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Abstract. Studies of cervical cancer (CC) have reported that 
microRNA‑16‑1 (miR‑16‑1), which is an oncomiR, is increased 
in the tissues and cell lines of CC. The aim of the present study 
was to investigate the association of miRNA‑16‑1 expression 
level with squamous cell carcinoma (SCC), the presence of 
squamous intraepithelial lesions (SIL) and the integration 
of high‑risk human papillomavirus (HR‑HPV) DNA. The 
current study analyzed 80 samples obtained from women by 
liquid‑based cytology, which revealed that 20 were negative for 
SIL (NSIL) and without HPV, 20 were low‑grade SIL (LSIL), 
20 were high‑grade SIL (HSIL), and 20 were diagnosed as 
SCC with HR‑HPV. The genotyping of the viral DNA was 
conducted via an INNO‑LiPA‑HPV array, the expression of 
miR‑16‑1 was determined by reverse transcription‑quantitative 
PCR, and the physical state of the HR‑HPV was ascertained 
by in situ hybridization with amplification with tyramide. 
A total of eight HR‑HPV genotypes were distinguished; the 
most frequent of these being HPV16, followed by multiple 
infection with HR‑HPV (including HPV16). The mixed state 
of the HR‑HPV was observed in 60 and 65% of LSIL and 
HSIL cases, respectively, while an integrated HR‑HPV state 
was identified in 90% of cases with SCC. The expression level 
of miR‑16‑1 increased according to the grade of SIL, and 
cases with HSIL exhibited a significantly higher miR‑16‑1 

expression level compared with women with NSIL (P<0.001; 
Table II). It can therefore be determined that the expression of 
miR‑16‑1 effects cellular proliferation, due to the viral integra‑
tion of various HR‑HPV genotypes in unique infection or in 
multiple infection. Thus, the overexpression of miR‑16‑1 could 
be monitored in women with LSIL, in order to discard a major 
lesion.

Introduction

Cervical cancer (CC) represents the fourth highest cause of 
mortality in the female population worldwide, with ~569,847 
newly diagnosed CC cases and ~311,365 CC‑associated 
deaths in 2018 (1). The most prevalent histological subtypes 
are squamous cell carcinoma (SCC) and adenocarci‑
noma (AC), with SCC representing ~70% of CC cases (2). 
Persistent infection associated with high‑risk human papil‑
lomavirus (HR‑HPV) is considered to be a key risk factor in 
the development of CC, particularly HPV types 16 and 18 (3). 
Additionally, the integration of HR‑HPV DNA in fragile 
host‑genome sites, favors the overexpression of oncoproteins 
E6 and E7. This, as a result, promotes the progression and 
transformation of malignant cells, inducing genetic and 
epigenetic instability (4).

From the cytological point of view, the Bethesda system 
classifies precursor lesions of CC as low‑grade squamous 
intraepithelial lesions (LSIL) and high‑grade lesions (HSIL). 
LSIL are characterized by the presence of cells with 
karyomegaly, perinuclear halo and binucleation (koilocytes), 
while HSIL is associated with the presence of intense binucle‑
ation and dyskaryosis in basal and parabasal cells with little 
cytoplasm, hyperchromatic and big nuclei. Furthermore, SCC 
is characterized by large undifferentiated and multinucleated 
cells lacking cytoplasm, pleomorphic nuclei and irregular 
distribution of chromatin (5).

Integration of HR‑HPV, in addition to altering significant 
transcription patterns and regulating the expression of E6 
and E7, also regulates the expression of host genes in fragile 
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integration sites (6). It is important to note that a number of 
these genes have an oncogenic function, for example as onco‑
genic microRNAs (miRNAs/miRs)  (7). miRNAs suppress 
genetic translation by binding to the 3'‑untranslated region 
of their target genes (8). Previous studies have shown that 
numerous miRNAs are implicated in CC, such as miR‑16‑1 (9), 
miR‑21  (10), miR‑22‑3p  (11) and miR‑486‑5p  (12). These 
miRNAs contribute to a number of cellular processes, such as 
cell proliferation (9‑12), invasion (9,10,12), migration (12) and 
apoptosis (11).

miR‑16‑1 is a regulator of gene expression at the post‑ 
transcriptional level. Studies have reported that miRNAs 
are often increased in certain cancer types, including breast 
cancer (13), hepatocellular carcinoma (14) and CC (9,15‑20). 
miR‑15a and miR‑16‑1 form part of a cluster in an intron 
region of the deleted in lymphocytic leukemia 2 (DLEU2) 
transcript on chromosome 13q14.3, which is frequently deleted 
in chronic lymphocytic leukemia. Both are implicated in 
cellular invasion, survival and proliferation (21). 

