
Abstract. This study examines the potential of neuronal
networks and textural feature extraction for recognising
suspicious regions in endoscopy under variable perceptual
conditions and systematic or random noise in the data.
Second-order statistics and discrete wavelet transform-based
methodologies are examined in terms of their discrimination
abilities, and several neuronal network learning algorithms are
compared in terms of success. The results provide numerical
evidence that neuronal networks are capable of classifying
offline and online tissue samples extracted from standard
images and VHS videotape recordings of colonoscopy
procedures with satisfactory success rates. This type of
technology could prove to be useful for developing intelligent
adaptive systems that will assist medical experts in real-time
to automate minimally invasive diagnostic procedures.

Introduction

Computer-based models of neuronal networks (NNs) are
increasingly being used in medicine, especially in the
development of sophisticated intelligent systems for medical
image interpretation (1). The aim is to assist experts in
identifying malignant regions using minimally invasive
imaging procedures, which will hopefully increase the ability
of the expert to detect cancer regions, and decrease the need
for intervention and maintain the ability for accurate diagnosis.
Furthermore, it may become possible to examine larger areas,
studying living tissue in vivo, possibly at a distance, and thus
minimise the shortcomings of biopsies, such as a limited
number of tissue samples, delay in diagnosis, and patient
discomfort. In medical practice, endoscopic approaches and
other minimally invasive techniques are now permitting the
visualisation of previously inaccessible regions of the body. 

Computer-based neuronal methodologies present some
attractive qualities, such as ‘learning from data,’ generalisation,

and handling uncertainty and ambiguity in distorted or noisy
images. NN-based methods are, in principle, capable of
assisting human experts in diagnostic endoscopy. However,
generating neuronal models on the basis of some data sets
encounters several difficulties because data are often
incomplete (missing parameter values), incorrect (systematic
or random noise in the data), and/or inexact (inappropriate
selection of parameters for the given task).

In computer-assisted endoscopy, given a medical image,
the ‘true’ features associated with the physical properties of
the tissue are not exactly known in advance. Usually, one or
more feature extraction models are used to provide values for
the parameter of each feature (2). The findings are then used
to infer the correct interpretation. In this same task of
interpretation, on the basis of local changes on the properties
of the tissue under examination, the performance of human
perception is considered outstanding. Furthermore, medical
experts have the ability to add or remove components from
an image to give meaning to what they see, and can also
adapt to changes to the extent that even a distorted image can
be recognised. The situation is far more challenging with
computerised systems, especially when several objects of
different kinds, related by a set of spatial-temporal relations,
are present in the observed scene.

In this study, we focus on interpreting colonoscopic images
and detecting tumours using NNs-based tissue classification.
Detecting malignant regions in these video sequences
encounters several problems due to the time varying nature of
the process, and variable perceptual conditions (shading,
shadows, lighting conditions, reflections, etc.).

Materials and methods

Computer-based classification of tissue using endoscopy
images is usually quite sophisticated and involves multiple
levels of processing. Fig. 1 provides an overview of the
approach used in this study. We provide an overview of the
two most important stages, namely feature extraction and
neuronal network-based classification.

Feature extraction using statistical features of the texture. The
purpose of this stage is to discriminate between normal and
suspicious tissue regions on the basis of their local surface
properties, as expressed by textural features. To this end, an
endoscopic image was separated into 16x16 pixel windows
and two feature extraction techniques were investigated: co-
occurrence matrices and 2-dimensional discrete wavelet
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transform (DWT). First, a one-level wavelet decomposition
of the image regions was performed (3). This resulted in four
wavelet channels: one approximate and three detail wavelet
channels with frequency indexes 2, 3, and 4. Feature extraction
was then conducted using the information from the co-
occurrence matrices, where each element of a matrix represents
the probability of going from a pixel with grey level (i) to
another pixel with grey level (j) under a predefined distance
and angle. We considered four angles, namely 0˚, 45˚, 90˚,
and 135˚, as well as a predefined distance of one pixel. From
these matrices, a set of statistical measures, or feature vectors,
were computed for building different texture models. These
were based on calculating the energy-angular second moment,
correlation, inverse difference moment, and entropy (detailed
in ref. 2) of the detail channels to create a more reliable
framework for the generation of the textural descriptors (4).
Hence, a set of four features was obtained for each window by
calculating the four statistical measures. In this way, a feature
vector containing 16 features that uniquely characterises each
image window of the selected wavelet channel in the wavelet
domain was formed. This procedure, as applied to the three
detail channels, resulted in 3x16=48 relevant measures,
which formed the input pattern of the neural classifier (4).

