
Abstract. Environmental and occupational exposure to
asbestos is among the established risk factors for lung cancer,
the leading cause of cancer-related deaths in the United
States. This link between exposure to asbestos and the
excessive death rate from lung cancer was evident in a study
of former workers of an asbestos pipe insulation manufacturing
plant in Tyler, TX. We performed comparative proteomic
profiling of plasma samples that were collected from nine
patients within 12 months before death and their age-, race-
and exposure-matched disease-free controls on strong anion
exchange chips using surface-enhanced laser desorption
ionization time-of-flight mass spectrometry. A distance-
dependent K-nearest neighbor (KNN) classification
algorithm identified spectral features of m/z values 7558.9
and 15103.0 that were able to distinguish lung cancer
patients from disease-free individuals with high sensitivity
and specificity. The high correlation between the intensities
of these two peaks (r=0.987) strongly suggests that they are
the doubly and singly charged ions of the same protein
product. Examination of these proteomic markers in the
plasma samples of subjects from >5 years before death from
lung cancer suggested that they are related to the early
development of lung cancer. Validation of these biomarkers
would have significant implications for the early detection of
lung cancer and better management of high-risk patients.

Introduction

Lung cancer is the leading cause of cancer deaths in the
United States and worldwide (1). It is often diagnosed in

advanced stages of the disease and has one of the lowest 5-year
survival rates of <15% among all cancers (2). Based on clinical
and histopathological features, lung cancer is comprised of a
broad spectrum of tumors of two main categories, non-small
cell lung cancer (NSCLC) and small cell lung cancer
(SCLC), accounting for about 80% and 20% of the disease,
respectively. NSCLC is further classified into squamous cell
carcinoma, adenocarcinoma, and large-cell carcinoma, with
adenocarcinoma being the most frequent form. Another rare
form of lung cancer, mesothelioma (3), a highly malignant
tumor of the pleura, is predominantly associated with exposure
to asbestos (4,5). Irrespective of several distinct histopatho-
logies, all lung cancers are often detected in late stages and
have a high fatality rate. Among the major risk factors for
lung cancer are tobacco smoke, radon, asbestos, and heavy
metals such as arsenic, chromium, and nickel (6). Although
approximately 10% of smokers are estimated to eventually
develop lung cancer, the highest risk of lung cancer is attributed
to tobacco smoking, accounting for almost 90% of lung cancer
deaths. 

Occupational exposure to asbestos is also an established
and second most common risk factor for lung cancer, with
the severity of disease varying with the extent and length of
exposure and the size of inhaled fibers (7,8). Furthermore,
concomitant asbestos and tobacco exposure have a multi-
plicative effect on lung cancer development, translating to
as much as a 50-fold higher lung cancer risk in comparison
with non-smoking individuals in the general population
(8-10). This association between exposure to asbestos and
excess death from lung cancer was documented in a study on
former workers of a plant in Tyler, TX that used amosite
to manufacture pipe insulation material (11). In this study,
we performed surface-enhanced laser desorption ionization
time-of-flight mass spectrometry (SELDI-TOF MS) (12,13)
on the stored plasma samples of lung cancer patients and
disease-free controls from the Tyler, TX cohort to identify
lung cancer-specific biomarkers. The availability of serial
samples from the same cancer patients, collected from an
extended period of time prior to patients' death, allowed us
to search for potential early detection markers for lung
cancer.
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Materials and methods

Study population and plasma samples. Former workers
(n=1095) of an asbestos manufacturing plant, which operated
in Tyler, TX from 1954 to 1972, were exposed to high levels

of amosite dust. These workers were enrolled in a follow-up
study in 1978 that included periodic collection of sputum and
plasma samples (14). The lung cancer mortality in this cohort
has been described (11). Plasma samples from 50 workers,
who died of lung cancer, and 50 age-, race-, and exposure-
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Table I. Patient characteristics and dates of sample collection.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Sample Months survived
Patient Sample Date of collection Smoking Date of after last

ID ID collection sequence Racea Age statusb death sample collection
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Case