It has been reported that the expression of miR‑16‑1 is 
decreased in CC cell lines that are positive for HPV16 and 
HPV18 following transfection with a siRNA for oncoprotein 
E7, suggesting that the increase in miR‑16‑1 expression may be 
due to the E7/E2F/miR‑16‑1 pathway (22). Furthermore, other 
studies have indicated that miR‑16‑1 possesses an oncomiR 
function in CC (15‑18,20). The overexpression of miR‑16‑1 
is associated with activation of genes implicated in the cell 
cycle, including CDK6, CDC27, CARD10, C10orf46 (23) and 
CCNE1 (9), which promote the proliferation of cancerous cells. 
The aim of the present study was to investigate the association 
of the miR‑16‑1 expression level with squamous intraepithelial 
lesions (SIL) and with the integration of HR‑HPV DNA.

Materials and methods

Participants and sample collection. The present study 
included 80 liquid‑based cytology samples obtained from the 
squamous‑column transformation zone (TZ) of the uterine 
cervix of female patients aged 18‑71 years, who resided within 
the State of Guerrero, Mexico. The mean age was 42 years. 
Between March  2012 and September  2018, the patients 
presented at the Integral Diagnostic Service for the Timely 
Detection of Cervical Cancer and HPV of the Autonomous 
University of Guerrero (Chilpancingo, Mexico), to the 
Dysplasia Clinic of the General Hospital ‘Raymundo Abarca 
Alarcón’ (Chilpancingo, Mexico) and to the State Institute of 
Cancerology ‘Arturo Beltrán Ortega’ (Acapulco, Mexico).

The study was approved by the Ethics Committee of 
the Autonomous University of Guerrero, Guerrero, Mexico. 
All patients signed an informed consent for the use of their 
cervical samples and clinical information. This study was 
also performed according to the ethical guidelines of the 
Declaration of Helsinki 2008 (24). 

Cytological examinations, HPV genotyping and measure‑
ments of miR‑16‑1 by reverse transcription‑quantitative 
PCR (RT‑qPCR) were performed in the present study. Three 
ectocervical and three endocervical samples were obtained 
from each patient, utilizing an Ayre spatula (ectocervix) 
and cytobrush (endocervix), ensuring cytological mate‑
rial was from the TZ of the uterine cervix. The cytological 

diagnosis was performed by a cytotechnologist (LdCA‑R) 
who was accredited and certified by the Mexican Council of 
Technicians in Pathobiology, A.C., and the Mexican Council 
of Anatomopathological Physicians, A.C., with 29 years of 
experience, utilizing the criteria of the Bethesda System (5). 
The colposcopic diagnosis was performed by the colposco‑
pist Dr Raúl Peralta‑Catalán responsible for the Dysplasia 
Clinic of the General Hospital ‘Raymundo Abarca Alarcón’ 
(Chilpancingo, Mexico). The histopathological diagnosis, for 
confirmation of SIL and SCC, was performed by the patholo‑
gist Marco Antonio Jiménez‑López at the State Institute of 
Cancerology ‘Arturo Beltrán Ortega’ (Acapulco, Mexico) (25).

Cytological examination. Slides with the cytological smears 
of the TZ for conventional cytology examination were fixed 
in ethanol for 10 min. The slides were then stained using the 
Papanicolaou kit (cat. no. 64294; Hycel, Chemical Reagents). 
Briefly, the slides were hydrated in a descending alcohol series 
and then incubated at room temperature for 45 sec with Harris 
hematoxylin to stain the nuclei. Additionally, Orange G colo‑
rant was added and incubated at room temperature for 80 sec, 
followed by EA‑50 incubated at room temperature for 3 min, 
which stained the eosinophils and basophils cells, respectively. 
The slides were then cleared with Xylol reagent prior to micro‑
scopic observation (DM1000 LED; Leica Microsystems, Inc.; 
magnification, x10‑x20).

Alternatively, the samples for liquid‑based cytology 
were processed according to the manufacturer's protocol of 
liquid‑PREPTM (LGM International, Inc.). Briefly, a clearing 
solution was added to each sample and then the samples 
were centrifuged at 1,000 x g for 5 min at room temperature. 
The supernatant was discarded after the addition of the cell 
base solution, which conserved the pellet. The samples were 
mixed and 10 µl was added to a slide, which was fixed at room 
temperature with ethanol for 10 min, following by staining 
using Papanicolaou kit and microscopic observation (DM1000 
LED; Leica Microsystems, Inc.; magnification, x10‑x20).

