC22A3, RNF41 and GHR) were analyzed 
in clinical specimens (Fig. 3C) from the Human Protein Atlas 
(www.proteinatlas.org) (25), all images in Fig. 3C were from 
the Human Protein Atlas. P<0.05 was considered to indicate a 
statistically significant difference.

Cell culture. THLE‑2 cells, an immortalized normal human 
liver cell line, as well as HepG2 and Hep3B cells derived 
from human liver cancer, were purchased from The Cell 
Bank of Type Culture Collection of the Chinese Academy of 
Sciences. The cells were cultured in DMEM with high glucose 
(HyClone; Cytiva) containing 10% FBS (PAN Biotech GmbH) 
and streptomycin/penicillin (100 U/ml) at 37˚C in a humidified 
incubator with 5% CO2.

RNA extraction and reverse transcription‑quantitative (RT‑q)
PCR. Total RNA was extracted from the cells using RNAiso 
Plus kit (Takara Biotechnology Co., Ltd.) according to the 
manufacturer's protocol. Subsequently, the RNA was reverse 
transcribed into cDNA using the following temperature 
protocol: 37˚C For 15 min, 85˚C for 5 sec and 4˚C for 5 mins, 
using the PrimeScript™ RT Reagent kit containing gDNA 
Eraser (Takara Biotechnology Co., Ltd.). qPCR analysis was 
performed using SYBR Premix Ex  Taq  II (Takara 
Biotechnology Co., Ltd.) and the CFX96 Touch Real‑Time 
PCR system (Bio‑Rad Laboratories, Inc.) with the following 
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thermocycling conditions: 95˚C For 30 sec, 40 cycles of 95˚C 
for 5 sec and 60˚C for 30 sec. The relative gene expression data 
were quantified using the 2‑ΔΔCq method (26). GAPDH served 
as an internal control. The following primers were used: 
GAPDH forward, 5'‑CTTTGGTATCGTGGAAGGACTC‑3' 
and reverse, 5'‑GTAGAGGCAGGGATGATGTTCT‑3'; 
CYP4F2 forward, 5'‑CTGAGTGCTGGTGACAAGTGGA‑3' 
and reverse, 5'‑TCATGAGGCTGATGTGCTCAA‑3'; and 
Nrf2 forward, 5'‑TACTCCCAGGTTGCCCACA‑3' and 
reverse, 5'‑CATCTACAAACGGGAATGTCTGC‑3'). All 
reactions were performed in triplicate.

Lentivirus (LV) construction and cell transfection. The LV 
overexpressing CYP4F2 and the control LV were constructed 
and synthesized by Shanghai GenePharma Co., Ltd. Cells 
(1x105 per well) were seeded into a 12‑well plate for 24 h, 
following which the medium was replaced with medium 
containing LV (LV5‑CYP4F2 or vector; multiplicity of infec‑
tion, 20) and polybrene (5 µg/ml for enhanced transfection 
efficiency; Shanghai GenePharma Co., Ltd.). After 24 h, the 
medium was substituted with DMEM supplemented with 
10% FBS. The expression of green fluorescent protein (GFP) 
was detected to evaluate the infection efficiency using a 
fluorescence microscope (as transfected cells emit green 
fluorescence, at 100x magnification) after 72 h. Subsequently, 
the medium was changed by 5 µg/ml puromycin complete 
medium and cells were cultured for 24 h at 37˚C to kill the 
non‑transfected cells. Finally, the medium was exchanged 
with complete medium. The aforementioned step was 
repeated three times. RT‑qPCR and western blot analysis 
were performed to determine the efficiency of CYP4F2 over‑
expression.

Cell proliferation assay. The proliferation of cells was 
determined using the Cell Counting Kit‑8 (CCK‑8; Dojindo 
Molecular Technologies, Inc.) assay according to the manufac‑
turer's protocol. Briefly, cells (4x103 cells/well) were plated in 
96‑well plates and cultured for 0, 24, 48, 72 and 96 h at 37˚C. 
Subsequently, CCK‑8 solution was added to each well and cells 
were cultured for 1.5 h at 37˚C in the dark. Cell proliferation 
was measured at 450 nm.

