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Abstract. This study addresses the breast cancer diagnosis
and prognosis problem by employing two neural network
architectures with the Wisconsin diagnostic and prognostic
breast cancer (WDBC/WPBC) datasets. A probabilistic
approach is dedicated to solve the diagnosis problem, detecting
malignancy among cases (instances) as derived from fine
needle aspirate (FNA) tests, while the second architecture
estimates the time interval that possibly contains the right
endpoint of disease-free survival (DFS) of the patient. The
accuracy of the neural classifiers reaches nearly 98% for the
diagnosis and 93% for the prognosis problem, while the
prognostic recurrence predictions were evaluated using
survival analysis through the Kaplan-Meier approximation
method. Both architectures were compared with other similar
approaches. The robustness and real-time response of the
proposed classifiers were further tested over the web as a
potential integrated web-based decision support system.

Introduction

According to the American National Cancer Institute, it is
estimated that 13.4% of women born today will be diagnosed
with breast cancer at some time in their lives (1,2). For the
diagnosis of breast cancer cases and prognosis of disease,
many techniques have been proposed. Surgical biopsy can
confirm malignancy with high-level sensitivity, but is
considered a costly operation and has a negative impact on
the psychology of the patient. Towards these considerations,
machine learning techniques aim to provide the same level
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of accuracy, without the negative aspects of surgical biopsy
(3-11).

This study addresses the breast cancer diagnosis and
prognosis problem using the Wisconsin diagnostic breast
cancer (WDBC) and Wisconsin prognostic breast cancer
(WPBC) datasets, which are publicly available via an
anonymous ftp (12). These datasets involve measurements
taken with the fine needle aspirate (FNA) test. The role of
diagnosis is to provide a distinction between malignant and
benign breast masses. If a patient is diagnosed with breast
cancer, the malignant mass must be excised. After the
operation, the expected course of disease must be determined.
However, prognostic prediction does not belong to the
classic learning paradigms of function approximation or
classification. This is because a patient can be classified as a
‘recurrence’ case (instance) if the disease is observed, but
there is no threshold point at which the patient can be
considered a ‘non-recurrence’ case. The data are therefore
censored since the time-to-recurrence for only a selected
subset of patients is known. For other patients, the length of
time after treatment during which malignant masses are not
found is known. This time interval is the disease-free
survival (DFS) time, which can be reported for an individual
patient or a study population. In particular, the right endpoints
of the recurrence time intervals are censored, as some
patients will inevitably change hospital or doctors or die of
causes unrelated to the cancer. Therefore, the training dataset
for the learning phase is not well-defined. Several groups
have approached prognosis as a separate problem using
different architectures, such as back-propagation artificial
neural networks (13), entropy maximization networks
(14,15) decision trees (16) and fuzzy-based measurements
(17).

Materials and methods

The WDBC and WPBC datasets are the result of efforts
made at the University of Wisconsin Hospital for the diagnosis
and prognosis of breast tumours solely based on the FNA
test. This test involves fluid extraction from a breast mass
using a small-gauge needle, then a visual inspection of the
fluid under a microscope.
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Table I. WDBC/WPBC cell nuclei characteristics/attributes.

1. Radius (mean of distances from centre to points on the
perimeter)

. Texture (standard deviation of grey-scale values)

. Perimeter

Area

. Smoothness (local variation in radius lengths)

. Compactness [(perimeter)*/area) - 1]

. Concavity (severity of concave portions of the contour)

. Concave points (number of concave portions of the contour)

. Symmetry

. Fractal dimension (‘coastline approximation’ - 1)

—
(=)

This paper proposes two neural network architectures to
address the breast cancer detection/prognosis problems. The
first is a probabilistic classifier that can detect malignancy,
while the second architecture consists of a probabilistic
neural network that employs a generalised regression
algorithm, estimating the recurrence time (TTR; time-to-
recurrence) and the period in which the patient exceeds her
disease-free survival (DFS) time. The prognosis of the
specific time interval is considered difficult since the training
data are right censored (13,14,18,19).