Genotyping and the physical state of HR‑HPV. Using cervical 
cytology samples in PBS (pH 7.0), DNA was extracted by the 
standard method of phenol‑chloroform extraction (26). For 
HPV genotyping, the reverse INNO‑LiPA Genotyping Extra 
assay (Invitrogen; Thermo Fisher Scientific, Inc.) was used 
according to the manufacturer's instructions. This method 
allowed the simultaneous identification of 28 different HPV 
genotypes. Briefly, the L1 region of HPV was PCR‑amplified 
with the SPF10 primers. The biotinylated amplicons were 
denatured and hybridized with specific and immobile oligo‑
nucleotides anchored to a membrane, and then Streptavidin 
conjugated with alkaline phosphatase was added, followed by 
Chromogen BCIP/NBT to reveal the reaction. The HLA‑DPB1 
gene was employed as a control for DNA amplification, and 
the L1 region of HPV6 was utilized as a positive control. 

The determination of the physical state of viral DNA 
was performed by means of the Dako GenPoint™ Tyramide 
Signal Amplification System for Biotinylated Probes (Agilent 
Technologies, Inc.), according to the manufacturer's protocol. 
Briefly, liquid‑based cytology smears were submitted to 
permeabilization for 30 min at 120˚C, followed by enzymatic 
digestion for 5 sec with K proteinase (1:1,000). The samples 
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were then added to 1 µl test reagent (Dako GentPointTM HPV 
DNA Probe Cocktail, Biotinylated) for 13 HR‑HPV genotypes 
(16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59 and 68; Agilent 
Technologies, Inc.). The slides were subjected to DNA denatur‑
ation for 10 min at 95˚C and hybridization for 20 h at 37˚C on 
a Dako Hybridizer (Agilent Technologies, Inc.). Subsequently, 
the slides were placed in an astringent solution (1:20) for 
20 min at 55˚C, followed by the addition of 30 µl primary 
streptavidin‑HRP conjugate (1:50) for 1 h and incubation in a 
humidified chamber at room temperature. Subsequently, 30 µl 
biotinyl tyramide was added for 40 min and 30 µl secondary 
streptavidin‑HRP conjugate was added for 1 h in a humidi‑
fied chamber at room temperature. Diaminobenzidine (1:20) 
was then added for 10 sec, followed by counterstaining with 
Harris hematoxylin (Merck KGaA) for 10 sec, both incuba‑
tions at room temperature. The positive reaction with the 
nucleus was identified by a brown color, which was classified 
as diffuse (episomal state), punctate (integrated state) or mixed 
(episomal and integrated state). As a positive control, the SiHa 
cervical cancer cell line (catalog no. HTB‑35; American Type 
Culture Collection) was used and, as negative control, SiHa 
cells were used without the test reagent. The cell line was 
cultivated in DMEM (Invitrogen; Thermo Fisher Scientific, 
Inc.) supplemented with 10% FBS (Merck KGaA), 50 µg/ml 
penicillin/streptomycin (Merck KGaA), 2 mM L‑glutamine 
(Merck KGaA) and 250 ng/ml fungizone (Merck KGaA), and 
placed at 37˚C in a humidified incubator containing 5% CO2.

Analysis of miR‑16‑1 expression. Using the cervical 
cytology samples, total RNA was extracted using TRIzol® 

Reagent (Thermo Fisher Scientific, Inc.), according to the 
manufacturer's protocol. Briefly, 1 ml TRIzol® Reagent was 
added to each sample and incubated for 5 min to permit the 
dissociation of the nucleus‑protein complex. Subsequently, 
200 µl chloroform for every 1 ml TRIzol® Reagent was added, 
followed by vigorous shaking for 15 sec and incubation for 
3 min. Following incubation, the sample was centrifuged 
at 12,000 x g at 4˚C for 5 min. The aqueous phase, which 
contains the RNA, was transferred into a new tube. Next, 
500 µl isopropanol per 1 ml TRIzol® Reagent was used for lysis 
for 10 min at ‑70˚C, followed by centrifugation at 14,000 x g 
at 4˚C for 15 min. The supernatant was then discarded and 
the sediment was re‑suspended in 20 µl RNase‑free water. 
The concentration of RNA was evaluated by UV absorbance 
at 260 nm (A260) using a Thermo Scientific NanoDrop 200c 
(Thermo Fisher Scientific, Inc.). Synthesis of the comple‑
mentary DNA (cDNA) was carried out using the TaqMan 
MicroRNA Reverse Transcription kit (Thermo Fisher 
Scientific, Inc.), which possesses a high capacity for synthe‑
sizing cDNA from miRNA. In total, 5 ng total RNA was 
utilized for synthesizing the cDNA of the miR‑16‑1. Briefly, 
inverse transcription assays were prepared with 3 µl 5X RT 
primer, 5 µl RNA sample and 7 µl Master mix [100 mM dNTPs 
(with dTTP) (0.15 µl), MultiScribeTM Reverse Transcriptase 
(50 U/µl; 1 µl), 10X Reverse Transcription Buffer (1.50 µl), 
RNAse Inhibitor (20 U/µl; 0.19 µl) and Nuclease‑Free water 
(4.16 µl) in a total volume of 15 µl]. The reactions were incu‑
bated in an Eppendorf thermocycler (Eppendorf Mastercycler 
EP Gradient Model 5341) for 30 min at 16˚C, 30 min at 42˚C, 
and 5 min at 85˚C, followed by storage at 4˚C until later use. 