1 C1-1 9/26/1989 Last W 57 C 5/26/1990 8

C1-2 3/11/1988 Mid-point

C1-3 8/27/1986 First

2 C2-1 5/29/1985 Last B 66 C 8/25/1985 3

C2-2 4/16/1985 First

3 C3-1 8/31/1992 Last W 70 C 8/10/1993 12

C3-2 11/14/1989 Mid-point

C3-3 1/11/1986 First

4 C4-1 1/30/1991 Last W 71 C 12/12/1991 11

C4-2 7/14/1988 Mid-point

C4-3 12/12/1985 First

5 C5-1 3/3/1987 Last W 74 C 3/12/1988 12

C5-2 8/25/1986 Mid-point

C5-3 7/14/1986 First

6 C6-1 2/6/1990 Last W 77 C 5/20/1990 3

C6-2 8/19/1987 Mid-point

C6-3 1/23/1986 First

7 C7-1 3/11/1985 Last W 81 C 8/14/1985 5

C7-2 1/28/1985 First

8 C8-1 8/12/1986 Last W 88 C 5/28/1987 9

C8-2 6/25/1986 First

9 C9-1 7/24/1992 Last W 73 F 2/14/1993 5

C9-2 11/14/1989 Mid-point

C9-3 1/11/1986 First 

Control

1 N1 6/10/1989 Last W 57 C

2 N2 6/12/1985 Last B 63 C

3 N3 6/1/1992 Last W 70 C

4 N4 4/29/1991 Last W 69 C

5 N5 7/15/1987 Last W 74 C

6 N6 5/9/1990 Last W 75 C

7 N7 9/5/1985 Last W 82 C

8 N8 8/25/1986 Last W 85 C

9 N9 7/9/1992 Last W 73 Q
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
aW, White; B, Black. bC, current smoker; F, former smoker.
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matched cancer-free controls were used in this study. The
samples were stored at -80˚C before analysis. Unfortunately,
information on the date of diagnosis of lung cancer and
histopathology of the disease were not available, except that
4 of the 50 cancers were mesotheliomas.

SELDI protein profiling. Strong anionic exchange (SAX)
protein chips were used in combination with SELDI-TOF
MS to generate plasma protein profiles. The chips were pre-
equilibrated twice with binding buffer (20 mM Tris, pH 9.0)
and agitated for 5 min each time. Plasma samples in 30 μl
aliquots were thawed on ice, diluted with 30 μl 8 M urea, 1%
CHAPS, pH 7.4, and mixed well with vortex for 10 min. The
samples were further diluted with 20 mM Tris, pH 9.0 and
applied in a randomized order on the pre-equilibrated chip
arrays in duplicate at 100 μl/well. The arrays were incubated
with agitation for 90 min. Subsequently, the protein chips
were washed 3 times with binding buffer for 5 min each.

After the final wash, chips were rinsed twice with deionized
H2O for 30 sec each, and air-dried.

Saturated sinapinic acid (Fluka, Milwaukee, WI) in 50%
(v/v) acetonitrile, and 0.5% trifluoroacetic acid was applied to
each spot twice, at 0.5 μl/time, and air-dried between
applications. The chips were read using a PBS-II SELDI-
TOF mass spectrometer (Ciphergen Biosystems, Inc.). Protein
spectra were generated by averaging 104 laser shots collected
on each spot with a laser intensity setting of 205, detector
sensitivity of 8, high mass of 100000 Dalton, and optimized
mass range from 1000 to 19000 Daltons. The spectra were
calibrated using the All-in-1 protein molecular mass standard
(Ciphergen Biosystems, Inc.). The raw spectral data, which
contained about 35000 m/z values, and the corresponding peak
intensities per spectrum were exported into Microsoft Excel
for bioinformatics analysis. 

Bioinformatics analysis. To remove any possible spectra
generated by the energy-absorbing matrix, all intensities below
1500 m/z were removed. This filtering resulted in approx-
imately 22300 m/z values per spectrum. For peak identification,
each spectrum was then scaled to a constant total ion current,
and the scaled spectra were summed to identify regions with
sufficient intensity. The putative peaks were identified from
these regions with the criteria that they had an intensity of at
least 15% the average intensity in the summed spectrum, and
not within 0.3% of m/z of any other peaks. A window of width
of 0.3% of m/z was centered on each peak in each spectrum,
and the maximum intensity within this window was used as the
intensity for this peak. This analysis produced a set of 792
isolated peaks in each spectrum.

Since each sample was run in duplicate, the Euclidean
distance was used across all 792 peak intensities to count the
number of times the distance between duplicates was larger
than a sample-to-sample distance (15). If this number was
≥2, the duplicate spectra were sufficiently different and kept
separate; otherwise, they were averaged. If the nearest-
neighbor distance or number of peaks with an intensity value
within 5% of the overall minimum or maximum was more
than two standard deviations above the mean value, the
spectrum was considered an outlier and removed from the
dataset.

