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Abstract. The presence of the genetic variants of the steroid 
5‑alpha reductase 2 enzyme, which is encoded by the SRD5A2 
gene, has been associated with an increased risk of developing 
prostate cancer among certain ethnic groups. However, these 
molecular studies have not been conducted on the Mexican 
population. The analysis of the genetic variants, rs9282858 
and rs523349, was performed in 101  males with prostate 
cancer and 100 healthy controls classified as males without 
prostate abnormalities (n=60) and males with benign pros‑
tatic hyperplasia (n=40), to identify a probable association 
with this cancer type in the Northeast Mexican population. 

An association was identified between prostate cancer and 
biomass exposure [P=0.012; odds ratio (OR), 2.89; confidence 
interval (CI)=1.21‑6.88] and tobacco use (P=0.028; OR=1.88; 
CI=1.07‑3.31), while no association was observed between 
cancer development and the rs9282858 variant, or between a 
protective effect and the rs523349 variant. Notably, an associa‑
tion was identified between rs523349 and biomass exposure 
(P=0.013, OR=3.17; CI=1.23‑8.17 for the G risk allele, and 
OR=0.32, CI=0.12‑0.81 for the C protective allele) using the 
dominant genetic model. To the best of our knowledge, the 
present study was the first of its type to investigate the Mexican 
population with prostate cancer.

Introduction

Prostate cancer (PCa) is the second most common type of 
malignancy among males worldwide; in 2018, the World 
Health Organization estimated more than 1.3 million new 
prostate cancer cases and over 359,000 mortalities due to this 
disease (1). In Mexico, PCa is the most common and fatal 
cancer type among males, accounting for >10,000 new cases 
and 5,000 mortalities during the same period of time (1). PCa 
is usually diagnosed in the fifth decade of life, with a vari‑
able rate of progression that largely depends on genetic and 
environmental factors, as well as the patient's lifestyle (2).

Androgens are necessary for the correct development and 
function of the prostate gland; however, they also serve a crit‑
ical role in driving the growth of early‑stage PCa (3). Androgen 
action, mediated by the androgen receptor (AR), leads to the 
activation of target genes that stimulate the proliferation and 
inhibit the apoptosis of cancer cells (3,4). Free testosterone 
diffuses across the membranes of target cells located within 
the prostatic tissue acting as a substrate for the steroid 5 alpha-
reductase 2 enzyme (encoded by the SRD5A2 gene), which 
converts testosterone to dihydrotestosterone (DHT), a more 
potent metabolite that activates the AR (5). Once activated, 
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the AR is translocated to the nucleus where it dimerizes with 
another AR and activates target genes that promote cell prolif‑
eration (3,4,6,7) (Fig. 1). 

Certain DNA variants in the genomic sequence of the 
SRD5A2 gene alter the catalytic activity of steroid 5‑alpha reduc‑
tase 2, which may increase the risk of PCa development (8‑11). 
In this context, certain variants have been associated with an 
increased risk of developing PCa, including TA dinucleotides 
in the 3'‑UTR region (12,13), rs9332964 (14,15), rs928258 (9) 
and rs523349 (16,17). The rs928258 and rs523349 variants 
have been screened mainly across different ethnic groups. 

The rs9282858 (p.Ala49Thr or A49T) variant results from 
a single nucleotide substitution, a G by an A (GCC/ACC), 
causing an amino acid change from an alanine to a threo‑
nine. It has been reported that this change increases the 
catalytic activity of the enzyme by 5‑fold  (14,18). The 
ENSEMBL database reports this variant as a) benign in 
ClinVar, b) deleterious in SIFT, c) benign in PolyPhen, and 
d) likely benign in CADD (http://www.ensembl.org/Homo_
sapiens/Variation/Mappings?db=core;r=2:31580256‑​31581256;v=rs
9282858;vdb=variation;vf=57248637).

By contrast, the rs523349 (p.Val89Leu or V89L) variant 
results from a single nucleotide substitution, a C by a G 
(CTA/GTA), causing an amino acid change from a valine 
to a leucine. It has been reported that this change reduces 
the enzyme activity by 30%  (14,16,19). The ENSEMBL 
database reports this variant as a)  benign in ClinVar, 
b) tolerated substitution in SIFT, c) benign in PolyPhen, and 
d) likely benign in CADD (http://www.ensembl.org/Homo_
sapiens/Variation/Mappings?db=core;r=2:31580136‑​31581136;v=rs
523349;vdb=variation;vf=54157055).