Wound healing assay. The migration of Hep3B cells was 
determined using in  vitro wound‑healing assays. Briefly, 
cells (5x105) were seeded in 6‑well plates and cultured to 
100% confluence. A sterile pipette tip was used to generate the 
wounds. Cells were washed three times with PBS to remove 
detached cells, treated with serum‑free medium and incubated 
at 37℃ for 24 h. Images were captured at 0, 24  and 48 h 
using a light microscope (magnification, x100). ImageJ v1.8.0 
(National Institutes of Health) was used to measure the area of 
wound, and then the migration rate was calculated using the 
following formula: Migration rate = areax/area0, ‘area’‑ area of 
wound, ‘x’‑ time of taking images).

Transwell migration assay. The migratory ability of the Hep3B 
cell line was determined using a Transwell insert. Transfected 
and non‑transfected Hep3B cells were resuspended in 
serum‑free medium and 100 µl cells (4x104) was added to the 
upper chamber, while 600 µl medium containing 10% FBS 

was added to the lower chamber. After 24 h, cells were fixed 
for 15 min in 4% paraformaldehyde at room temperature 
until chamber removal. Subsequently, cells were stained for 
10 min with 0.1% crystal violet at room temperature and then 
the inner layer of cells was carefully removed by cotton swab. 
Finally, three fields of view were randomly selected for each 
sample using a light microscope (magnification, x100) and 
then images were captured. ImageJ v1.8.0 was used to count 
the cells for each image.

Western blot analysis. Cells were harvested and lysed with the 
Cell lysis buffer for Western and IP (cat. no. P0013; Beyotime 
Institute of Biotechnology). The protein concentration was 
evaluated using a bicinchoninic acid kit (Beyotime Institute 
of Biotechnology). After separation using 8% SDS‑PAGE 
(10  µg total protein per well), proteins were transferred 
onto a polyvinylidene fluoride membrane. Subsequently, 
the membrane was blocked using 5%  skimmed milk and 
incubated overnight at 4˚C with primary antibodies against 
CYP4F2 (cat. no. AF9051; 1:1,000; Affinity Biosciences), 
Nrf2 (cat. no. 66504‑1‑Ig; 1:1,000; ProteinTech Group, Inc.), 
NQO1(cat. no. 67240‑1‑Ig; 1:5,000; ProteinTech Group, Inc.), 
HO‑1 (cat. no. 66743‑1‑Ig; 1:1,000; ProteinTech Group, Inc.) and 
FTH1 (cat. no. 10727‑1‑AP; 1:1000), GAPDH (cat. no. BA2913; 
1:500; Wuhan Boster Biological Technology, Ltd.) as the 
internal reference. After three washes with TBS‑Tween‑20, 
the membrane was incubated with a  secondary antibody, 
Mouse‑IgG Rabbit antibody (cat. no. 10283‑1‑AP; 1:5,000; 
ProteinTech Group, Inc.) or Goat‑IgG Rabbit Polyclonal anti‑
body (cat. no. 10285‑1‑AP; 1:5,000; ProteinTech Group, Inc.), 
for 1 h at room temperature. All primary and secondary anti‑
bodies were diluted using western blotting Antibody Diluent 
(cat. no. AR1017; Wuhan Boster Biological Technology, Ltd.). 
Subsequently, the membrane was washed three times with 
TBS‑Tween‑20 and visualized using an enhanced chemilumi‑
nescence solution (Wanleibio Co., Ltd.) and quantified using 
a multifunctional gel imaging system (Fusion FX7 Spectra, 
Vilber Lourmat in the dark.

Apoptosis assay. Cell apoptosis was detected according to the 
manufacturer's protocol, using an Annexin V‑allophycocyanin 
(APC) apoptosis detection kit (Sigma‑Aldrich; Merck KGaA) 
and DAPI  PB450‑A. The transfected (including positive 
group and negative group) and untransfected cells in were 
resuspended in 10% phosphate buffer saline (1x106 cells/ml). 
Cell mixtures containing 10 µl Annexin V‑APC and DAPI 
PB450‑A were incubated for 15 min at room temperature, 
and then flow cytometry analysis (CytoFLEX flow cytometry 
system; Beckman Coulter, Inc.) was performed and datas were 
analysised by CytExpert 2.3.0.84; Beckman Coulter.