Neuronal network learning and adaptation for classification.
Models of neuronal networks are inspired by information
processing and computation in the human brain (5). Nodes,
or artificial neurons, in these models are usually considered
simplified models of biological neurons. Artificial neurons
can be connected, forming multilayered neuronal structures
called multilayer perceptrons (MLPs). 

Learning in NNs is usually achieved by minimising a
measure related to network's error, as defined by the difference
between the actual network output and one that is user defined
(5). This approach is popular in training and includes training
algorithms that can be divided in two categories: offline, also
called batch; and online learning, also called stochastic (5).
Offline learning is considered the classical machine learning
approach in which a set of examples is used for learning a
good approximating function, i.e. train the network before it
is used in the real application, whilst online learning is related
to updating network parameters after the presentation of each
training example, which may be sampled with or without
repetition. Online learning appears to be more robust than
batch learning as errors, omissions or redundant data can be
corrected or ejected during the training phase.

Training data can often be generated easily and in great
quantities online during the endoscopy procedure, but are

usually scarce and precious before the procedure. However, the
training set may not be able to represent all possible variations
of the environment in which the neuronal network will operate
because endoscopy is a time varying process influenced by a
number of factors, such as diffused light conditions, changes in
the perceptual direction of the physician, and variations in the
environment. Thus, on many occasions, the NN is not able to
track the statistical variations of the environment in which
it operates, as the statistical characteristics of the concepts/
signals generated by the environment change with time. To
alleviate this situation, the NN must adapt its parameters, and
consequently its behaviour, to the temporal structure of the
input (concepts/signals) in a properly controlled fashion. In
computer-assisted endoscopy, this can be potentially useful to
adapt to: i) changing environments, i.e. the computer system
will apply knowledge/ intelligence to manipulate changes in the
environment, such as concepts drift; ii) a similar setting, i.e. the
system will be capable of being transferred or adjust to altered
circumstances, such as new environmental conditions; and iii) a
new/unknown situation, i.e. the system evolves (builds new
knowledge or improves the existing one) and autonomously
finds an approach to solve the problem given incomplete
knowledge and a set of examples.

Although it is difficult to define precise boundaries between
the different forms of adaptation that can be encountered in
endoscopy applications of the future, it is hopefully clear that
adaptation aims to handle the uncertainty that may arise from
stochastic elements in either the environment (noise/concept
drift) or evaluation process (observation noise). Thus, when
the appropriateness of a solution changes, gradually or
abruptly, as conditions change within the environment, an
automated system can learn to adapt to variations of the
environment and exhibit the ability to continually find near-
optimal classifications.

The performance of a neuronal system can be enhanced
by combining several individual networks trained on the
same task in a structure called neural ensemble. In our
approach, we first generated individual ensemble members
and then created an appropriate combination to produce the
ensemble output. Our ensemble exploited the notion of
diversity, i.e. individual members of the ensemble made
errors on different input patterns (6).

In the next section, we present experimental results using
several offline and online algorithms. Our experiments explore
key issues in designing a neuronal system for computer-
assisted diagnosis: i) the effect of the network architecture on
the effectiveness of the classification scheme; and ii) the
performance success of the various training approaches.

