
Abstract. The present work proposes a computer assisted
methodology for the effective modelling of the diagnostic
decision for breast tumor malignancy. The suggested approach
is based on innovative hybrid computational intelligence algo-
rithms properly applied in related cytological data contained
in past medical records. The experimental data used in this
study, were gathered in the early 1990s in the University of
Wisconsin, based in post diagnostic cytological observations
performed by expert medical staff. Data were properly encoded
in a computer database and accordingly, various alternative
modelling techniques were applied on them, in an attempt to
form diagnostic models. Previous methods included standard
optimisation techniques, as well as artificial intelligence
approaches, in a way that a variety of related publications
exists in modern literature on the subject. In this report, a
hybrid computational intelligence approach is suggested,
which effectively combines modern mathematical logic
principles, neural computation and genetic programming in an
effective manner. The approach proves promising either in
terms of diagnostic accuracy and generalization capabilities, or
in terms of comprehensibility and practical importance for
the related medical staff.

Introduction

Breast cancer diagnosis consists one of the major fields of
interest in modern oncology, either as part of ongoing
conventional medical research, or through a number of
approaches involving computational analysis and decision
support systems. Computer assisted medical diagnosis gained
increased acknowledgement in related literature during the

last decade, although real-world applications are still at the
research level, rather than forming attractive commercial
products, ready to be embodied in wider hi-tech medical
systems. Nevertheless, the research results are definitely
encouraging, as we are able of construct methodologies
which produce effective generalized diagnostic models and
in some cases can manage even to discover new expert
knowledge, hidden inside past medical records. The proposed
data analysis methodologies vary in literature from standard
optimization techniques and classical statistics, to modern
data mining algorithms and computational intelligence
schemes. Basic presuppositions for applying such data
analysis techniques are the medical doctors' collaboration and
expertise, and also the existence of complete, if possible
computerized, related medical records. Recently, hybrid data
analysis approaches are appearing in literature, trying to
effectively combine more than one known data analysis
methodologies.

In this work, such a hybrid computational intelligence
approach is suggested, combining modern mathematical logic
principles, neural computation and evolutionary computation
in an effective manner. Specifically, the evolutionary metho-
dology guides the formation and the tuning of a neural
computation model, constructing finally an evolutionary
neural logic network (ENLN), described in detail previously
(1). An advanced evolutionary computation approach is used,
namely grammar-guided genetic programming (GGGP), using
cellular encoding. The neural computation model used in this
hybrid intelligent approach is called neural logic network
(NLN). The NLN approach is considered advantageous for
incorporating 3-valued mathematical logic principles. In
other words, ‘true’, ‘false’ and ‘do not know’ values can be
given to related decision concepts and attributes, a feature
which seems to be very close to real-world practice in medical
diagnosis tasks. The NLN uses properly encoded medical
data as input and is being trained on them over time, in order
to produce an effectively generalized decision mechanism,
i.e., the best possible classifier for the given problem. The
effectiveness of the overall architecture depends on the size,
the variety and the reliability of the available past data and
approximately reflects the real frequency distribution of the
suspected cases arrived at hospital to be diagnosed for breast
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cancer. In fact, such a mechanism corresponds to a computer-
based knowledge generation model which reflects high-level
human expertise on specific domains of application (in our
case on breast cancer diagnosis from cytological information).

A significant part of the success of the proposed metho-
dology lies on the proper and systematic preparation, modelling
and repeated experimentation of the applied hybrid intelligent
scheme. The outcome (i.e. the generalized classifier produced)
has the additional advantage to be represented as a set of
readable first-order logic rules. Thus, it is accessible and
interpretable for the medical staff, while it can also be used
as a fast and handy ‘second-opinion’ solution, as it can be
modelled as a single line of code in a personal computer.