Statistical analysis. All experimental were repeated 
three times. Data were expressed as the mean  ±  SD. 
GraphPad Prism 8 analysis software (GraphPad Software, 
Inc.) was used to perform the statistical analysis. One‑way 
ANOVA were used to examine differences between two 
experimental groups, while mean values of >2 groups were 
compared using one‑way ANOVA corrected with Bonferroni's 
correction. P<0.05 was considered to indicate a statistically 
significant difference.
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Results

Summary of the RNA‑Seq data. RNA‑Seq data for 11 pairs 
of HCC with hepatitis  B and matching non‑tumor liver 
samples were downloaded from the GSE63863 dataset (15), 
which resulted in an output of ~250.8 GB of raw sequence. 
On average, 55.9 million raw sequencing reads were obtained 
following RNA‑Seq, and ~99.5% of the reads were aligned to 
the transcribed database of reference genome (Table I).

Identification of DEGs and functional annotation. A total 
of 22,646 genes were identified between the 11 liver cancer 
and matched non‑tumor tissues. Among these, 192 DEGs 
were identified according to the Cuffdiff software with the 
FDR<0.05 and FC>1 criteria; among these DEGs, 109 were 
identified as downregulated, while 83  were identified 
as upregulated. The expression heatmap of the DEGs is 
displayed in Fig. 1. The 192 DEGs were uploaded into the 
DAVID online tool for the identification of GO categories. 

All GO terms within FDR<0.05 were list in Table II. Among 
the biological processes, upregulated DEGs were enriched in 
‘daunorubicin metabolic process’ and ‘doxorubicin metabolic 
process’, whereas the downregulated DEGs were enriched in 
‘acute‑phase response’. For molecular function, upregulated 
DEGs were enriched in ‘ketosteroid monooxygenase activity’ 
and ‘indanol dehydrogenase activity’, and the downregulated 
DEGs were enriched in ‘monooxygenase activity’, ‘iron ion 
binding’ and ‘oxidoreductase activity, acting on paired donors, 
with incorporation or reduction of molecular oxygen’. For 
cellular component, the downregulated DEGs were enriched 
in ‘extracellular space’, ‘extracellular exosome’ and ‘blood 
microparticle’.

In addition, a total of 20 enriched pathways were identified 
by KEGG pathway analysis including four enriched pathways 
of upregulated DEGs and 16 enriched pathways of downregu‑
lated DEGs. Four KEGG pathways within FDR<0.05 based 
on downregulated DEGs was screened. The downregulated 
DEGs were significantly enriched in ‘complement and coagu‑
lation cascades’, ‘retinol metabolism’, ‘metabolic pathways’ 
and ‘Staphylococcus  aureus infection’ (Table  III), while 
there were no enriched pathways for the upregulated DEGs 
(FDR>0.05; data not shown).

Module filtering from the PPI network. To identify key genes, 
a PPI network (27) of the 192 DEGs was constructed using 
ClusterOne (22). According to the HINT database, the top 
three significant modules were selected (Fig. 2), from which 
eight DEGs were identified, including two upregulated [ring 
finger protein  41 (RNF41) and SET and MYND domain 
containing 3 (SMYD3)] and six downregulated [Fc fragment 
of IgG receptor IIc (gene/pseudogene) (FCGR2C), FCGR2B, 
4‑aminobutyrate aminotransferase (ABAT), growth hormone 
receptor (GHR), solute carrier family 22 member 3 (SLC22A3) 
and CYP4F2] genes.

Identification of candidate genes. The expression levels of the 
eight genes identified from the aforementioned modules were 
further analyzed in TCGA HCC cohort to determine their 
clinical significance (Fig. 3A). Kaplan‑Meier curve analysis 
revealed that patients with SMYD3 upregulated expression had 
a significantly lower overall survival rate compared with those 
with SMYD3 downregulated expression (P=0.0152 before 
day 2483, P=0.1514 after), and that patients with low expres‑
sion levels of ABAT (P<0.0001 before day 3,108, P=0.5924 
after), CYP4F2 (P=0.0018 before day 2,133, P=0.5877 after), 
GHR (P=0.0004), SLC22A3 (P=0.0054 before day 3,108, 
P=0.8864 after) and RNF41 (P=0.9060 before day 2,461, 
P=0.0269 after) had a significantly lower overall survival rate 
compared with those with high expression levels, when take 
the patient's 5‑year survival rate was used as a reference. And 
RNF41 (P=0.9060 before day 2,461, P=0.0269 after) had a 
significantly lower overall survival rate compared with those 
with high expression levels when the number of days is longer 
than 2,461 days. However, there were no significant differ‑
ences in overall survival associated with FCGR2C (P=0.5230 
before day 2,111, P=0.2698 after) and FCGR2B (P=0.3377 
before day 2,111, P=0.146 after) expression levels. To deter‑
mine the clinical relevance of the expression levels of these 
genes, the expression levels of the key genes were analyzed 

Table I. Summary of mRNA reads in the 11 pairs of liver 
cancer and matched non‑tumor tissues.