Results and Discussion

We present results from experiments with still endoscopy
images and colonoscopy video sequences provided by
collaborators in the Section for Minimally Invasive Surgery
of the University of Tübingen. They provide examples of
different types of abnormalities recorded under various
perceptual conditions and were considered appropriate for
our experiments to explore how the neuronal approach will
deal with changing environments. In all cases, texture
features were extracted from randomly selected 16x16 pixel
image windows with 64 grey levels.
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Figure 1. Main stages of the experimental approach.
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To investigate the effect of the NN architecture on the
effectiveness of the tissue classification scheme, we conducted
a set of experiments using MLPs with 5, 10, 15, 20, 25 and
30 hidden neurons (2). MLPs were trained with the batch
adaptive learning rate backpropagation (BP) algorithm (7),
using 100 different initial weight sets and samples from
image A (Fig. 2). A set of 200 wavelet transform-based
feature patterns were used for training and 400 for testing.
Networks with 15 hidden neurons exhibited the best average
tissue classification success (96.5%). With regards to the
total computational cost as measured by the number of error
function and gradient evaluations, MLPs with 10 to 20
hidden neurons exhibited the lowest average training cost,
while the worst case performance was observed with 5
hidden neurons (765 evaluations in total). 

In the second set of experiments, 1000 MLPs with
varying number of hidden neurons (from 8 to 21) were
trained using two batch learning algorithms, the adaptive
backpropagation (ABP), (8), and the Levenberg-Marquardt
(LM) (9). The co-occurrence matrices for the textural
description of tissue samples was applied to the two images,
and 10 normal/10 abnormal samples were randomly extracted
from each image (Fig. 2B and C). Malignant regions in these
images belong to two different types: image B is a low grade
cancer, while image C is a moderately differentiated
carcinoma (10). The performance of the ABP and LM trained
MLPs was tested on a set of 40 normal and 40 malignant
texture samples randomly selected from the two images and
different from the training set. Depending on the NN
architecture, only a small sample (7%-15%) of the 1000
MLPs trained with each algorithm exhibited a classification
success of ≥90% that may be considered ‘acceptable.’ In
general, LM-trained MLPs outperformed ABP-trained ones
in classification success; LM exhibited the highest average
percentage (96.75%) using NNs with 11 hidden nodes.

In the third set of experiments, 1000 MLPs with 11
hidden neurons were trained on a set of 300 samples extracted
using co-occurrence matrices from frame 3 of the video
sequence (Fig. 3). Training was applied offline using the
Rprop algorithm (11), scaled conjugate gradient (SCG) (12)

and LM algorithm. Although medical experts may be able to
detect suspicious regions with great accuracy, this is not the
case for the automatic system when tested with 3969 samples
from the same frame. Only 2 MLPs of the 1000 trained with
the Rprop algorithm achieved recognition success of 90%-
100%. For the SCG algorithm, the corresponding number is 3
of 1000, while this number is slightly higher for the LM, with
6 of the 1000 MLPs exhibiting success between 90%-100%.
The best result for each training method is 92% for the
Rprop, 92.4% for the LM and 92.6% for the SCG. Rprop,
despite its simplicity, was also the fastest, requiring only an
average of 0.644 sec.

Results of MLPs with the best classification performance
for each of the four frames of the video sequence are
summarised in Table I. Rprop exhibits the best overall
performance. Note that the results of Table I were achieved
by offline training of a special MLP architecture with 11
hidden neurons for each frame using 300 patterns randomly
chosen from that frame and testing it on the same frame. The
last row of Table I shows the result obtained by a diverse
ensemble that employed the Rprop algorithm for the individual
NNs.