Materials and methods

The database of breast cancer patients has been previously
created in the Medical University of Wisconsin (2,3). The
diagnosis is concerned with the classification of a tumor as
benign or malignant. In the past, a part of this data has
been investigated using theory of linear programming (4,5) to
construct a generalized decision model and the diagnostic
accuracy obtained in a total of 169 records ranged between
93.5% and 95.9% depending on tuning details of the system.
In a larger data set coming from the same source (369 records
in total) specific machine learning techniques were applied
(6) in order to form a general decision model for the problem.
In a test set of 169 records (considered as unknown data for
the decision model), the diagnostic accuracy ranged between
92.2% and 93.7% depending again on the system tuning. In
the full data that are now available for experimentation
(699 records), a subset of 458 (65.5%) concern benign
tumors and the rest 241 (34.5%) correspond to malignant
ones. The database features are integer numbers in [1,10]
corresponding to a quantitative characterization of nine
laboratory measurements (T1-T9) of the cells, presented in
detail in Table I. To avoid overfitting during the training phase
of our system, we made use of a validation set. Half (i.e. 50%)
of the total data set were used as training data, two subsets of
25% of the total set each (i.e. 174 cases), were used to form
the validation set, as well as the testing set. All these sets
were created randomly. The split of the entire dataset into

training, testing and validating subsets (usually according to
the abovementioned 50-25-25 analogy), is a common practice
in genetic programming experimentation, instead of using
typical cross validation schemes. This is necessary due to
the fact that each complete GP-training cycle is a very time-
consuming process, growing exponentially with the complexity
and the size of the data set. Finally, note that the missing data
percentage in our case was rather low (≤1‰).

As mentioned above, this study makes use of neural logic
networks and genetic programming. Below, we briefly explain
fundamental concepts of the methods.

The neural logic network (7) is a finite directed graph. It
usually consists of a set of input nodes and an output node. In
its 3-valued form, the possible value for a node can be one of
three ordered pair activation values (1,0) for ‘true’, (0,1) for
‘false’ and (0,0) for ‘do not know’. Every synapse (edge) is
assigned also an ordered pair weight (x,y) where x and y
are real numbers. Different sets of weights enable the
representation of different logical operations (i.e., conjunction,
disjunction, implication, etc.). It is actually possible to map
any rule of conventional knowledge into a neural logic network.
Neural logic networks can be expanded into fuzzy neural
logic networks, enabling this way the handling of real valued
attributes (7). Even though powerful in their definition, neural
logic networks are not widely applied. The main reason can
be located in the fact that for the known training methodo-
logies (7,8), the refinement of the edge weights reduces
significantly the interpretability of these networks to expert
rules, thus depriving these networks from their valuable feature.
Some steps for the preservation of the interpretability have
been performed by Chia and Tan (9), without however the
ability to express arbitrarily large and connected neural logic
networks.

The ability to construct functional trees of variable length
is a major advantage of genetic programming over genetic
algorithms. This property enables the search for very complex
solutions that are usually in the form of a mathematical
formula - an approach that is commonly known as symbolic
regression. Later paradigms extended this concept to calculate
any Boolean or programming expression. Consequently,
complex intelligent structures, such as fuzzy rule-based
systems or decision trees have already been used as the
desirable target solution in genetic programming approaches
(10-13). The main qualification of this solving procedure is
that the feature selection, and the system configuration,
derive in the searching process and do not require any human
involvement. Moreover, genetic programming is capable of
avoiding local minima. The potential gain of an automated
feature selection and system configuration is obvious; no
prior knowledge is required and, furthermore, not any human
expertise is needed to construct an intelligent system.
Nevertheless, the task of implementing complex intelligent
structures into genetic programming functional sets is not
straightforward. The function set that composes an intelligent
system retains a specific hierarchy that must be traced in the
GP tree permissible structures, thus: a) avoiding meaningless
candidate solutions, and b) reducing the search space to valid
solutions solely. This approach, known in literature as legal
search space handling method (14), has been implemented in
this work using context-free grammars.
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Table I. Input features of the breast cancer database.
–––––––––––––––––––––––––––––––––––––––––––––––––
Variable Feature Value range
–––––––––––––––––––––––––––––––––––––––––––––––––