The Wisconsin breast cancer datasets. The Wisconsin
diagnostic breast cancer (WDBC) dataset consists of 569
instances (357 benign and 212 malignant), where each
represents FNA test measurements for one diagnosis instance.
For this dataset, each instance has 32 attributes, with the
first 2 attributes corresponding to a unique identification
number and diagnosis status (benign/malignant). The
remaining 30 features are computations for 10 real-valued
features, along with their mean, standard error and the mean
of the three largest values (‘worst’ value) for each cell
nucleus, respectively. These 10 real values, which are
depicted in Table I, are determined from a digitised image of
a fine needle aspirate (FNA) from the breast tumour, describe
characteristics of the cell nuclei present in the image and are
recorded with four significant digits.

The Wisconsin prognostic breast cancer (WPBC) dataset
consists of 198 instances (151 non-recurrences and 47
recurrences), where each represents follow-up data for one
breast cancer case. These were consecutive in-patients at the
University of Wisconsin Hospital from the period of 1984 to
1995 and include only those cases exhibiting invasive breast
cancer and no evidence of distant metastases at the time of
diagnosis. Each instance has 35 attributes, with the first 3
attributes corresponding to a unique identification number,
prognosis status (recurrence/non-recurrence) and DFS time
or time-to-recurrence (TTR) in months, respectively. They
follow the above-mentioned 30 features, and the last 2
attributes are the diameter of the excised tumour (in cm) and
number of positive axillary lymph nodes observed at the time
of surgery.

Both WDBC and WPBC datasets were used in several
published studies in medical literature (10,16,20-23). In
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addition, due to their consistency and robust creation, these
datasets have also been used to measure the classification or
predict the performance of information systems in other
scientific areas (24,25).

The proposed neural network architectures. For the diagnosis
problem, the proposed neural network belongs to the
probabilistic type (probabilistic neural network; PNN), since
this kind of network presents a high-generalisation ability
and does not require a large amount of training data (26,27).
The PNN decides whether the input corresponds to a benign
or malignant case.

Topology of the diagnosis neural network (DiagNN) was
31-568-2. The input layer consists of 31 nodes, which
correspond to diagnosis status, followed by the 30 calculated
values (mean, standard error and ‘worst’ value) from the
digitised image of each instance. The second layer is the
middle/pattern layer, which organises the training set so that
an individual processing element represents each normalised
input vector. Therefore, it consists of 568 nodes, which
correspond to the total amount of WDBC instances except
for one that is used to test each training epoch according to
the jacknife test method. Finally, the network has an output
layer consisting of 2 nodes, representing the decision of
malignancy or not.

For the prognosis problem, the neural network belongs to
the generalised regression type (Generalised Regression
Neural Network, GRNN). These neural networks have the
special ability to deal with sparse and non-stationary data
where non-linear relationships exist among inputs and
outputs. The role of the neural network is to calculate a time
interval that corresponds to a possible right endpoint of
patient DFS time.

Topology of the prognosis neural network (ProgNN) was
14-193-z-z. The input layer consists of 14 nodes, where each
node corresponds to the prognosis status, TTR or DFS time,
10 cell nuclei characteristics/attributes of Table I, diameter of
the excised tumour and number of positive axillary lymph
nodes observed at the time of surgery. Due to the small
amount of WPBC instances and to avoid the ‘curse of
dimensionality’ problem, the standard error and ‘worst’
values from the 10 real-valued features were removed during
the training phase. Four instances were not included in the
training/testing set since their lymph node values were
missing. Thus, the second layer consists of 193 nodes, which
correspond to the total amount of patterns for the training
epoch according to the leave-one-out method. Finally, the
summation/division layer consists of z nodes that feed the
same amount of processing elements in the output layer, and
represent the classified time intervals that correspond to a
possible right endpoint of DFS time.