The PCR reaction was conducted at 95˚C for 10 min followed 
by 40 cycles at 95˚C for 10 sec and at 60˚C for 60 sec using 
TaqManTM MicroRNA Assays (Thermo Fisher Scientific, Inc.). 
Specific primers (Thermo Fisher Scientific, Inc.) were used for 
hsa‑miR‑16‑1 (5'‑UAG​CAG​CAC​GUA​AAU​AUU​GGC​G‑3') and 
RNU44 (5'‑CCT​GGA​TGA​TGA​TAG​CAA​ATG​CTG​ACT​GAA​
CAT​GAA​GGT​CTT​AAT​TAG​CTC​TAA​CTG​ACT‑3'), which 
was used for normalization. The reaction was incubated in 
PCR tubes and caps, RNase‑free, 0.2 ml (catalog no. AM12230; 
Thermo Fisher Scientific, Inc.) in the CFX96 Touch™ Real‑Time 
PCR Detection system supplied with analytical software 
(Bio‑Rad Laboratories, Inc.). Each reaction was performed in 
triplicate. The 2‑ΔΔCT method (27) was employed to evaluate the 
relative abundance of miR‑16‑1 compared with the expression 
of RNU44, which is a small nuclear RNA and is one of the 18 
human endogenous controls identified as the most abundant in 
all tissues, based on CT averages (22‑28.9), good linearity test 
(R2>0.96) and its relatively stable expression (28). 

Statistical analysis. Data are presented as frequencies for 
the qualitative variables and as the mean ± standard error for 
quantitative variables. One‑way analysis of variance followed 
by Bonferroni's post hoc test was used to compare the expres‑
sion level of miR‑16‑1 between study groups. The association 
of cytological diagnosis or the physical state of the HPV with 
the expression level of miR‑16‑1 was evaluated through linear 
regression models. This obtained the regression coefficients 
(β), as the average change in the expression of miR‑16‑1 
by cytological diagnosis or physical state of the HPV, in 
comparison with the reference category (NSIL). P<0.05 was 
considered to indicate a statistically significant difference. 
Statistical analysis was performed using STATA V.13 statis‑
tical software (StataCorp LLC). 

Results

Genotypes and physical state of the HPV. Once the cytological 
results were obtained, the following cytological samples of 
women were selected as follows: 20 samples with negative 
diagnosis for SIL and without HPV infection; 20 samples with 
LSIL; 20 samples with HSIL (of which 45% were diagnosed 
with carcinoma in situ); and 20 samples with SCC. Women 
with SIL or SCC had HR‑HPV infection. From the findings of 
the present study, eight types of HR‑HPV could be identified; 

Table I. HR‑HPV state according to cytological diagnosis.

	 Diagnosis
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑-‑‑‑‑‑‑‑‑‑
HR‑HPV state	 LSIL, n (%)	 HSIL, n (%)	 SCC, n (%)

Integrated	 8 (40)	 7 (35)	 18 (90)
Mixed	 12 (60)	 13 (65)	 2 (10)
Total 	 20 (100)	 20 (100)	 20 (100)

HR‑HPV, high‑risk human papillomavirus; LSIL, low‑grade 
squamous ����������������������������������������������������������intraepithelial lesions; HSIL, ���������������������������high‑grade squamous �������intrae‑
pithelial lesions; SCC, squamous cell carcinoma.
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the most frequent being 16, 18, 31, 33, 45, 51, 52 and 58. The 
frequency of HPV16, in relation to the cytological diagnosis, 
was 20% in LSIL, 30% in HSIL and 40% in SCC. Notably, 
15% of LSIL, 20% of HSIL, and 40% of SCC presented 
with multiple infection (MI) with the genotypes of HR‑HPV, 
including HPV16 (data not shown). On the other hand, it is 
important to note that when analyzing the physical state of the 
HR‑HPV DNA, an integrated state was identified in 40% of 
women with LSIL, in 35% of women with HSIL and in 90% of 
women with SCC (Table I). Cytologically in the LSIL cases, 
some intermediate cells with karyomegaly, binucleation, peri‑
nuclear halo and hyperchromatic nuclei were observed. These 
are considered to be characteristics of the HPV infection. 
The intermediate cells with karyomegaly presented 1‑2 viral 
copies integrated (Fig. 1A). While in cytologies with HSIL, 
small groups of cells with moderate to intense dyskaryosis and 
binucleation were observed, in immature basal and parabasal 
cells with little cytoplasm, big and hyperchromatic nuclei. 
These cells presented multiple integrated copies (Fig. 1B). 
Finally, in the cases of SCC, multiple integrated copies were 

observed in large undifferentiated cells, multinucleated, devoid 
of cytoplasm, pleomorphic nuclei and irregular distribution of 
chromatin (Fig. 1C).