T1 Clump thickness 1-10 

T2 Uniformity of cell size 1-10 

T3 Uniformity of cell shape 1-10

T4 Marginal adhesion 1-10

T5 Single epithelial cell size 1-10

T6 Bare nuclei 1-10

T7 Bland chromatin 1-10

T8 Normal nucleoli 1-10

T9 Mitoses 1-10
–––––––––––––––––––––––––––––––––––––––––––––––––
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The genetic programming procedure might prove greedy
in computational and time resources. Consequently, when
the syntax form of the desired solution is already known, it
is useful to restrain the genetic programming from searching
solutions with different syntax forms (15,16). The most
advantageous method to implement such restrictions among
other approaches (17) is to apply syntax constraints to genetic
programming trees, usually with the help of a context-free
grammar declared in the Backus-Naur-Form (BNF) (18). The
BNF-grammar generally consists of terminal nodes and non-
terminal nodes. Although mapping decision trees or fuzzy
rule-based systems to specific grammars can be relatively easy
to implement, the execution of massively parallel processing
intelligent systems - such as the neural logic networks - is not
forthright. In order to explore variable sized solutions, we
applied indirect encoding. The most common one is the
cellular encoding (19,20), in which a genotype can be realized
as a descriptive phenotype for the desired solution. More
specifically, within such a function set, there are elementary
functions that modify the system architecture together with
functions that calculate tuning variables. Current imple-
mentations include encoding for feed forward and Kohonen
neural networks (21,22) and fuzzy Petri-nets (22,23).

The general procedure followed by the suggested methodo-
logy, is shown in Fig. 1. The decision task for the given medical
problem and the available data, are properly formulated and
encoded, with the BNF grammars and cellular encoding
principles, in order to be used by the genetic programming
generalization mechanism. The training phase then initiates
for the construction of an efficient neural logic network.
The process evolves over time, until the best possible neural
logic network architecture is found for the given training
and test data. Then the output is transformed into specific
logical rules and related medical knowledge. A more detailed
description of the ENLN methodology can be found in refs.
1,24. As mentioned above already, the programming functions
implemented by the ENLN correspond to known logical
operators of first or higher order logics, such as conjunction,
disjunction, equivalence, majority, at least-k property, etc.

Specifically, a variety of functions have been defined and
implemented, like PROG, S1, S2, P1, P2, IN, E, LNK, CNR,
NUM, CUT, K, CNRSEL, etc., whose operation in the phase
of design and operation of an ENLN, is briefly explained in
Table II.

Results

To avoid over-fitting during the ENLN training phase, a
validation set was used. The extracted solution achieved
accuracy 94.25% (164/174) in unknown data (test set). The
accuracy in the training set and in the validation set was
97.99% (341/348) and 97.12% (169/174) correspondingly.
The extracted solution in prefix notation is shown in the
last row of Table II and corresponds to a sequence of
interdependent logical rules connected with brackets as
logic programming expressions. Note that the final decision
result is formed during three phases: first the ENLN-output is
produced in prefix notation, then the graphical representation
of the ENLN takes place, and finally the following logical
rules are formed: Q1 ← conjunction (T2, T6, T8); Q2 ← priority
(Q1); Q3 ← k-majority (T5); Q ← conjunction (Q1, Q2, Q3, T1,
T2, T3, T5, T6, T7).

The above solution was extracted after 26000 iterations
of the entire algorithmic scheme. The first logical operation
named conjunction denotes simultaneous satisfaction of
conditions existing for the involved attributes. The second
operation checks priority among the specific attributes
involved. The operation k-majority examines specific
conditions for the involved attributes and becomes true
when the majority of them are true. In the above solution
priority and k-majority work as operations that de-amplify
the processed input. The final conjunction is very important
for the production of the final decision. The attributes
included in this conjunction (T1, T2, T3, T5, T6, T7) are
considered necessary for the final decision, the same as
attribute T8 appeared in the first rule. Attributes T4 and T9
do not appear at all in the final solution. A detailed study of
the graphical representation of the ENLN in relation to the
acquired rules, leads to the conclusion that T3 is the most
important attribute for forming the final diagnosis. The detailed
information for reading the above result can be found in refs.
1,24,25.