Results

The training set of the DiagNN consists of the WDBC
dataset, and its role is to classify an instance as benign or
malignant. The quality of prediction was examined using the
jacknife test in which each instance was singled out as a test
instance, with the remaining instances being used to train the
neural network.
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The mean time needed for the completion of one training
epoch in a Pentium V at 3 GHz with 1024 MB RAM was
14.4 sec, while for a T1 connection at 1.544 MBps with the
same computational power, the respective training time
needed from a remote client was 23.1 sec. Equations 1 and 2,
outline the Akaike's information criterion (AIC) as well as
the Rissanen's minimum description length (MDL) during the
training period. Values Id;; - y;| correspond to the distances
among the desired and actual network output for the ith
testing instance (exemplar) residing at the j™ processing
element of the middle layer.

AIC(k)=N*In(MSE)+2*K 1))

MDL(k)=N*In(MSE)+0.5*K*In(N) (2)

P N 5
I ACIES A
where MSE = £=L=
N-P
In the above criteria, P is equal to the number of output
processing elements (malignant/positive-benign/negative;
P=2), while N and K define the amount of exemplars in the
training set and number of network weights, respectively
(N=568 and K=18744). AIC measures the trade-off between
training performance and network size, while MDL combines
the error of the model with the number of degrees of freedom
for determining the level of generalisation. The aforementioned
indicators were used to fine-tune the mean and variance biases
of the respective local approximators and produce a confusion
matrix with the best possible values in the diagonal cells. The
condition that must be fulfilled is the stabilisation of AIC and
MDL over the 3 coefficient, where {=1/2¢? and o represents
the standard deviation of the Parzen estimator expressed by:

This estimator is used as a Bayesian classifier at the
middle layer, where 7 is the total sample size, x and y; are the
input and sample points, and W is the weighting function.
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Table II. Testing phase confusion matrix (Diag NN, 2 classes).

Tested
DiagNN Positive Negative
. 209 3
Malignant (TP) (FN)
Actual
Beni 7 348
enign (FP) (TN)
Sensitivity Specificity
P ™N
(100 * )% = 98.58% | (100 * ———— )% = 98.03 %
P + FN TN + FP
Predictive value (positive) Predictive value (negative)
TP ™N
¥ )% = 97.76 % 100 * —————)% = 99.14%
A ( wWrrN
Efficiency

TN + TP
TP + TN + FP + FN

(100 * )% = 97.89 %

It was evaluated that the neural network was not properly
trained when 0.1<f<1, due to large mean square error (MSE)
value and therefore large AIC and MDL values. Conversely,
MSE was significantly decreased when =1, revealing
acceptable percentage values in the diagonal cells of the
training confusion matrix. However, further investigation of
the influence of /5 in the learning ability of the classifier
exposed that MSE and AIC/MDL values were increased
when 1<f<3, then further reduced when 3<f3<100. Finally,
for =100, the AIC/MDL criteria were stabilised (AIC =19615
and MDL =41621), satisfying in parallel the optimisation
condition SMDL/3f3 =0. Therefore, during the training
period, the ‘beta’ coefficient for all local approximators of
the middle layer was set equal to 100 (=100), while the
mean and variance values of the randomised biases were
equal to 0 and 0.5. These fine-tuning measurements are
depicted in Fig. 1.

Table II presents the true positive (TP), false positive
(FP), true negative (TN) and false negative (FN) results.
Thus, having an a priori known set of 357 benign and 212
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Figure 1. MSE/AIC/MDL over the beta (f3) coefficient (DiagNN).
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malignant instances, the neural network successfully
identified 348 instances as negative and 209 instances as
positive. According to these observations, Table II presents
the sensitivity, specificity and efficiency of the DiagNN, as
well as the predicted values of a positive/negative test result.
Sensitivity, specificity and efficiency outline the percentage
of patients and healthy subjects recognised by the DiagNN
and the percentage of patients and healthy subjects correctly
classified on the basis of test results. Efficiency also
corresponds to the average precision or overall performance
of the system. Finally, the predicted values of positive and
negative test results define the percentage of patients among
instances that were correctly classified as positive (malignant)
and negative (benign) on the basis of test results. The time-to-
decision by the system for each test instance was measured
at 2.3 sec (mean value) with an additional delay of nearly
0.5 sec for the web-based system.