Expression of miR‑16‑1. It was demonstrated that the mean 
expression level of miR‑16‑1 was increased significantly in 
women with HSIL (7.9±0.5) and SCC (10±0.6), in comparison 
with women with NSIL or LSIL (P<0.001). Although a small 
increase was identified in the expression of miR‑16‑1 in 
patients with LSIL (1.6±0.3) in comparison with women with 
NSIL (1.1±0.1), this was not statistically significant (P=0.95; 
Fig. 2A). Linear regression analysis revealed a significant 
increase in the expression of miR‑16‑1 in women with HSIL 
(β=6.8; P<0.001) and in women with SCC (β=8.9; P<0.001) in 
comparison with women NSIL, with an explanation percentage 
of 83% (Table II). 

Additionally, significant differences were identified for 
the expression level of miR‑16‑1 in the samples with a mixed 
or integrated HPV physical state compared with the samples 
that did not present with HPV infection (P<0.001; Fig. 2B). In 

Figure 1. Physical state of the HR‑HPV according to the grade of squamous intraepithelial lesions and SCC. (A) Integrated state (black arrows) of the genome 
of HPV16 in cells with karyomegaly with hyperchromatic nuclei in a case of low‑grade squamous intraepithelial lesions. (B) Integrated state (black arrows) 
of HPV16 DNA in groups of cells with intense dyskaryosis, in basal and parabasal cells with big and hyperchromatic nuclei, compatible with a high‑grade 
squamous intraepithelial lesions. (C) Integrated state (black arrows) of HPV16 DNA in a case of SCC in undifferentiated cells with irregular chromatin 
distribution in pleomorphic nuclei (Magnification, x40). HR‑HPV, high‑risk human papillomavirus; SCC, squamous cell carcinoma.

Figure 2. RT‑qPCR of the expression of miR‑16‑1. The relative expression of miR‑16‑1 was assessed by RT‑qPCR and the 2‑∆∆CT method. The relative 
expression of miR‑16‑1 was compared between the study groups and the different physical states of HR‑HPV using the ANOVA. (A) Significant increase in 
miR‑16‑1 expression is identified in HSIL and SCC compared with NSIL (P<0.001) and an increase in SCC compared to HSIL (P=0.003). (B) Expression of 
miR‑16‑1 was significantly increased in the mixed (P<0.001) and integrated (P<0.001) physical state compared with the negative samples. RT‑qPCR, reverse 
transcription‑quantitative PCR; miR‑16‑1, microRNA‑16‑1; HR‑HPV, high‑risk human papillomavirus; NSIL, negative for squamous intraepithelial lesions; 
LSIL, low‑grade squamous intraepithelial lesions; HSIL, high‑grade squamous intraepithelial lesions; SCC, squamous cell carcinoma.
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addition, a significant influence of the mixed (β=4.4; P<0.001) 
or integrated (β=6.2; P<0.001) state on the expression level of 
miR‑16‑1 (P<0.001) was identified, compared with the samples 
negative for HPV infection; with an explanation percentage of 
33%. It is also important to comment that any relevant changes 
were not identified in the level of expression of miR‑16‑1 
between the integrated physical state and the mixed state 
(β=1.7; P=0.105; Table II; Fig. 3).

Discussion

CC represents a serious public‑health problem. Despite it 
being a preventable disease, it has high rates of incidence and 

mortality in developing countries, and in Mexico, CC is the 
third most common cancer in women with 7,689 new cases 
reported in 2018 (1). In Mexico, a nationwide cytology‑based 
cervical cancer screening program was implemented in 1974, 
but the subsequent decrease in incidence and mortality have 
been modest (29). In Guerrero, Mexico, from the 2000 to 2013, 
CC represented the second most common cancer in women, 
which therefore makes CC the fifth highest contributor to 
mortality rates nationally (30). In Guerrero, Mexico, HPV16 
has been identified as the most frequent genotype in CC, 
followed by HPV18 (31). It is important to note that our group 
has previously reported that, in the state of Guerrero, there 
are five circulating variants of E6 of HPV16 (E‑G350, AA‑a, 

Figure 3. Effect of squamous intraepithelial lesions, squamous cell carcinoma and the physical state of HPV on the increase in the expression levels of miR‑16‑1. 
(A) The increase in the expression of miR‑16‑1 is associated with the progression of SIL to SCC. (B) There is no different effect on miR‑16‑1 overexpression 
between mixed and integrated HPV physical state. miR‑16‑1, microRNA‑16‑1; HR‑HPV, high‑risk human papillomavirus; NSIL, negative for squamous 
intraepithelial lesions; LSIL, low‑grade squamous intraepithelial lesions; HSIL, high‑grade squamous intraepithelial lesions; SCC, squamous cell carcinoma.