A, Liver cancer tissues

Run	 Left read	 Right read	 Overall rate, %

P01T	 28,297,216	 28,297,216	 99.6
P02T	 30,812,501	 30,812,501	 99.4
P03T	 23,547,400	 23,547,400	 99.5
P04T	 36,705,394	 36,705,394	 99.7
P05T	 28,488,560	 28,488,560	 99.6
P06T	 28,654,873	 28,654,873	 99.6
P07T	 28,909,671	 28,909,671	 99.6
P08T	 21,754,053	 21,754,053	 99.4
P09T	 27,695,079	 27,695,079	 99.7
P10T	 23,844,185	 23,844,185	 99.6
P11T	 29,781,102	 29,781,102	 99.7

B, Matched non‑tumor tissues

Run	 Left read	 Right read	 Overall rate, %

P01N	 27,672,329	 27,672,329	 99.5
P02N	 24,241,776	 24,241,776	 99.6
P03N	 21,819,135	 21,819,135	 99.6
P04N	 42,363,508	 42,363,508	 99.8
P05N	 28,652,601	 28,652,601	 99.6
P06N	 31,060,859	 31,060,859	 99.6
P07N	 31,415,753	 31,415,753	 99.7
P08N	 26,931,333	 26,931,333	 99.6
P09N	 30,377,104	 30,377,104	 99.7
P10N	 23,039,779	 23,039,779	 99.7
P11N	 27,147,987	 27,147,987	 99.7

P, patient; T, tumor; N, non‑tumor.
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Figure 1. Distribution of up‑ and downregulated differentially expressed genes in 11 liver cancer and matched non‑tumor tissues (fold change >1 and false 
discovery rate <0.05). Rows represent genes and columns represent samples. Red indicates genes that were upregulated, while blue indicates downregulated 
genes. P, patients; N, non‑tumor; T, tumor.

Table II. GO analysis of differentially expressed genes.

Expression	 Category	 ID	 Term	 Count	 Percentage	 FDR

Upregulated	 BP	 GO:0044597	 Daunorubicin metabolic	 4	 4.97	 4.19x10‑3

			   process
	 BP	 GO:0044598	 Doxorubicin metabolic	 4	 4.97	 4.19x10‑3

			   process
	 MF	 GO:0047086	 Ketosteroid monooxygenase	 3	 3.73	 4.61x10‑2

			   activity
	 MF	 GO:0047718	 Indanol dehydrogenase	 3	 3.73	 4.61x10‑2

			   activity
Downregulated	 BP	 GO:0006953	 Acute‑phase response	 5	 4.94	 2.07x10‑3

	 CC	 GO:0005615	 Extracellular space	 19	 18.75	 5.83x10‑4

	 CC	 GO:0070062	 Extracellular exosome	 28	 27.64	 2.04x10‑3

	 CC	 GO:0072562	 Blood microparticle	 13	 12.83	 1.62x10‑12

	 MF	 GO:0004497	 Monooxygenase activity	 6	 5.92	 1.05x10‑3

	 MF	 GO:0005506	 Iron ion binding	 9	 8.88	 1.51x10‑3

	 MF	 GO:0016705	 Oxidoreductase activity, acting	 6	 5.92	 1.05x10‑3

			   on paired donors, with
			   incorporation or reduction
			   of molecular oxygen
	 MF	 GO:002003	 Heme binding	 9	 8.88	 4.18x10‑4

GO, Gene Ontology; FDR, false discovery rate; BP, biological process; CC, cell component; MF, molecular function.
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Table III. Kyoto Encyclopedia of Genes and Genomes pathway analysis of the downregulated differentially expressed genes.