The training set of the ProgNN consists of WPBC data
divided into four classes, namely C,, C,, C; and C,, and
topology of the neural network was 14-193-4-4. This
categorisation was made according to the value of the third
attribute, which indicates the TTR or DFS time. Thus, C,
corresponds to the instances where DFS/TTR <1 year
(20 recurrence/23 non-recurrence), while C,, C, and C,
correspond to time intervals where 1< DFS/TTR <3 years
(14 recurrence/34 non-recurrence), 3< DFS/TTR =<6 years
(7 recurrence/48 non-recurrence) and DFS/TTR >6 years
(5 recurrence/43 non-recurrence), respectively. The required
training time for the local classifier was 53 sec, and that for
the client-server architecture was 68 sec.

The total WPBC instances were presented to the network
in a round-robin manner and leave-one-out method, and
training ended before the average testing error on the left-out
cases began to increase. The total prediction accuracy or
efficiency (TP) and the prediction accuracy or precision (P)
for each location were calculated to assess the prediction
system according to equations 3 and 4:

4

ZPk

TP = k=1
N

p=Pr )
s

3

In the above equations, N is the total number of sequences
(NR+NN), k is the respective class, n, is the number of
instances in class k and p, is the number of correctly predicted
instances in class k.

The accuracy of prediction using leave-one-out tests for
the WPBC instances and categorized time intervals are
depicted in Table III, which corresponds to the testing
confusion matrix for the addressed problem. The confusion
matrix is defined by labelling rows with the desired
classification and columns with the predicted classifications,
and displaying values where each corresponds to the
percentage of effect that a particular input has on a particular
output. The diagonal cells correspond to the correctly
classified instances for each class respectively, while the
other cells show the misclassified instances. Every row
expresses the ability of the system to produce the correct
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Table III. Testing confusion matrix (Prog NN, 4 classes).

Predicted
ProgNN Cl C2 C3 C4  Precision
Actual
Cl 39 2 1 1 90.69%
Cc2 1 44 1 2 91.67%
C3 1 1 51 2 92.72%
C4 1 1 1 45 93.75%
Recall 9286% 91.67% 9444% 90.00%

Overall performance = 92.27%

Cl, DFS/TTR =<1 year; C2, 1< DFS/TTR =<3 years; C3, 3<
DFS/TTR =<6 years; C4, DFS/TTR>6 years.

classification over a tested time interval. The precision rates
for the four time intervals were 90.69%, 91.67%, 92.72% and
93.75%, while the respective recall rates were 92.86%,
91.67%, 94.44% and 90.00% (overall performance = 92.3%).
The terms precision and recall correspond to the sensitivity
and predictive value of a tested class, respectively. Finally,
the mean times needed for the decision over a tested instance
was slightly higher compared with the DiagNN classifier,
measured at 3.8 sec (locally) and 4.4 sec (web-based
architecture).

Discussion

We compared the results derived from the proposed study
with similar techniques that aim to solve the Wisconsin
breast cancer problem. These techniques come from neural
networks (28-30), support vector machines-decision trees
(31), fuzzy logic-based approaches (32,33) and Ant Colony
Optimization algorithms (34). Among them, the DiagNN
presented the second best efficiency rate over the WDBC
dataset (97.9% efficiency). A hybrid approach of neural
network with fuzzy logic-based rules (Feature Space Mapping)
presented a slightly better value (efficiency, 98.3%) (30-33).
The third best performance (97.2%) was achieved by a
Support Vector Machine approach, where the authors used a
5-fold cross validation over the WDBC dataset (31). Table IV
summarizes the performance rates of the current and other
proposed methods addressing the Wisconsin diagnosis breast
cancer problem. Generally, neural network-based methods
presented better efficiency values in comparison to other
approaches, especially when these approaches were used as
stand-alone classification systems (e.g. decision trees, fuzzy
logic-based rules and Bayesian classification techniques).
Ant Colony Optimization algorithms (Ant_Minerl and
Ant_Miner2) presented significantly lower efficiency rates
(33), while the Quadratic Discriminant Analysis presented
very poor efficiency (29).