As in a number of other diseases, the molecular findings 
on populations of European descent cannot be assumed for 
all populations. To implement a precision medicine model, 
molecular studies must be performed in diverse ethnic groups 
of interest. Genomic and genetic data of populations of 
non‑European descendants remain under represented (20).

The Mexican population is genetically diverse  (21); 
therefore, a more detailed study of the population struc‑
ture alongside geographical data is required to assess the 
frequency and prevalence of genetic diseases in native and 
Mexican‑mestizo populations (21‑23). In diseases, including 
prostate cancer, this information may aid in diagnosis, 
prognosis, and treatment (21,22).

In Mexico, PCa is a national health problem, but molecular 
studies regarding PCa in this population are limited. Certain 
studies with regard to AR, VDR (24), VEGF (25), ATP6, and 
ND3 (26) genetic variants have been made. However, to the best 
of our knowledge, there are no previous reports that analyze the 
presence of the genetic variants, A49T and V89L, of the steroid 
5 alpha-reductase 2 enzyme in the Mexican‑mestizo popula‑
tion. Therefore, a molecular analysis of these genetic variants 
and examination of relevant clinical data was performed in 
the present study to identify a possible association with the 
development of PCa on the Mexican‑mestizo population. 

Materials and methods

Study design. The protocol was approved by the Ethics 
and Research Committee of the School of Medicine of the 

Universidad Autónoma de Nuevo León (no. UR16‑00007). 
This protocol was performed by the Biochemistry and 
Molecular Medicine Department using convenience sampling. 
Participants were enrolled between January  2018 and 
December 2019 through the Urology and Oncology Services 
from the ‘Dr. José Eleuterio González’ University Hospital of 
the Universidad Autónoma de Nuevo León, and each patient 
provided written informed consent to participate in the present 
study. 

Recruited participants were classified into three groups 
according to subsequent analyses: PCa cases (n=101; 
median age, 70  years; age range, 64.5‑75.0  years) and 
non‑PCa subjects (n=100; median age, 58 years; age range, 
48‑67 years) composed of males without prostate abnormali‑
ties (n=60) and subjects with benign prostatic hyperplasia 
(BPH; n=40). The PCa cases were males diagnosed with 
PCa regardless of the time elapsed since the diagnosis or 
their treatment status. 

Blood samples were collected in a 6 ml BD Vacutainer tube 
with EDTA (Becton‑Dickinson). Demographic data of clinical 
importance were collected, and the database was prepared. 
PSA levels were analyzed only for the PCa and BPH groups.

DNA extraction protocol. Each blood sample was centri‑
fuged at 3,857 g for 10 min at room temperature. From the 
buffy coat, DNA extraction was performed using a previ‑
ously reported method with TSNT lysis buffer (composed 
of 1% Triton, 1% sodium dodecyl sulfate, 100 mM NaCl, 
10 mM Tris‑HCl pH 8.0 and 1 mM EDTA) and followed by 
a phenol‑chloroform extraction step (27,28). The DNA was 
precipitated from aqueous phase with ethanol and quantified 
using NanoDrop 1000 (Thermo Fisher Scientific, Inc.) and its 
quality was verified through absorbance ratios (260/280 and 
260/230 nm) and agarose gel electrophoresis. 

Genotyping. Genotyping assays were performed using 
the commercial TaqMan SNP Genotyping Assays probes 
C__27532228_20 and C___2362601_10 (Thermo Fisher 
Scientific, Inc.) for the A49T (rs9282858) and V89L (rs523349) 
gene variants of the SRD5A2 gene (NM_000348.3), 
respectively.

DNA samples were processed using a StepOnePlus™ 
Real‑Time PCR system (Thermo Fisher Scientific, Inc.). Each 
PCR reaction was performed using 5 µl SensiFAST™ Hi‑Rox 
Genotyping kit (Bioline; Meridian Bioscience, Inc.), 0.5 µl 
probe, 5 µl nuclease‑free water, and 3 µl DNA (300 ng).

The amplification program used was the following: 
Pre‑PCR read 60˚C/30 sec, holding stage 95˚C/10 min, cycling 
stage: i)  95˚C/15  sec; ii)  60˚C/1  min, and post‑PCR read 
60˚C/30 sec. The results were analyzed using the StepOne™ 
software v.2.2.2, (Thermo Fisher Scientific, Inc.).