Pathway ID	 Name	 Count	 Percent	 FDR	 Genes

hsa04610	 Complement and	 12	 11.84	 5.11x10‑9	 KNG1, FGG, C9, FGA, FGB, 
	 coagulation cascades				    C3, C1R, SERPING1, C1S,
					     C4BPA, CFI, PLG
hsa00830	 Retinol metabolism	 9	 8.88	 8.52x10‑6	 CYP4A11, CYP3A5, CYP4A22, 
					     CYP2C18, CYP2B6, HSD17B6, 
					     UGT2B10, RDH16
hsa01100	 Metabolic pathways	 28	 27.64	 5.31x10‑5	 CYP3A5, SORD, FOLH1B, 
					     CYP2C18, CYP2B6, ALDOB, 
					     AGXT, CYP4A22, HSD17B6,
					     HPD,  ACSM2B, SUCLG2,
					     BCKDHB, ACMSD, GRHPR, 
					     MAN1C1, GBA3, CYP4A11, 
					     HMGCS2, ABAT, AGXT2, 
					     UGT2B10, CYP4F2, RDH16, 
					     PON3, UGP2
hsa05150	 Staphylococcus aureus	 8	 7.89	 2.62x10‑4	 FGG, FCGR2B, C3, C1R, C1S, 
	 infection				    FCGR2A, CFI, PLG

FDR, false discovery rate.

Figure 2. Top three modules from the protein‑protein interaction network. Red denotes upregulated DEGs, whereas green denotes downregulated DEGs, and 
orange denotes molecules correlated with targets in HINT database. DEGs, differentially expressed genes.
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Figure 3. Kaplan‑Meier overall survival analysis based on differential gene expression levels. (A) Overall survival. The red line represents the 90 individuals 
with high expression in the 25% upper percentile, while the blue line represents the 90 individuals with low expression in the 25% lower percentile. Two‑stage 
test was used to examine the significance. (B) Expression levels of the six key genes in 50 pairs of The Cancer Genome Atlas hepatocellular carcinoma samples. 
Paired t‑test was used to examine the significance, ***P<0.001, ns not significant. (C) Protein expression in liver cancer and normal liver tissues from the Human 
Protein Atlas. CYP4F2, cytochrome P450 family 4 subfamily F member 2; RNF41, ring finger protein 41; SMYD3, SET and MYND domain containing 3; 
ABAT, 4‑aminobutyrate aminotransferase; growth hormone receptor, GHR; solute carrier family 22 member 3, SLC22A3; FCGR2 Fc fragment of IgG 
receptor II (gene/pseudogene); FPKM, expected number of fragments per kilobase of transcript sequence per millions base pairs sequenced.
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in the specified TCGA HCC that contains both 50  HCC 
and 50 corresponding adjacent non‑tumor liver samples. As 
shown in Fig. 3B, the six key genes that were significant in the 
aforementioned survival analysis were analyzed. The expres‑
sion of GHR, SLC22A3, ABAT, CYP4F2 in tumor tissue 
were significantly lower than normal tissue, but SMYD3 were 
significantly higher, and RNF41 was no significant difference. 
In addition, the protein expression levels of four out of the 
six key genes (SMYD3, ABAT, CYP4F2, SLC22A3, RNF41 
and GHR) were analyzed in clinical specimens (Fig. 3C) from 
the Human Protein Atlas. The results revealed that SMYD3 
expression was positive in liver cancer specimens and nega‑
tive in normal liver specimens, while the expression levels of 
ABAT, CYP4F2, SLC22A3 and GHR were negative in liver 
cancer specimens and positive in normal liver specimens, but 
there was no difference in RNF41.

CYP4F2 overexpression regulates the proliferation, migration 
and apoptosis of Hep3B cells. Emerging evidence has revealed 
that human CYP4 enzymes serve crucial roles in liver cancer 
progression (28). To detect whether CYP4F2 was involved in 
hepatocarcinogenesis and whether it may act as a biomarker, 
CYP4F2 was selected for validation in subsequent functional 