Concerning the prognosis problem, the recurrence
predictions made by the ProgNN were further examined
using survival analysis. The cases were divided into four
aforementioned time intervals according to the predicted
DEFS time. The actual recurrence probabilities of these four
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Figure 2. Survival analysis of the predicted DFS curve compared to the
actual DFS curve. y-axis, DFS time probability; x-axis, time in months.
Dataset: WPBC; predicted DFS <1 year, 1< predicted DFS <3 years, 3<
predicted DFS <6 years, and predicted DFS >6 years.
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Figure 3. Kaplan-Meier DFS time probabilities based on the predicted TTR.
y-axis, DFS time probability; x-axis, time in months. Dataset: WPBC;
predicted TTR <2 years, 2 years <predicted TTR <5 years, and predicted
TTR =5 years.

Table I'V. Overall performance rates of several Wisconsin breast cancer problem techniques.

Diagnosis method Efficiency (%) Reference
Feature space mapping 98.3 (29,32)
DiagNN (minimize  over AIC/MDL) 97.9 This study
Support vector machine (5xCV) 972 (30)
3-NN standard Manhattan 97.1 27
kNN with DVDM distance 97.1 (27)
21-NN standard Euclidean 96.9 27
Fisher's linear discriminant analysis 96.8 (28)
Multi-layer Perceptron/back propagation 96.7 (28)
LVQ 96.6 (28)
kNN, Euclidean/Manhattan 96.6 (28)
NB - naive Bayes 96.4 (28)
C4.5 (decision tree) 96.0 3D
Linear discriminant analysis 96.0 (28)
OC1 DT (5xCV) 959 (30)
GTO DT (5xCV) 95.7 (30)
Assistant I tree (ASI) 95.6 (28)
Rule induction over approximate classification 95.0 3D
Assistant R tree (ASR) 94.7 (28)
Lookahead feature construction binary tree 944 (28)
Ant_Miner3 94 .32 (33)
C4.5 (5xCV) 934 (30)
Ant_Minerl 92.6° (33)
Quadratic discriminant analysis (QDA) 34.5 (28)

“Mean value.

time intervals were then assembled using the Kaplan-Meier
approximation. Fig. 2 presents the survival analysis of the
predicted DFS curve produced by the ProgNN compared to
the DFS curve of actual WPBC dataset instances. The y-axis
corresponds to the probability of DFS time, and the x-axis
corresponds to the time in months.

The two curves are almost identical for the time intervals
of 0-11, 20-28, 40-58 and 80-88 months. The remaining
predictions were similar except for the predictions made for

the period of >90 months. Thus, despite the fact that the
ProgNN had better precision level values for the classes that
correspond to longer DFS periods (Table III), the survival
analysis of the predicted results showed no significant
statistical differences for shorter DFS times. This is caused
by the ‘unfair’ division of the learning set over the categorized
intervals and the fact that the range of the predicted interval
elongates for longer DFS periods (classes C1, C2, C3 and C4
correspond to 12, 24, 36 and nearly 50 months, respectively).
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Table V. Testing confusion matrix (Prog NN - 3 classes).

Predicted
ProgNN Dl D2 D3 Precision
Actual
D1 63 2 4 91.30%
D2 2 55 2 93.22%
D3 1 3 66 94.29%
Recall 9545% 91.67% 91.67%

Overall performance = 92.92%

D1: DFS/TTR <2 years; D2, 2< DFES/TTR <5 years; D3, DES/TTR
>5 years.

In a similar approach, the predicted probability of DFS
values presented higher levels compared to the actual data,
without important statistical differences (35). However, this
is undesirable in problems with prognosis since the end of
DEFS time may correspond to a possible recurrence of disease.
This means that the predicted DFS time curves derived from
the ProgNN more adequately addresses the Wisconsin breast
cancer prognosis, since the predicted probabilities for the
right endpoint of patient DFS time is lower than the actual
ones in most time intervals.