Statistical analysis. Gene analysis was conducted using the 
Golden Helix SNP & Variation Suite 8.8.3 program (Golden 
Helix, Inc.). The DNA variants were analyzed for deviation 
from the Hardy‑Weinberg Equilibrium (HWE) using the 
Fisher's exact test (P<0.05 was considered to indicate a statis‑
tically significant difference and HW disequilibrium). The 
genetic association study was performed using the dominant 
and recessive gene models in order to assess odds ratios (ORs), 
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95% confidence intervals (CIs), Bonferroni P‑values and false 
discovery rates (FDRs) (23). The dominant model considered 
the analyzed phenotypes of Ala/Ala+Ala/Thr vs. Thr/Thr for the 
rs9282858 and Val/Val+Val/Leu vs. Leu/Leu for the rs523349 
variants. On the other hand, the recessive genetic model consid‑
ered the analyzed phenotypes Ala/Ala vs. Ala/Thr+Thr/Thr 
for the rs9282858 and Val/Val vs. Val/Leu+Leu/Leu for the 
rs523349 variants (29).

For the regression association study, a stepwise 
linear regression model (qthelp://org.sphinx.svsmanual.​
8.8.3/doc/svsmanual/ftParts/logistic_regression.html) with 
recoded genotypes with the additive gene model (DD=2, Dd=1, 
dd=0) was used. False discovery rate correction (FDR) was 
calculated to exclude spurious associations (qthelp://org.sphinx.
svsmanual.8.8.3/doc/svsmanual/ftParts/general_statistics.html).

Results

Clinical characteristics of cases and controls enrolled in the 
present study. The present study included 201 participants 
classified as patients with PCa (n=101) and non‑PCa subjects, 
including males without prostate abnormalities (n=60) and 
subjects with BPH (n=40). For patients with PCa, the median 
age (IQR) was 70 (range, 64.5‑75) years. Thirty percent 
of patients had a history of prostate pathology, while the 
median prostate‑specific antigen (PSA) value was 20.4 (IQR, 
9.65‑62.82); 20.8% had type 2 diabetes mellitus (T2DM), and 
body mass index (BMI) calculations for this group found that 
33.7% were a normal weight, 40.8% were overweight, and 
22.4% had some degree of obesity. Gleason Grading was calcu‑
lated according to the recommendations of the International 

Society of Urological Pathology (ISUP) (30). A total of 62% 
of patients were classified as Gleason Grade Group 5, as they 
had tumors with Gleason scores of 9 and 10. The majority of 
patients (67%) received androgen deprivation therapy (ADT), 
predominantly bicalutamide alone or in combination with 
other drugs, such as goserelin and leuprolide. Table I shows 
the detailed clinical variables of the patients with PCa.

For the non‑PCa subjects, the median age (IQR) was 
58.8 (range, 48‑67) years; 42.4% had a history of prostate 
pathology, while the median PSA value for subjects with 
BPH was 8.55 ng/ml (IQR, 5.12‑17.71); 21% had T2DM, and 
the BMI calculations for this group found that 23.1% were a 
normal weight, 44.9% were overweight, and the remaining 
32.1% had some degree of obesity. 

Table  II summarizes the relevant data of the patients 
with PCa and non‑PCa subjects enrolled in the present study. 
Notably, an association was identified between PCa and 
biomass exposure (P=0.012; OR=2.89; CI=1.21‑6.88) and 
tobacco use (P=0.028; OR=1.88; CI=1.07‑3.31), compared with 
controls.

Genotyping. Table  III shows the HWE analysis for PCa 
cases and controls, as well as the genotype frequencies. The 
A49T variant was out of HWE equilibrium in the population 
analyzed, unlike the V89L variant, which was maintained 
in HWE.

Statistical analysis. The results of the association analysis were 
categorized according to the method used. In the present study, 
dominant and recessive gene models were used to perform 
analysis. No association was identified in any of the conditions 

Figure 1. Androgen receptor signaling axis. Testosterone enters prostate cells, where it is reduced to DHT by the action of the steroid 5α‑reductase 2. Binding 
of DHT to the AR generates conformational changes that enable the dimerization of the AR and the subsequent binding to the androgen‑response elements of 
androgen‑responsive genes promoting cell proliferation. DHT, dihydrotestosterone; AR, androgen receptor.
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of the models or in the development of PCa (A49T variant) 
or in conferring a protective effect (V89L variant). Table IV 
presents the results obtained for the variants A49T and V89L 
after performing a statistical analysis using the dominance and 
recessiveness gene models, as well as the OR and 95% CI range.