Table II. Associations of the cytological diagnosis or physical state of HPV with the expression level of miR‑16‑1.

Variable	 Relative miR‑16‑1 expression, REUa	 β (95% CI)b	 P‑value	 r2

Diagnosis
  NSIL	 1.1±0.1	 Ref.		  0.83
  LSIL	 1.6±0.3	 0.5 (‑0.7‑1.6)	 0.395	
  HSIL	 7.9±0.5	 6.8 (5.6‑7.9)	 <0.001	
  SCC	 10.0±0.6	 8.9 (7.8‑10.0)	 <0.001	
Physical HPV state				  
  Negative	 1.1±0.1	 Ref.		  0.33
  Mixed	 5.5±0.8	 4.4 (2.3‑6.5)	 <0.001	
  Integrated	 7.3±0.7	 6.2 (4.2‑8.2)	 <0.001	
  Mixed 
  Integratedc	 	 Ref. 1.7 (‑0.4‑3.9)	 0.105	 0.04

aData are reported as mean ± standard error. bAccording to Linear regression analysis. cNegative values were excluded. REU, relative expression 
unit; HR‑HPV, high‑risk human papillomavirus; LSIL, low‑grade squamous intraepithelial lesions; HSIL, high‑grade squamous intraepithelial 
lesions; SCC, squamous cell carcinoma; miR‑16‑1, microRNA‑16‑1; NSIL, negative for squamous intraepithelial lesions; CI, confidence 
interval; HPV, human papillomavirus.
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AA‑c, E‑C188/G350 and E‑A176/G350). These variants have 
been associated with the development of SCC, and the AA‑a 
variant has the greatest association with the development of 
CC (odds ratio, 69.01; confidence interval, 7.57‑628.96) in 
comparison with the E‑prototype variant (32). 

In the present study, women diagnosed with LSIL, as well 
as women diagnosed with HSIL, presented with HPV16 with 
greater frequency in unique infection or MI compared with 
other types of HR‑HPV. It has been noted that genotypes 16 
and 18 are present in >70% of SCC cases (3). A number of 
studies have reported that MI with HR‑HPV can increase the 
risk of cervical intraepithelial neoplasia (CIN) progressing 
to SCC (33‑35). However, other reports that HPV16, in itself, 
can increase the risk of developing a HSIL should also be 
considered (36). 

Integration of viral DNA occurs because of chromosomal 
instability, which is induced by the aberrant expression of onco‑
proteins E6 and E7 (37). The biotinyl‑tyramide‑based in situ 
hybridization (ISH) amplification method has the advantage 
of allowing the in situ examination of the physical state of 
HPV DNA, preserving the morphology of the cells or tissues, 
as well as it being optimized to enable the reproducible detec‑
tion of one to two integrated copies of the HPV‑16 (38‑40). It 
has been reported that in cervical scrapes or biopsy samples 
positive for HPV16 or 18 from 187 female patients without 
SIL, LSIL, HSIL and CC, ISH has a high concordance (96.1%) 
with qPCR to determine the physical state of HPV. These 
results suggest that ISH has good concordance with qPCR 
with regards to the detection of HPV integration. Therefore, 
this method can be used for determining the physical status of 
HPV (41). The present study identified that women with LSIL 
(60%), with HSIL (65%) and with SCC (10%) had principally 
a mixed state. In this regard, we reported previously that the 
mixed state of HR‑HPV can be found in cytologies with LSIL 
with HR‑HPV (42), while other investigators have reported it 
in HSIL (43). On the other hand, with respect to the integra‑
tion of viral DNA, it was identified that 40% of LSIL, 35% of 
HSIL and 90% of women with SCC had viral integration. In 
our work group and with regards to previous studies, it was 
identified that in women with LSIL with HR‑HPV, 10% had 
viral DNA integration (42), while some studies have reported 
that viral integration is an indicator of HSIL (44), and a predic‑
tive indicator that is markedly unfavorable for the survival of 
patients with primary CC, in comparison with mixed forms 
of HR‑HPV (45). One possible reason why the percentage 
of women with viral integration was similar between LSIL 
and HSIL is that in both study groups, HPV16 and 18 were 
present in single or multiple infection with other HR‑HPV 
(data not shown). However, differences in the number of copies 
integrated between both groups were observed (Fig. 1). It is 
important to note that in LSIL the number of altered cells is 
lower compared with HSIL. In addition, it has been reported 
that viral integration in SIL and CC is more frequently related 
to HPV16, 18 and 58 genotypes (41,46).