On the other hand, if the predicted right endpoints are
considered possible TTR points, then the curves depicted in
Fig. 3 present the Kaplan-Meier DFS time probabilities based
on the predicted TTR. However, in this case, the ProgNN
classified the predicted instances into three time intervals of
predicted TTR <2 years (29 recurrence/40 non-recurrence),
2 years < predicted TTR <5 years (13 recurrence/46 non-
recurrence) and TTR =5 years (5 recurrence/65 non-
recurrence), and thus its topology was 14-193-3-3. Table V
shows the respective testing confusion matrix (classes DI,
D2 and D3). The precision rates for the three classes were
91.30%, 93.22% and 94.29%, while the respective recall
rates were 95.45%, 91.67% and 91.67%. The overall
performance reached a level of 93%. All training and testing
methods were similar to the methods described in Results.
The selection of these intervals were made to compare the
ProgNN results with a previous study where the recurrence
rate was nearly 30% at 2 years and 10% recurrence up to
5 years (36). After the training phase, the respective recurrence
rates outlined by the ProgNN (Fig. 3) shows a significant
improvement when the prediction was <2 years (the
recurrence rate reached 50%), while instances with a
predicted TTR of >5 years presented similar recurrence rates
compared to those of a previous study (36). For this
topology, the time needed for the training phase of the
ProgNN was 46 sec for the local classifier and 58 sec for the
web-based architecture. The mean time required for the
decision response was 3.2 and 3.7 sec, respectively.

References

1. http://seer.cancer.gov/cgi-bin/csr/1975_2001/search.pl#results,
Estimated New Cancer Cases and Deaths for 2004.

2.
3.

ANAGNOSTOPOULOS et al: WISCONSIN BREAST CANCER PROBLEM

U.S. National Institutes of Health, National Cancer Institute.
http://cancernet.nci.nih.gov/

Wang TC and Karayiannis NB: Detection of microcalcifications
in digital mammograms using wavelets. IEEE T Med Imaging
17: 498-509, 1998.

4. Huo Z, Giger M, Vyborny C, Wolverton D, Schmidt R and Doi K:

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Automated computerized classification of malignant and benign
mass lesions on digital mammograms. Acad Radiol 5: 155-168,
1998.

. Cheng HD, Lui YM and Freimanis RI: A novel approach to

microcalcification detection using fuzzy logic technique. IEEE
T Med Imaging 17: 442-450, 1998.

. Pendharkar PC, Rodger JA, Yaverbaum GJ, Herman N and

Benner M: Association, statistical, mathematical and neural
approaches for mining breast cancer patterns. Expert Syst Appl
17: 223-232, 1999.

. Setiono R: Generating concise and accurate classification

rules for breast cancer diagnosis. Artif Intell Med 18: 205-219,
2000.

. Chen D, Chang RF and Huang YL: Breast cancer diagnosis

using self-organizing map for sonography. Ultrasound Med Biol
26: 405-411, 2000.

. Giger M, Huo Z, Kupinski M and Vyborny C: Computer-aided

diagnosis in mammography. In: Handbook of Medical Imaging.
Sonka M and Fitzpatrick J (eds). SPIE Press, pp917-986, 2000.
Tourassi GD, Markey MK, Lo JY and Floyd CE Jr: A neural
network approach to breast cancer diagnosis as a constraint
satisfaction problem. Med Phys 28: 804-811,2001.
Maglogiannis I, Pavlopoulos S and Koutsouris D: An integrated
computer supported acquisition, handling and characterization
system for pigmented skin lesions in dermatological images.
IEEE Trans Info Tech Biomed 9: 86-98, 2005.
http://ftp.ics.uci.edu/pub/machine-learning-databases/breast-
cancer-wisconsin/, Wisconsin Diagnostic Breast Cancer (WDBC)
Dataset and Wisconsin Prognostic Breast Cancer (WPBC) Dataset.
Burke HB and Goodman PH: Artificial neural networks improve
the accuracy of cancer survival prediction. Cancer J 79: 857-862,
1997.

Choong PL and deSilva CJS: Entropy maximization networks,
An application to breast cancer prognosis. IEEE T Neural
Network 7: 568-577, 1996.

Choong PL and deSilva CJS: Maximum entropy estimation vs.
multivariate logistic regression: which should be used for the
analysis of small binary outcome data sets? Proc 20th Ann Int
Conf IEEE Eng Med Biol Soc 3: 1602-1605, 1998.