Clinical and genetic features association. The analysis 
between clinical and genetic features was conducted using 
V89L genotypes. No association was identified between 
genotyping and clinical variables, including PSA, ISUP 
Grade Group, or a history BPH. However, an association was 
identified between rs523349 and biomass exposure (P=0.013; 
OR=3.17; CI=1.23‑8.17 for the G risk allele, and OR=0.32, 
CI=0.12‑0.81 for the C protective allele) using the dominant 
gene model (https://doi.org/10.5281/zenodo.3932702). There 
was an association between V89L and patients with metas‑
tasis (Val/Val vs. Leu/Leu+Val/Leu; P=0.048; OR=0.390; 
CI=0.142‑1.073; Table V).

Discussion

Previous studies that have used the Mexican population as a 
subject of study have reported an association between certain 
variants in the SDR5A2 gene and diseases, including pseudo 

hermaphroditism and hypospadias (31‑34), but not PCa. The 
effect of the two analyzed variants is different according to 
the ethnic group of study. For example, homozygous subjects 
possessing the V89L variant (Val/Val) may have a protective 
effect if its origin is from Asia, but subjects with this same 
phenotype may have an increased risk of developing PCa. 
Cancer is a complex set of diseases in which different risk 
factors serve a crucial role in its development, where the 
genetic background is only one of them.

Logistic regression is an essential tool used in many clin‑
ical applications, including in clinical prediction models (35), 
patient screening (36), and for the developing and validation 
of novel diagnostic models (37). The clinical importance of 
genotyping the genetic variants analyzed in the present study 
lies in predicting the behaviour of the metabolic AR pathway. 
Logistic regression may then be applied in clinical prediction 
models, to develop and validate novel diagnostic models, and 
to assess and predict the success of steroid 5 alpha-reductase 
2 inhibitors (38).

In the present study, the participants enrolled were males 
with diagnosed PCa, males with other urological diseases, 
or men without any apparent urological condition that serve 
as healthy controls. PCa is more frequently diagnosed in 
the fifth decade of life; therefore, the statistical difference 
between the ages of PCa vs. non‑PCa subjects in the present 
study was expected. The analysis of specific clinical vari‑
ables revealed that PCa was associated with certain risk 
factors, including tobacco use and biomass exposure. It 
was found that the median PSA value derived from the PCa 
cases (20.4 ng/ml) was significantly higher than that for the 
non‑PCa subjects (8.5 ng/ml) included in the present study 
(P<0.001), which is consistent with the results of previous 
studies  (39,40). It was reported that 125/973 (12.8%) of 
participants had PSA values >4 ng/ml and 55 (44%) were 
diagnosed with PCa in a previous screening study conducted 
by part of our research group in the Northeast Mexican 
population (41).

A limitation of our work was the lack of availability of PSA 
values in healthy controls. This limitation is due to the fact 
that all participants were recruited as a convenience sample 
by the Urology Department and that non‑PCa cases were men 
with BPH (n=40) or persons classified as men without prostate 
abnormalities (n=60). The association of the gene variants 
analyzed in this work was made by comparing PCa vs. total 
non‑PCa subjects.

No association was identified between T2DM and pros‑
tate cancer development. However, the study subjects were 
only classified as diabetic or not, without accounting for 
their glucose levels or medications. A recent meta‑analysis 
of 733 articles identifying 17 cohort studies that included 
274,677 male patients suggested that diabetes may result in 
a poorer prognosis for males with PCa, but was not associ‑
ated with PCa development (42). Another independent study 
reported an increased risk of mortality with PCa in diabetics, 
but not an association between diabetes and the incidence of 
prostate cancer (43). This may be explained by the comor‑
bidities associated with T2DM, including atherosclerosis and 
renal failure, as patients with T2DM and other comorbidities 
may have a poorer response to treatment. Two meta‑analyses 
reported a relative low risk of develop PCa in patients with 

Table I. Clinical characteristics of the enrolled patients with 
prostate cancer.