Discussion

Note that the proposed ENLN system obtains a very high
diagnostic accuracy compared to other approaches found in
literature, Thus, it can be directly used by medical experts as
a ‘black-box’ diagnostic engine for performing an assisting
second opinion diagnosis, through a proper interface that
presents this result in a more readable and ready-to-use way.
As the reader can observe, the total outcome and thus, also
the extracted decision rules are rather complicated to be
analyzed and discussed in deep detail. Nevertheless, a number
of interesting points can be observed.

Only 15 complete diagnostic paths, consisting of one to
five premise parts, are adequate to describe the whole set of
cases (700 past diagnoses of individuals) and produce a
generalized network of inference that can diagnose correctly
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Figure 1. The ENLN methodology.
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almost 19 out of 20 new cases arriving to a hospital with the
suspicion of breast cancer. Input information for diagnosing
each case, will have to be the cell measurements T1 to T9.
Knowing that the diagnostic capability of a medical expert
exceeds 95%, the second opinion provided by the ENLN
system, if agrees with the opinion of the expert, in fact ensures
a secure diagnosis. On the other hand, when disagreement
exists between the expert and the system, more attention
should be paid in the case of under diagnosis.

Cell characteristics T1, T2 and T7 (clump thickness,
uniformity of cell size and bland chromatin) appear more
often in the entire rule set and thus, seem to be the very
important for differentiating among healthy and cancerous
cases, the same as T3 and T6 (uniformity of cell shape and
bare nuclei). Characteristics T5 and T8 (single epithelial cell
size and normal nucleoli) appear only in one decision path of
the produced rule set and seem to play a secondary role in the

diagnostic process. Nevertheless, after analysing more
carefully the entire rule set, we arrived at the conclusion that
attribute T3 (i.e. cell characteristic denoted as ‘uniformity of
cell shape’), proves to be the most important of all in
extracting the diagnosis, due to its position and influence in
most diagnostic rule paths (for more details in reading and
understanding the produced ENLN decision rules, see ref.
24). The finding agrees with the related literature, as lesions
that consist of uniform or relatively uniform cells are lesions
with good differentiation and generally display a low
invasive potential. Such examples are cribriform and
micropappilary DCIS. Lesions which contain cells that are
not uniform are more poorly differentiated such as comedo-
carcinoma.

The most interesting result drawn from the application of
ENLN on the breast tumor data-set, seems to be the exception
of two features, the ‘marginal adhesion’ (T4) and the ‘mitoses’
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Table II. Brief description of the ENLN-function set used and presentation of the final solution obtained for the breast cancer
diagnosis problem.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Function PROG/CNLN Consists always the initial node of a tree. Creates the embryonic network, 

later used by S1, S2, P1, P2, to be expanded

Function S1 Enters a node in serial to the node that is applied, and is applied to input nodes

Function P1 Enters a node in parallel to the node that is applied, and is applied to input nodes

Function S2 Enters a node in serial to the node that is applied - is used for hidden layer nodes

Function P2 Enters a node in parallel to the node that is applied, and is also used for hidden layer nodes. This
mechanism is used to ensure that population individuals will include at least one input node

Function IN Assigns a variable to the input node that it is applied

Function E The operation of function E is to mark the end of the expansion of the network

Function LNK Provides the framework for the application of cut function. It enables the non-full 
connectivity of the network, a feature that offers larger solution search space

Function CNR/rule Performs the node inference. Based on the first parameter, the corresponding calculation
is performed. The second parameter assists the calculation for the at-least-k and 
majority-of-k operators. It can process any real valued variables

Function NUM Returns an integer in the interval [1, 256] to be used by the calling LNK function