Wolberg WH, Street WN, Heisey DM and Mangasarian OL:
Computer-derived nuclear features distinguish malignant from
benign breast cytology. Hum Pathol 26: 792-796, 1995.

Seker H, Odetayo M, Petrovic D, Naguib RNG, Bartoli C,
Alasio L, Lakshmi MS and Sherbet GV: A fuzzy measurement-
based assessment of breast cancer prognostic markers. Proc
2000 IEEE EMBS International Conference on Information
Technology Applications in Biomedicine. pp174-178, 2000.
Mangasarian OI, Street WN and Wolberg WH: Breast cancer
diagnosis and prognosis via linear programming. Oper Res 43:
570-577,1995.

Street WN: A neural network model for prognostic prediction.
Proc 15th International Conference on Machine Learning.
Madison, WI, Morgan Kaufmann, pp540-546, 1998.

Wolberg WH, Street WN and Mangasarian OL: Machine
learning techniques to diagnose breast cancer from fine-needle
aspirates. Cancer Lett 77: 163-171, 1994.

Wolberg WH, Street WN and Mangasarian OL: Image analysis
and machine learning applied to breast cancer diagnosis and
prognosis, Anal Quant Cytol 17: 77-87, 1995.

Jiang Y, Nishikawa R, Wolverton D, Metz C, Giger ML,
Schmidt R and Doi K: Automated feature analysis and
classification of malignant and benign microcalcifications.
Radiology 198: 671-678, 1996.

Taylor P, Fox J and Todd-Pokropek A: Evaluation of a decision
aid for the classification of microcalcifications. Digital Mammo-
graphy. Kluwer Academic Publishers, pp237-244, 1998.

Hoya T and Chambers JA: Heuristic pattern correction scheme
using adaptively trained generalized regression neural networks.
IEEE T Neural Network 12: 91-100, 2001.

Kaban A and Girolami M: Initialized and guided EM-clustering
of sparse binary data with application to text-based documents.
Proc 15th Int Conf Pattern Recog 2: 744-747, 2000.

Specht DF: Probabilistic neural networks. Neural Networks 3:
109-118, 1990.



217.
28.

29.

30.

31.

32.

ONCOLOGY REPORTS 15: 975-981, 2006

Masters T: Advanced Algorithms for Neural Networks. John
Wiley, New York, NY, 1995.

Wojnarski M: LTF-C: architecture, training algorithm and
applications of new neural classifier. Fundamenta Informaticae
54: 89-105, 2003.

Ster B and Dobnikar A: Neural networks in medical diagnosis:
comparison with other methods. Proceedings of the International
Conference EANN '96. Bulsari A (ed). pp427-430, 1996.

Duch W, Adamczak R and Jankowski N: New developments in
the feature space mapping model. Proc 3rd Conference on
Neural Networks and Their Applications, Kule, Poland, pp65-70,
1997.

Bennett KP and Blue J: A Support Vector Machine Approach to
Decision Trees. RPI Math Report no. 97-100. Rensselaer
Polytechnic Institute, Troy, NY, 1997.

Hamilton HJ, Shan N and Cercone N: RIAC: a rule induction
algorithm based on approximate classification. Technology Report
CS 96-06, Regina University, 1996.

33.

34.

35.

36.

981

Duch W, Adamczak R and Grabczewski K: A new methodology
of extraction, optimization and application of crisp and fuzzy
logical rules. IEEE T Neural Network 11: 1-31, 2000.

Liu B, Abbass HA and McKay B: Classification rule discovery
with ant colony optimization. IEEE Comp Intelligence Bull 3:
31-35,2004.

Street WN: A neural network model for prognostic prediction.
Proc 15th International Conference on Machine Learning. Morgan
Kaufmann Publishers Inc., San Francisco, CA, pp540-546,
1998.

Street WN, Mangasarian OL and Wolberg WH: An inductive
learning approach to prognostic prediction. Proc 12th
International Conference on Machine Learning. Prieditis A and
Russell S (eds). Morgan Kaufmann Publishers Inc., San
Francisco, CA, pp522-530, 1995.