	 Prostate cancer
Clinical characteristics	 cases, n (%)

ISUP grade group
  Group 1	 2 (2.0)
  Group 2	 13 (13.3)
  Group 3	 13 (13.3)
  Group 4	 9 (9.2)
  Group 5	 61 (62.2)
Extracapsular invasion 	 63 (62.4)
Neurovascular invasion 	 57 (56.4)
Recurrence 	 7 (6.9)
Metastasis 	 21 (20.8)
Castration‑resistance 	 14 (13.9)
Androgen deprivation therapy
  Bicalutamide	 22 (32.8)
  Bicalutamide + leuprolide	 9 (13.4)
  Bicalutamide + goserelin	 11 (16.4)
  Bicalutamide + orchiecthomy	 12 (17.9)
  Orchiectomy	 6 (8.9)
  Otherb	 7 (10.4)

aGroup 1, Gleason Score <6; Group 2, Gleason Score=7(3+4); 
Group 3, Gleason Score=7(4+3); Group 4, Gleason Score=8; Group 
5, Gleason Score=9 and 10. bOther treatments: Bicalutamide + 
leuprolide + orchiectomy, goserelin + leuprolide, zoledronic acid 
+ leuprolide, goserelin, orchiectomy + docetaxel, and leuprolide + 
goserelin + ketoconazole + prednisolone. ISUP, International Society 
of Urological Pathology. 
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T2DM (44,45). Other studies have presented controversial 
results regarding this comorbidity (46‑48). Previously, our 
research team identified an increased risk of developing 
PCa with Gleason Scores >8 in patients with high glucose 
levels (49). 

Additionally, a significant difference (P=0.028) was 
reported between tobacco use in PCa patients and non‑PCa 
subjects (60.4% vs. 43%, respectively). Several previous 
studies have reported tobacco use as a risk factor for 
developing PCa (50‑52). Smokers have an increased risk of 

Table II. Demographic characteristics of patients with PCa (n=101) and control subjects (n=100).

Demographic characteristic	 PCa cases	 Non‑PCa cases	 P‑value	 OR (95% CI)

Age, median years (IQR)	 70 (64.5‑75.0)	 58.8 (48‑67)	 9.22x10‑15	 1.13 (1.08‑1.17)
PSA, median ng/ml (IQR)	 20.4 (9.65‑62.82)	 8.55 (5.12‑17.71)	 8.29x10‑20	 1.11 (1.07‑1.16)
BMI, median kg/m2	 27.02 (±4.33)	 27.84 (±5.52)	 0.271	 NS
BMI <18.5 (% underweight)	   3.1	   0.0	 NA	 NS
BMI 18.5‑24.9, %	 33.7	 23.1	 0.612	 NS
BMI 25‑29.9, %	 40.8	 44.9	 0.226	 NS
BMI >30, %	 22.4	 32.1	 0.486	 NS
Type 2 diabetes mellitus, %	 20.8	 21.0	 0.732	 NS
Arterial hypertension, %	 38.6	 33.0	 0.694	 NS
Alcohol intake, %	 57.4	 64.0	 0.182	 NS
Smoking habit, %	 60.4	 43.0	 0.028	 1.88 (1.07‑3.31)
Biomass exposure, %	 20.8	   8.0	 0.012	 2.89 (1.21‑6.88)
Family history of prostate cancer, %	 18.8	 12.0	 0.224	 NS
Family history of other cancers, %	 33.7	 29.0	 0.603	 NS

PCa, prostate cancer; OR, odds ratio; CI, confidence interval; IQR, interquartile range; PSA, prostate‑specific antigen; BMI, body mass index; 
NA, not available; NS, not significant. P<0.05 indicates a statistically significant difference.

Table III. Hardy‑Weinberg equilibrium and genotype frequencies of A49T (rs9282858) and V89L (rs523349) variants in cases 
and controls.

	 Fisher's HWE P‑value	 Genotype frequency
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Variant	 Reference alleles	 Cases	 Controls	 Cases (%)	 Controls (%)

A49T (rs9282858)	 [C/T]	 1.90E‑06	 0.005	 T|T: 0.030 (3)	 T|T: 0.010 (1)
				    C|C: 0.970 (98)	 C|C: 0.990 (97)
V89L (rs523349)	 [C/G]	 0.678	 0.999	 C|C: 0.376 (38)	 C|C: 0.448 (44)
				    C|G: 0.455 (46)	 C|G: 0.439 (43)
				    G|G: 0.168 (17)	 G|G: 0.112 (11)

G, guanine; T, thymine, C, cytosine.

Table IV. Association analysis of A49T and V89L variants.