It must be considered that previous reports have demon‑
strated that viral integration is an early event in the progression 
of the disease (47,48). In addition, it has been reported that 
populations of cells with integrated HPV16 possess a selective 
advance in growth, compared with cells that maintain episomal 
HPV16 genomes (49). The present study identified that the 

number of cells and the integrated copies in them increased 
in cytologies with HSIL and SCC compared with cytologies 
with LSIL (Fig. 1A‑C). These results are important since it 
has been reported that those cells with multiple integrated 
copies of HPV16 has an increase in methylation patterns in the 
upstream regulatory region (URR) region of the viral genome, 
compared with those with only 1‑2 integrated copies or those 
that present only episomal copies. This suggests that methyla‑
tion in E2 binding sites, in the URR region of HPV16, can lead 
to deregulation of E6 and E7 expression in early stages of cell 
transformation induced by HR‑HPV (50).

Furthermore, a wide range of studies have reported 
that miRNAs serve an important role in the regulation of 
gene expression, and the deregulation of miRNAs plays an 
important role in the development of human cancers  (51). 
The expression of miR‑16‑1 is of great interest for further 
analysis, as it has been reported to be increased in a variety 
of human cancers, in which its function has been described as 
an oncomiR (9,15‑20,22). The present study did not identify 
significant differences in the expression of miR‑16‑1 between 
women who presented with NSIL and without HPV with 
those who presented with LSIL with HR‑HPV (P=0.951). One 
limitation of the present study that must be considered when 
examining the results was the small sample size used to iden‑
tify significant differences between these two groups. However, 
we found that HSIL, SCC or HPV physical state had an effect 
on the increase in miR‑16‑1 expression. The patients with HSIL 
and SCC with HR‑HPV exhibited a significant increase in the 
expression of miR‑16‑1 in comparison with women with NSIL 
without HPV (P<0.001; Table II). There are studies that have 
evaluated this miRNA in cell lines and tissues with SCC, for 
example. miR‑16‑1 was increased in 19 SCC tissue samples, 
7 adenocarcinomas, 2 adenosquamous cell carcinomas and 2 
small‑cell carcinomas, all of these with HR‑HPV, in comparison 
with normal tissue (15). Furthermore, an increase was found in 
the expression of miR‑16‑1 in ten tissues with invasive SCC 
in comparison with normal tissue according to RT‑qPCR (16). 
Through Northern blot analysis, it has also been demonstrated 
that the expression of miR‑16‑1 is increased in cell lines with 
HPV and in CC tissues in comparison with normal tissue (17). 
Through microarrays, the expression of diverse miRNAs has 
been studied, and results demonstrated that the expression of 
miR‑16‑1 increased according to the grade of CIN, with higher 
expression observed in cases with CIN III and SCC, in compar‑
ison with CIN I and normal tissue (18). By contrast, through 
RT‑qPCR, it was identified that the expression of miR‑16‑1 was 
lower in ten normal tissues was compared with 18 cases of CIN 
II and CIN III, 9 cases of adenocarcinoma and 10 cases of SCC, 
in which the expression increased according to the grade of 
CIN (19). Similar results were confirmed in a study in which 
the expression of miR‑16‑1 was higher in CIN I, CIN II, CIN 
III and CC in comparison with normal tissue (20). 

In the present study, a basal expression of miRNA‑16‑1 
was found in samples without SIL that were negative for HPV. 
It has been reported that the normal function of miR‑16‑1 is to 
negatively regulate the progression of the cell cycle, by regu‑
lating cell targets, such as CDK1, CDK2, CDK6, cyclin D1, 
cyclin D3 and cyclin E1 (52). In addition, during the progres‑
sion of the normal cell cycle, the endogenous inactivation of 
E2F leads to an increase in the basal expression of miR‑16‑1 
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and miR‑15, and consequently the arrest of the cell cycle occurs 
in the G1 phase (53). The expression of miR‑16‑1 is increased 
in tissues of CIN I, CIN II, CIN III and CC compared with 
in normal tissue (20). Further studies have shown that when 
HR‑HPV infection is present, the oncoprotein E7 dissociates 
the RB/E2F complex, resulting in the endogenous activation 
of E2F (54,55). By in silico analysis, it has been reported that 
the promoter of the human gene DLEU2 contains a binding 
site conserved for E2F in the position ‑4 to +4; therefore, the 
expression of miR‑16‑1 is endogenously regulated by E2F (53). 
These findings are important because cyclin E1 plays a crucial 
role in the transition of the G1/S phase, and it is known that 
this cyclin is transcriptionally regulated by E2F  (56) and 
post‑transcriptionally regulated by miR‑16‑1 (9,57). These two 
molecular alterations can cooperate during tumor develop‑
ment, maintaining an increased proliferation of transformed 
cells. 