experiments. To explore the role of CYP4F2 in HCC, the 
endogenous levels of CYP4F2 were first determined in liver 
cancer cell lines and THLE‑2 cells (an immortalized human 
liver cell line). CYP4F2 mRNA and protein expression were 
significantly downregulated in Hep3B cells compared with 
that in THLE‑2 cells, but CYP4F2 mRNA expression was 
significantly upregulated in HepG2 cells compared with that in 
THLE‑2 cells. (Fig. 4A‑C). A recombinant lentivirus encoding 
CYP4F2 (Hep3B+CYP4F2) was constructed to overexpress 
CYP4F2, and a lentivirus expressing GFP (Hep3B+vector) 
served as a negative control, and untransfected Hep3B cells 
were used as a normal control (NC). CYP4F2 expression 
was significantly increased in the Hep3B cell line following 
transfection with the CYP4F2 lentivirus (Fig. 4D‑F). CYP4F2 
overexpression (Hep3B+CYP4F2) significantly reduced the 
proliferation of Hep3B cells compared with negative control 
(Hep3B+vector) and normal control (NC). as shown by the 
CCK‑8 assays (Fig. 5A). In addition, cells in which CYP4F2 was 
overexpressed exhibited a lower migratory ability compared 
with that in cells in the control group (negative control and 
empty vector control) (Fig. 5B‑E). The present findings indi‑
cated that CYP4F2 may be required for the metastasis of Hep3B 
cells. To determine the effects of CYP4F2 overexpression 

Figure 4. Expression levels of CYP4F2 in liver cancer cell lines. (A) RT‑qPCR was used to determine CYP4F2 mRNA expression levels in the liver cancer 
Hep3B and HepG2 cell lines compared with that in the normal hepatocytes (THLE‑2). (B) The CYP4F2 protein expression level in THLE‑2 and Hep3B cells 
was determined using western blot analysis and (C) the relative protein levels were quantified. (D) RT‑qPCR and (E) western blot analysis were used to deter‑
mine the mRNA and protein expression levels of CYP4F2, respectively, and the protein levels were also quantified (F). Data are presented as the mean ± SD. 
Comparisons between multiple groups were analyzed using one‑way ANOVA corrected with the Bonferroni method, while comparisons between two groups 
were analyzed with one‑way ANOVA *P<0.05, **P<0.01 and ***P<0.001. RT‑qPCR, reverse transcription‑quantitative PCR; Hep3B cells were transfected with 
lentivirus to overexpress CYP4F2 (Hep3B+CYP4F2), or transfected with control lentivirus was used as a negative control (Hep3B+vector), and untreated 
Hep3B cells served as normal control (NC).
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on the apoptosis of Hep3B cells, apoptosis was determined 
using flow cytometry analysis. The apoptosis rate of Hep3B 
cells was significantly higher in CYP4F2‑overexpressing cells 
compared with that in the control cells (negative control and 
empty vector control) (Fig. 5F and G). The present results 
indicated that CYP4F2 may serve a crucial role in regulating 
Hep3B cell apoptosis.

CYP4F2 overexpression inhibits the Nrf2 signaling pathway 
in liver cancer cells. The role of CYP4F2 expression in 
liver cancer cells was further investigated by analyzing the 
expression levels of Nrf2 and its downstream genes using 
western blot analysis (Fig. 6). The Nrf2‑mediated antioxidant 
signaling pathway serves an essential role in the motility of 
cancer cells (29). As shown in Fig. 6A‑G, the protein expres‑
sion levels of Nrf2, heme oxygenase‑1 (HO‑1) and ferritin 
heavy chain 1 (FTH1) were significantly decreased following 

CYP4F2 overexpression, while the protein levels of NAD(P)H 
quinone dehydrogenase 1 (NQO1) were significantly increased 
compared with that in the controls, suggesting a molecular 
mechanism of CYP4F2 expression on cell proliferation, 
migration and apoptosis. The present results demonstrated that 
CYP4F2 overexpression reversed the malignant phenotypes of 
liver cancer cells via the Nrf2‑mediated antioxidant signaling 
pathway.