	 Allele frequency
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Variant	 Genetic model	 χ2 FDR	 OR (95% CI)		  Cases	 Controls

A49T (rs9282858)	 Dominant	 0.327	 T, 2.97 (0.30‑29.05)	 C, 0.34 (0.03‑3.29)	 T, 0.03	 T, 0.01
	 Recessive	 0.327	 T, 2.97 (0.30‑29.05)	 C, 0.34 (0.03‑3.29)	 C, 0.97	 C, 0.99
V89L (rs523349)	 Dominant	 0.594	 G, 1.35 (0.77‑2.38)	 C, 0.74 (0.42‑1.30)	 G, 0.396	 G, 0.332
	 Recessive	 0.511	 G, 1.60 (0.71‑3.62)	 C, 0.62 (0.28‑1.41)	 C, 0.604	 C, 0.668

FDR, false discovery rate; OR, odds ratio; CI, confidence interval; G, guanine, T, thymine; C, cytosine.
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developing certain types of cancer, including lung cancer. 
However, it has been recognized that tobacco use may 
contribute toward the development of urological cancer, 
including prostate, bladder, ureters and kidney  (50‑53). 
This could be because chemical compounds released when 
tobacco is burned are distributed from the lung blood vessels 
to other tissues of the body. 

When tobacco is  burned,  it  produces ca rci‑
nogenic compounds,  mainly polycycl ic a romat ic 
hydrocarbons (PAHs) and nicotine‑​derived nitrosamines, 
including N'‑nitrosonornicotine (NNN) and 4‑(methylnitro
samino)‑1‑(3‑pyridyl)‑1‑butanone (NNK). In brief, tumori‑
genesis is caused by the formation of DNA adducts. These 
adducts generate mutations in key cell maintenance genes; 
the NNNs and NNKs may bind to acetylcholine receptors 
and promote events, including proliferation, growth, survival 
and cell migration (54). Furthermore, PAHs may bind to aryl 
hydrocarbon receptors (AHRs), which activate CYP1A1 and 
CYP1B1; the CYPs add an epoxide group to the PAHs, and 
these PHAs‑epoxide complexes may bind to DNA to form 
adducts, which are crucial for tumorigenesis (55).

Notably, there was a significant difference between biomass 
exposure in patients with PCa and that in non‑PCa subjects 
(20.8 vs. 8%; P=0.012; OR=2.89; CI=1.21‑6.88). The Mexican 
population (mainly its Northern population) has a tradition for 
cooking grilled foods and performing other activities, such as 
working for petrochemical, steel and construction industries, 
that generate particles of sizes of <10 µm, or being exposed to 
xenobiotic compounds, including polycyclic aromatic hydro‑
carbons (PAHs) (56). In the present study, the participants 
were surveyed to see with what frequency they cook their 
foods using wood. A previous study demonstrated how the 
exposure to this biomass is associated with the development 
of different types of cancer, primarily lung cancer (57). The 
mechanism by which the biomass compounds promote cancer 
development is unclear, but we hypothesize that it is associ‑
ated with PAHs, primarilybenzo(a)pyrene. Benzo(a)pyrene 
serves a role in the formation of DNA adducts (58), specifi‑
cally in the mutations involving the nucleotide change from 
G to T in the codons 157, 158, 248, and 273 of the TP53 gene, 

with catastrophic consequences according to the IARC TP53 
Database (R20, July 2019) (59). The two risk factors identi‑
fied in the present study associated with benzo(a)pyrene were 
tobacco use and biomass exposure. The risk factor that was 
statistically significant following FDR correction was biomass 
exposure. Stepwise regression was a useful tool to identify this 
risk factor.

There are few studies on biomass exposure and PCa devel‑
opment, the most important of which is the Cancer Prevention 
Studio‑II  (CPS‑II) of the American Cancer Society  (60); 
however, the authors assessed risk factors for lung cancer, so 
the association with PCa was not investigated.

The A49T variant is associated with an increase in the 
activity of the5‑alpha reductase 2 enzyme, which converts 
testosterone to dihydrotestosterone (DHT). This more potent 
metabolite binds to the AR and results in the subsequent acti‑
vation of target genes that promote cell proliferation, inhibition 
of apoptotic signals, and PSA overexpression.

A meta‑analysis published in 2011 by Li et al (19) reported 
a significantly higher risk of developing stage III/IV PCa 
in homozygous variant subjects carrying the A49T variant 
(Thr/Thr allele), using a recessive gene model (P=0.0001; 
OR=2.13; CI=1.44‑3.15) (19). In the present study, no associa‑
tion was identified between SRD5A2 gene variants and PCa. 
The results demonstrated that 3% of subjects were carriers of 
the A49T (Thr/Thr allele) variant and it was not associated 
with PCa development (P=0.327). A limitation of the results 
of the present study is the HW disequilibrium, possibly due 
to the low frequency of this allele or the lack of heterozygous 
individuals in the sampled population (61,62). Future studies 
should include an increased number of analyzed samples to 
verify these results. 