Finally, the last experiment concerned online learning
(13,14). The average classification success is shown in Table II.
Results of the Rprop, BP and ABP algorithms and neural
ensemble were obtained using a predefined training set of
1200 patterns (300 randomly chosen patterns from each
frame) and a test set of 16000 patterns (the test set constitutes
the whole image region in each of the four frames). MLP
training was conducted offline, as these methods are only
suitable for batch learning (requiring information from the
whole training set to be available beforehand). Results of the
online descent (13) and online differential evolution (14)
were obtained under more realistic conditions, as the weights
are updated after each pattern presentation. Although the first
impression might be that the large training set affected the
classification success of Rprop when compared to the best
single frame case (Table I), this is not totally true because the
average performance of the method was significantly improved
from 78% to 85% (Table II). It was possibly caused by the
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Figure 2. Sample of endoscopy images used in the experiments showing different abnormalities.

Figure 3. Four frames of a video sequence showing a polypoid tumor of the colon.
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diversity among the patterns of the four frames included in
the large training set. Thus, the larger training set allowed us to
better model the changes in the environment, at least offline.

The average classification success of online evolution is
close to the best results obtained by batch training methods
reported above. Networks trained with online evolution are
able to perform satisfactory in changing conditions, as data
from different frames are presented to the same network. 

In conclusion, the development and use of neuronal
network-based systems for automated tissue classification in
endoscopy requires following a series of stages that constitute
an information life cycle through which medical information
is acquired, processed, stored, and used. 

NNs have a relative advantage for knowledge acquisition
compared to other methods because they can handle incomplete
information and noise embedded in the training data. Examples
are critical for accurate diagnosis and appropriate interpretation
of the findings when neuronal networks are used. This of
course requires clinicians to be able to express competence
and knowledge in a form that can be represented and processed
by a NN. The approach proposed here was based on identifying
properties of the tissue from images using statistical descriptors
and can be potentially useful in cases where there is no
previous experience in the interpretation of images, such
as when new imaging technologies are used or when no
histological confirmation is available. 

With regards to processing and storing medical information,
the role of the medical expert is important as he/she is
responsible for the quality of data, e.g. avoid inconsistencies
and cover all possible cases. Algorithms have been proposed
in this study to automatically train the NNs using available
data. In particular, we explored offline and online learning
methods. The best results were obtained by a new approach
that can be considered a hybrid scheme combining a variant
of the stochastic gradient descent with a differential evolution
strategy to (re)adapt the NN to modified environmental
conditions. This hybrid scheme was compared to standard

methods that have traditionally been used for training NNs
offline. Preliminary results suggest that NNs trained with this
algorithm detect malignant regions of interest with high
accuracy. Nevertheless, in a real-world setting, the medical
expert must examine and interpret the NN classifications and
perhaps recommend training the network again to obtain a
different, more suitable model of the domain.

Finally, the way information is processed and stored in a
NN may make clinicians reluctant to use these methods no
matter how superior its performance. There is an obvious need
to enhance the usability of these approaches by providing
explanation capabilities and interfaces that will facilitate the
communication of knowledge between system and clinician.

Our work in this area is ongoing, as extensive testing with
long video sequences and under various conditions is necessary
to investigate the properties, robustness, and effect of the
parameters involved in this automated approach, and thus
assess the potential benefits of integrating it into clinical
practice.
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Table I. Best classification success for the three first order batch
learning methods and the neural ensemble.
–––––––––––––––––––––––––––––––––––––––––––––––––
Method Frame 1 Frame 2 Frame 3 Frame 4
–––––––––––––––––––––––––––––––––––––––––––––––––
Rprop 92% 91% 92% 93%

BP 78% 74% 77% 78%

ABP 81% 85% 83% 81%

Ensemble-based 92% 93% 97% 95%
–––––––––––––––––––––––––––––––––––––––––––––––––

Table II. Average classification success for methods in the four
frames.
–––––––––––––––––––––––––––––––––––––––––––––––––
Method Average
–––––––––––––––––––––––––––––––––––––––––––––––––
Rprop 85%

BP 78%

ABP 79%

Ensemble-based 93%

Online BP 83%

Online evolution 90%
–––––––––––––––––––––––––––––––––––––––––––––––––
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