Function CUT Returns an integer in the interval [0, 1] to be used by the calling LNK function. 
If the returned value is 1, then the link will be ignored in the calculations 

Function CNRSEL Returns an integer in the interval [0, 8] to be used as first parameter of the CNR

Function K Returns an integer in the interval [1, 256] to be used by the CNR function, 
if CNRSEL returns 3, 4 or 6 (corresponding to the calculation of the at least 
k-true, at least k-false and majority of k functions)

Solution obtained for CNLN (P1 (P1 (IN T3) (S1 (IN T7) (RULE 0 0) E)) (P1 (P1 (P1 (P1 (P1 (IN T1)
breast cancer diagnosis (S1 (IN T5) (LINK 257 2 (RULE 6 6)) E)) (S1 (S1 (IN T2) (LINK 115 0 (LINK

179 0 (RULE 0 0))) E) (LINK 115 0 (RULE 0 0)) E)) (S1 (IN T6) (RULE 0 0) E))
(P1 (S1 (IN T1) (RULE 0 0) (S2 E (RULE 0 0) (S2 E (RULE 0 0) E))) (S1 (P1
(S1 (IN T2) (RULE 0 0) (P2 (S2 E (RULE 0 0) E) (RULE 0 0) E)) (P1 (IN T8)
(S1 (IN T6) (RULE 6 6) E))) (RULE 0 0) (P2 E (RULE 0 0) (S2 (S2 E (RULE 2
4) E) (RULE 0 0) E))))) (P1 (P1 (IN T3) (S1 (IN T7) (RULE 0 0) E)) (P1 (P1 (IN
T1) (IN T7)) (S1 (IN T2) (LINK 115 0 (RULE 0 0)) E))))) (RULE 6 6))

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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(T9), which are not included in the list of features having
highly diagnostic value. Regarding the exclusion of the
‘marginal adhesion’ feature, this corresponds to the already
known medical knowledge that there is a macromolecule
on the surface of the cells, which is only found on intraductal
carcinoma cells (IDC). Given the fact that 90% of intralobular
carcinoma cells (ILC) and also all normal cells do not exhibit
this feature, marginal adhesion cannot be used to differentiate
between benign and malignant cells, since most of the lobular
cancers do not exhibit this feature. Regarding the exclusion
of the ‘mitoses’ feature, both, benign and malignant tumors
display a degree of cell proliferation, which is higher and
atypical in malignant lesions as it is known in literature.
However, low-grade malignant lesions such as DCIS grade I
and II, display a similar rate of cell proliferation to certain
benign conditions, such as sclerosing adenosis and atypical
ductal hyperplasia, thus making it difficult to discriminate
between benign and malignant tumors using this feature.

Collaborative expert medical staff that studied and analyzed
the ENLN results from the medical viewpoint, stated that the
phase of preprocessing the data might be of major importance,
as it involves human intelligence and expertise in the proper
‘case by case’ modeling of the problem under consideration.
Thus, such a method that combines human and machine
attitudes might be superior to other competitive automated
techniques for image analysis, signal processing, etc.

Concluding, the ENLN methodology can effectively
model and automate the diagnostic mechanism for large,
vague, complicated domains of medical interest such as
breast cancer diagnosis, based on data extracted from
available past medical records. ENLN consist an efficient
generalization methodology as they are trained, validated and
tested in both, known and unknown cases, avoiding the
danger of over-fitting on the training data set. Furthermore,
the proposed methodology can uncover possible relations
existing within the data set, performing as an advanced pre-
statistic knowledge discovery process. Future work includes
an additional breast cancer data collection, for the further
statistical investigation of the hypothesis for the major
importance: a) primarily of clump thickness, uniformity of
cell size and bland chromatin, and b) secondarily of
uniformity of cell shape and bare nuclei, regarding breast
cancer diagnosis from cell characteristics. Data regarding
breast tumor malignancy diagnosis used in this study were
taken from Hettich et al (26).
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