Discussion

In the present study, original data were downloaded from the 
GSE63863 dataset, and 192 DEGs were identified between 
11 HCC and matched non‑tumor tissues using bioinformatic 
tools. The functional annotation of these DEGs presented 
enrichment primarily in chemical homeostasis, metabolic 
processes and immune responses. By constructing a PPI 

Figure 5. CYP4F2 overexpression decreases proliferation and migration, and promotes apoptosis in Hep3B cells. (A) Cell Counting Kit‑8 assay was used to 
evaluate the proliferation of NC, Hep3B+vector and Hep3B+CYP4F2 cells. Significance of difference was detected at the 96h. (B and C) Transwell migration 
assay (Magnification, x100) and (D and E) wound healing assays (Magnification, x400) were used to evaluate the migratory ability of NC, Hep3B+vector and 
Hep3B+CYP4F2 cells. (F and G) Flow cytometry was used to measure the apoptosis rate of NC, Hep3B+vector and Hep3B+CYP4F2 cells. Data are presented 
as the mean ± SD. One‑way ANOVA was used with Bonferroni correction. *P<0.05; **P<0.01; ns, not significant. Hep3B cells were transfected with lentivirus 
to overexpress CYP4F2 (Hep3B+CYP4F2), or transfected with control lentivirus was used as a negative control (Hep3B+vector), and untreated Hep3B cells 
served as normal control (NC).
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network, eight genes were identified in the top three modules. 
Among these eight genes, it was observed that differential 
expression of 6  genes (SMYD3, ABAT, CYP4F2, GHR, 
SLC22A3 and RNF41) was associated with poorer survival 
of patients in TCGA HCC cohort. Therefore, the present study 
identified potential key DEGs that may have clinical relevance, 
as prognostic markers for the survival of patients with HCC.

KEGG and GO pathway enrichment analyses were 
performed to further explore the functions of the 192 DEGs. 
The GO results indicated that the upregulated DEGs were 
primarily involved in the ‘daunorubicin metabolic process’ 
and ‘doxorubicin metabolic process’. Recent studies have 

demonstrated that daunorubicin interacts with lipid membrane 
mimetic models of cancer cells in general (30) and that doxo‑
rubicin efficacy is potentiated by the DNA repair inhibitor, 
DT01 in preclinical animal models of HCC (31). The enriched 
GO  terms of the downregulated DEGs were primarily 
involved in ‘acute‑phase response’, ‘monooxygenase activity’ 
and ‘iron ion binding’. According to a previous study, high 
levels of circulating interleukin‑6 were associated with the 
acute‑phase response  (32). However, fixed hepatic protein 
synthesis in patients with liver cancer has been found to be 
decreased (33). Brodie et al (34) revealed a highly significant 
association between liver disease and environmental factors 

Figure 6. CYP4F2 overexpression inhibits the Nrf2 signaling pathway in liver cancer cells. (A) Reverse transcription‑quantitative PCR was used to determine 
the Nrf2 mRNA expression levels in NC, Hep3B+vector and Hep3B+CYP4F2. (B) Western blot analysis was used to determine the protein expression levels 
in 5 genes and the results were quantified for CYP4F2 (C), Nrf2 (D), NQO1 (E), HO‑1 (F) and FTH1 (G). Data are presented as the mean ± SD. One‑way 
ANOVA was used with the Bonferroni correction. *P<0.05; **P<0.01; ***P<0.001. There is no significant difference between NC and Hep3B+vector in all 
figures. Hep3B cells were transfected with lentivirus to overexpress CYP4F2 (Hep3B+CYP4F2), or transfected with control lentivirus was used as a negative 
control (Hep3B+vector), and untreated Hep3B cells served as normal control (NC).
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(such as alcohol, high caffeine intake and smoking) on hepatic 
monooxygenase activity. Iron ions may serve a role in the 
carcinogenic process of transition metals, such as copper and 
nickel (35). Furthermore, the DEGs identified in the present 
study were significantly enriched in four KEGG pathways: 
‘Complement and coagulation cascades’, ‘retinol metabolism’, 
‘metabolic pathways’ and ‘Staphylococcus aureus infection’. 
The glycolysis and gluconeogenesis pathways are dysregulated 
exclusively in HCC, whereas the coagulation and complement 
cascades, as well as threonine, serine and glycine metabolism, 
are also differentially regulated in cholangiocarcinoma (36). 
Notably, both hepatic stellate cells and hepatocytes are 
involved in retinoid metabolism (37). In addition, the severity 
of liver failure has been associated with the high risk of 
Staphylococcus aureus infection (38).