Other ethnic groups, Ecuadorian, African American 
and Latin, had an association with the development of 
PCa and the A49T variant (Thr/Thr allele) (16,63,64). By 
contrast, no association between this allele and PCa was 
identified in analyzes performed on Hispanic and Brazilian 
populations  (65,66). Table  VI shows these previously 
reported genotyping studies and their association with PCa 
development.

Table V. Analysis of rs523349 (V89L) genotypes and clinical features.

		  Grade Gleason Group	 Metastasis	 Benign Prostatic
	 PSA	 ISUP classificationa		  Hyperplasia
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Genotype	 Median ng/ml	 P‑value	 ≤3	 ≥4	 P‑value	 %	 P‑value	 %	 P‑value

VV	 48.46	 0.684	 14.28	 23.47	 0.071	 3.96	 0.492	 20.60	 0.282
VL	 47.53		  33.67	 12.24		  13.86		  18.50	
LL	 53.22		  14.28	 2.04		  2.97		  3.30	
VV+VL	 51.07	 0.655	 26.50	 57.10	 0.125	 17.82	 0.766	 39.10	 0.3040
LL	 47.53		  2.04	 14.30		  2.97		  3.30	
VV	 51.75	 0.134	 14.30	 47.90	 0.125	 3.96	 0.048	 20.60	 0.635
LL+VL	 48.46		  14.30	 23.50		  16.83		  21.70	

aGroup 1, Gleason score <6; Group 2, Gleason score=7 (3+4); Group 3, Gleason score=7 (4+3); Group 4, Gleason score=8; Group 5, Gleason 
score=9 and 10. PSA, prostate‑specific antigen; ISUP, International Society of Urological Pathology; VV, val/val; VL, val/leu; LL, leu/leu. 
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Although patients harboring the A49T variant (Thr/Thr 
allele) were expected to have high PSA levels, the patients in 
the present study with the Thr/Thr genotype had PSA values 
of 5.23, 8.00, and 19.98 ng/ml, possibly due to the tumor 
stage at the time of diagnosis. A more significant number of 
patients would be required to verify if there is any correla‑
tion between these two variables and PCa development in the 
Mexican‑mestizo population.

As for the V89L variant, the homozygous allele variant 
Leu/Leu causes a decrease in the catalytic activity of steroid 
5 alpha-reductase 2, while the homozygous wild‑type Val/Val 
genotype has been associated with PCa development and 
higher Gleason stages.

In 1992, Batista  et  al  (5) measured steroid 5‑alphare‑
ductase  2 activity indirectly by quantifying testosterone 
metabolites in Afro‑American and Asian individuals, finding 
differences attributed to enzyme activity levels; however, 
they did not take into account the genotypes of the analyzed 
subjects (8). This is due to the Leu/Leu allele, and a study in 
the Asian population reported this result with a protective 
effect by decreasing the risk of developing PCa (9).

In the present study, patients with this allele may be 
developing PCa due to other independent metabolic AR path‑
ways, including damage repair DNA genes (67), PTEN (68) 
or TP53 (69). By contrast, the allele Leu/Leu was associated 
with cancer development in genotyping studies of European 
American (70) and Hispanic populations (71). Notably, this 
allele has been associated with PCa with Gleason scores >8 in 
the French population (72) and metastasis (73). 

The present study identified a decreased statistical 
trend with regards to metastatic PCa when analyzing 
carriers of alleles Leu/Leu+Val/Leu vs. Val/Val (P=0.048; 
OR=0.390; CI=0.142‑1.073). To the best of our knowledge, 
there are no reports that directly determined the cause of 
this association, but we hypothesized that it may be due 
to the differential gene expression associated with metas‑
tasis in PCa, including EGR2, EGR3, MTA1, MYBL2 (74), 
SYNPO2, EGR3, RDX, FOXM1  (75), KLF6, MMP9 or 
WNT5A (76). Additionally, when a naïve PCa is treated with 
ADT, its evolution to a metastatic state may be due to other 
transcriptional factors, including GATA2 or FOXA1 (77), 
fusion mutation TMPRSS2‑ERG  (78,79) or AR variants 
(AR‑V7) (80,81).