It is noteworthy that the increased expression of miR‑16‑1 
was mainly related to HSIL and SCC in 6.8 and 8.9 relative 
expression units, respectively, compared with NSIL (Table II). 
In this regard, the viral genome is replicated as episomal DNA 
during productive infections, while viral integration in the 
host chromosome by the HR‑HPV has been associated with 
the progression of SIL to SCC (58). Deletion of the E2 gene 
results in the loss of negative regulation of the transcription of 
oncogenes E6 and E7, favoring dyscontrolled cellular prolif‑
eration and immortalization (59). Having found an increased 
expression in LSIL (1.6±0.3), in comparison with normal 
samples (1.1±0.1), it can be suggested that these cells possess 
a high proliferative capacity and that this could facilitate the 
detection of cells with potential transformation into an HSIL. 
These conclusions allow us to consider the importance of strict 
follow‑up of patients with LSIL with HR‑HPV alone or with 
MI, which also would allow the evaluation of the prognostic 
value of miR‑16‑1. 

Furthermore, the present study identified that the mixed 
or integrated HPV states exhibited a significant effect on the 
expression level of miR‑16‑1, in comparison with samples 
negative for HPV (P<0.001); however, the variability in 
the expression level of miR‑16‑1 has a greater explanation 
by the changes induced by SIL and SCC (83%) than by the 
HPV physical state (33%). In addition, when comparing 
women who presented with the mixed state and those with 
the integrated state, no significant difference was observed 
(P=0.105). A limitation of the present study was that patients 
who presented only with the HPV episomal physical state were 
not included, which could have provided additional informa‑
tion on the expression level of miR‑16‑1 compared with those 
with an integrated physical state. Notably, to the best of our 
knowledge, no studies have analyzed this relationship before. 
However, it has been suggested that the increased expression 
of miR‑16‑1 in CC could be due to the molecular mechanism 
induced by the interaction of E7 of the HPV16 and E2F (53). 
To demonstrate whether E7 is directly associated with the 
increase in the expression of miR‑16‑1 but not E6, a study 
was performed with tissue samples derived from human kera‑
tinocytes, with and without HPV16 and HPV18. The results 
demonstrated that on inducing the expression of E6, E7 and 
E6/E7, the increase in the expression level of miR‑16‑1 was 
only observed in the presence of E7. This suggests that E7 was 

responsible for the overexpression of miR‑16‑1 in CC cells. In 
addition, by silencing the expression of E7 by small interfering 
RNA in CaSki (HPV16) and HeLa (HPV18) cell lines, it was 
demonstrated that E7‑knockdown decreased the expression of 
miR‑16‑1 in comparison with the control cells (22). 

It has been reported that HPV16 possesses an integration 
site in chromosome 13q14 (60), where the DLEU2 gene is local‑
ized, and this could activate the transcription of miR‑16‑1 (61). 
It has also been reported that HPV18 contains an integration 
site on chromosome 8q23‑24, near the c‑Myc gene (62,63), 
which is known to be able to activate the DLEU2 gene and 
induce the transcription of miR‑16‑1 (64). The overexpres‑
sion of miR‑16‑1 has been found to be associated with the 
activation of genes implicated in cellular proliferation, such 
as CDK6, CDC27, CARD10, C10orf46 (23), CDC7 (21) and 
CCNE1 (9). Additionally, E6, on degrading into p53, inhibits 
the expression of kinase‑inhibitor proteins (55), generating an 
uncontrolled environment for the proliferation and immortal‑
ization of cancerous cells. 

In conclusion, the present results demonstrated that the 
increased expression of miR‑16‑1 was associated with increased 
cellular proliferation of HSIL and SCC in the presence of the 
integrated state of the HR‑HPV DNA alone or in MI. This 
suggests that the expression level of miR‑16‑1 could serve as an 
additional tool in the diagnosis of HSIL that exhibits potential 
progression to SCC. Therefore, follow‑up studies on a larger 
scale are required in order to examine the clinical usefulness 
of the expression of miR‑16‑1 as a prognostic biomarker of 
SIL, particularly in women with a diagnosis of LSIL and the 
integrated state of the HR‑HPV, which can later progress to 
HSIL.
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