Potential key genes from the top three PPI modules, 
including RNF41, SMYD3, FCGR2C, FCGR2B, ABAT, 
GHR, SLC22A3 and CYP4F2, were identified. Among 
these genes, the differential expression levels of 6 genes 
(SMYD3, ABAT, GHR, SLC22A3, RNF41 and CYP4F2) 
were associated with poor survival in TCGA HCC cohort. 
SMYD3 promotes the development of liver cancer and is 
a transcriptional potentiator of multiple cancer‑promoting 
genes, such as liver and colon cancer (39). ABAT is involved 
in hormone receptor‑dependent regulation in breast 
cancer (40). The production of autocrine growth hormone 1 
leads to the hyperproliferation of mammary carcinoma cells; 
in addition, transcriptional activation is enhanced through 
the GHR (41). SLC22A3 belongs to the amphiphilic solute 
facilitator family of integrated transmembrane proteins and 
has been found to be involved in the pharmacokinetics of 
catecholamine (42); and it was found that loss of SLC22A3 
leads to increased proliferation and hepatocarcinogenesis 
of mice liver tumors induced by stilbene nitrosamine and 
phenobarbital (43).

CYP4F2 plays a critical role in the metabolism of arachi‑
donic acid, and 20‑hydroxyeicosatetraeonic acid, vitamin E 
and vitamin K (44). A previous study (45) implicated CYP4F2 
upregulation in the poor prognosis of patients with pancreatic 
ductal adenocarcinoma, indicating its possible value as a 
biomarker capable of predicting cancer progression, as well as 
prognosis. However, there are limited studies on CYP4F2 in 
association with HCC. A previous study demonstrated that the 
mRNA of CPY4F2 was expressed at low levels in HCC (46) 
and that its expression of mRNA was altered in conjunction 
with the progression of HCV‑associated HCC (47). However, 
this previous study (47) only analyzed the expression pattern 
of CYP4F2 in a single HCV‑HCC dataset and only predicted 
the diagnostic and prognostic role of CYP4F2 expression in 
TCGA HCC data. In addition, the function of CYP4F2 in HCC 
metastasis has not been elucidated. In the present study, the 
impact of low CYP4F2 expression in HCC specimens and 
cells was analyzed. Furthermore, a survival analysis on data 
from 180 patients with HCC obtained from TCGA database 
was performed to examine the association between CYP4F2 
expression and prognosis. The present data revealed that 
low expression levels of CYP4F2 was associated with a poor 
prognosis compared with high expression levels. In addition, 
CYP4F2 overexpression inhibited the effects of HCC cell 
proliferation and migration, and induced apoptosis. Therefore, 

the present results suggested that CYP4F2 may be associated 
with the metastasis of liver cancer cells and that it may serve a 
key role in HCC tumorigenesis.

After determining the mRNA expression of CYP4F2 
in HepG2 cells, we found that CYP4F2 mRNA expression 
was significantly upregulated in HepG2 cells compared with 
THLE‑2 cells. It was reported that HepG2 originated from 
hepatoblastoma  (HB), not HCC  (48), so we hypothesized 
that some differences in histological origin might cause HB's 
CYP4F2 expression to be different from HCC. However, as the 
purpose of this study did not include finding the influencing 
factors that may cause the difference in CYP4F2 expression 
between HB and HCC, we have not conducted relevant explo‑
rations. Therefore, HepG2 cells were not used for subsequent 
experiments. However, it was still interesting, we might explore 
this in the future study.

The Nrf2 signaling pathway serves a critical role in oxida‑
tive stress (49). Nevertheless, a recent study suggested that 
activation of the Nrf2 signaling pathway promoted HCC cell 
survival and development (50). Furthermore, the abnormal high 
expression of the Nrf2 signaling pathway has been detected in 
various malignancies, such as liver and breast cancer, and it is 
involved in tumor proliferation and migration (51,52). In the 
present study, CYP4F2 overexpression notably decreased the 
expression levels of the Nrf2 gene, as well as those of its target 
genes, including HO‑1 and FTH1, and increased the expres‑
sion levels of NQO1, suggesting that CYP4F2 may act on the 
Nrf2 signaling pathway.

In conclusion, the results of the present study indicated 
that CYP4F2 may be an important prognostic biomarker 
for predicting tumorigenesis and metastasis, as well as the 
long‑term survival rates of patients with HCC. In addition, 
CYP4F2 may regulate the proliferation and migration of 
liver cancer cells. Therefore, CYP4F2 may act as a potential 
biomarker for HCC with prognostic value.
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