SRD5A2, CYP17A1, and CYP19A1 are involved in the 
steroid metabolic (GO:0008202) and steroid biosynthetic 
processes (GO:0006694). In Mus musculus, benzo(a)pyrene 
has been associated with the Protein‑Protein interaction 

Network oxidation‑reduction process (GO:0055114; Permanent 
link: http://bit.ly/2jIbOER) (82). The genes involved in this 
network participate in the cytochrome P450‑mediated oxida‑
tion (Cyp17a1, Cyp19a1, Cyp1a2, Cyp21a1, Cyp3a11, Cyp3a13, 
Cyp3a16, Cyp3a25 and Cyp3a41a), and the reduction of 
oestrogens and androgens (Srd5a2, Akr1d1, Hsd17b1 and 
Hsd3b4).

The Val /Val al lele is more common in white 
Hispanic/non‑Hispanic and Ecuadorian populations and 
it has been associated with PCa development; in the 
Mexican‑mestizo population investigated in the present study, 
this association was not found. It has been seen that this allele 
may contribute toward worsening clinical prognosis associ‑
ated with the overall survival, as was described in a previous 
study when comparing the different genetic variants and lower 
AR activity (83).

Table  VII summarizes other genotyping studies of 
V89L and its potential associations with PCa development, 
metastasis, Gleason score, or protective effects against 
PCa (9,63,70‑73,84). 

The analysis performed in the present study demonstrated 
that there was no association between the SRD5A2 rs523349 
genotypes and Gleason scores ≥8; however, there was a 
decreased tendency between patients with metastasis and 
rs523349 genotypes (Val/Val vs. Leu/Leu+Val/Leu; P=0.048; 
OR=0.390; CI=0.142‑1.073).

The clinical prognosis of the cohort of patients with PCa 
included in the present study was associated with 5‑alpha 
reductase 2 variants. However, there are two main limitations: 
i) The present study included patients with localized and meta‑
static disease without discriminating the time of evolution, and 
ii) the type of ADT at the time of enrolment. The first‑line 
treatment of ADT in clinical practice is the administration of 
bicalutamide, as the public medical care does not include new 
generation treatments in Mexico, including enzalutamide or 
abiraterone acetate.

Finally, regarding benign prostate diseases, a meta‑analysis 
undertaken in 2017 by Zeng et al (85) found a risk of devel‑
oping BPH in individuals carrying the A49T variant (OR=2.75; 
CI=1.32‑5.69), but this was not statistically significance 
(P=0.373). By contrast, the results of studies concerning the 
V89L variant and its association with the development of BPH 
and PSA changes have been contradictory (86,87). A previous 
study reported that the Val/Leu+Leu/Leu genotype (P=0.047; 
OR=1.62; CI=1.00‑2.61) was associated with the development of 
this benign condition, but not with the development of PCa (88). 
However, in another study, none of these genotypes were 

Table VI. Clinical effect of A49T (rs9282858) variant in other populations.

Authors, year	 Population	 Effect	 Genotype(s)	 Refs.

Makridakis et al, 1999	 African‑American	 Associated to cancer development	 Thr/Thr	 (16)
Ribeiro et al, 2002	 Brazilian	 Not associated with cancer development	 Thr/Thr	 (65)
Pearce et al, 2008	 Hispanic/African‑American	 Not associated with cancer development	 Ala/Thr	 (66)
Paz‑y‑Miño et al, 2009	 Ecuadorian	 Associated risk of prostate cancer	 Thr/Thr vs. Ala/Thr	 (63)
Fang et al, 2017	 Latino	 Associated with cancer development	 Thr/Thr	 (64)

https://www.spandidos-publications.com/10.3892/ol.2020.12124
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associated with the development of BPH (85). In the future, 
a longitudinal analysis of Mexican patients with this type of 
benign disease should be performed to describe the frequency 
of the different genetic variants and to determine if they have a 
role in the prognosis of PCa as potential biomarkers for person‑
alization of pharmacological treatments using 5 alpha-reductase 
enzyme inhibitors (87).

In conclusion, we identified the allelic frequencies of both 
the A49T and V89L variants of the steroid 5 alpha-reductase 2 
gene in the Mexican population. No association was identified 
between either of the variants and the development of PCa, 
but no increased risk of developing PCa was identified due 
to lifestyle factors, including the exposure to biomass and 
tobacco use. Furthermore, an association between V89L and 
biomass exposure was identified using the dominant gene 
model. Additionally, there was an association between V89L 
and patients with metastasis.

To the best of our knowledge, the present study was the 
first to screen the Mexican population for these variants, 
and one of the focussing on the Latino population. For these 
ethnic groups, molecular characterization of PCa is required 
to improve the understanding of this disease, and to determine 
if the results of molecular characterization studies may serve 
a role in the prognosis of PCa or as potential biomarkers for 
the personalization of pharmacological treatments.
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