Classification of the samples used a distance-dependent
K-nearest neighbor (DD-KNN) algorithm with a Euclidean
distance metric. For each analysis, intensities of 2 or 3 peaks
were used to place the samples in 2- or 3-dimensional space,
allowing the identification of 4 to 6 nearest-neighbors for
each sample. The un-normalized probability of belonging to
the same class as a given neighbor was proportional to the
inverse of their distance. If the probability of being in the
same class was <0.8, a probability of being undetermined
was assigned as 0.1. As the probability of being in the same
class increased to 1.0, the undetermined probability decreased
to 0.0. After normalizing the probabilities across all neighbors,
the cost of this set of peaks was taken as the sum of one
minus the probability of a correct assignment across all
samples. A total of six DD-KNN analysis runs (each with
2-3 peaks and 4-6 neighbors) were examined for putative
biomarkers.
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Table II. Sensitivity, specificity, and positive and negative
predictive values for the spectral features used in the DD-KNN
classifiers.
–––––––––––––––––––––––––––––––––––––––––––––––––

No. of
m/z neighbors Sensitivity Specificity PPV NPV
–––––––––––––––––––––––––––––––––––––––––––––––––
3316.2 4 83.3 100.0 100.0 84.6
15148.5

3503.9 5 91.7 91.7 91.7 91.7
15148.5

3505.9 6 83.3 84.6 83.3 84.6
15103.0

6787.3 4 91.7 92.3 91.7 92.3
7558.9
36866.0

6787.3 5 91.7 92.3 91.7 92.3
7558.9
36866.0

5408.3 6 91.7 100.0 100.0 92.9
6787.3
7558.9
–––––––––––––––––––––––––––––––––––––––––––––––––
PPV, positive predictive value; NPV, negative predictive value. The
major discriminators in each model are bolded. Ten cancer and 2
control spectra have intensities of the 7558.9 peak below 2.95, while 2
cancer and 11 control spectra have intensities above this value. This
peak alone therefore yields a sensitivity and PPV of 83.3% and a
specificity and NPV of 84.6%; the other two peaks in the classifiers
simply correct 2 or 3 of the errors. For the 15103.0 peak, 11 cancer
and 3 control spectra have intensities below 3.10, while 1 cancer and
10 control spectra have intensities above this value, yielding a
sensitivity of 91.7%, specificity of 76.9%, PPV of 78.6% and an NPV
of 90.9%. Including the peak at 3505.9 simply corrects the prediction
of one control spectrum and misclassifies an additional cancer
spectrum. The 15148.5 intensities have comparable discriminating
ability, but is a shoulder of the 15013.0 peak and therefore does not
represent a biomarker.
–––––––––––––––––––––––––––––––––––––––––––––––––
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The best set of peaks was determined using a modified
evolutionary programming algorithm (16,17). This population-
based feature selection algorithm included an operator that
ensured the uniqueness of peaks in the parent and offspring
populations. This function reduced the probability that the
algorithm prematurely converged on a suboptimal set of
markers.

Results

Diagnostic markers for lung cancer. Our first set of analyses
to identify lung cancer-specific markers by comparing
proteomic profiles of plasma samples from 50 lung cancer
patients and 50 controls did not yield meaningful results.
This may have been because the last available plasma samples
from lung cancer patients before death were from a period
ranging between 3 months to >5 years. Therefore, the
individuals whose plasma samples were collected several
years before death may not have had discernable disease at
the time of sample collection and could be technically classified
as ‘disease-free controls.’ A vast majority of lung cancers are
diagnosed in the late stage of disease and approximately 60%
of these patients die within 1 year of diagnosis according to
the available estimates from the American Cancer Society.
Thus, to increase the probability of finding true lung cancer-
specific proteomic markers, we focused on a spectra of
nine patients, whose plasma samples were available within
3-12 months before death (Table I). Nine age-, race-, and
exposure-matched disease-free individuals from the same
cohort were used as controls. Since each sample was
examined twice, the analysis started with 18 cancer and 18
control spectra. The duplicate spectra in three cancer cases
were averaged to produce 15 spectra, and 3 of these were

removed as outliers, yielding 12 spectra with 792 peaks. For
the nine control samples, four duplicate spectra were averaged
and one was identified as an outlier; producing a dataset of
13 spectra with 792 peak intensities.

The optimum classifier obtained in each of the six DD-
KNN runs, along with its quality, is shown in Table II. Each
classifier consists of a major distinguishing feature shown
in bold, and one or two other features that reduce the
misclassification. The intensities of each of the distinguishing
features and the regions in cancerous and control spectra are
shown in Fig. 1A. While all three features have low intensities
in the cancer spectra and significantly higher intensities in
many of the control spectra, only the features at m/z values of
7558.9 and 15103.0 correspond to peaks; the feature at
15148.5 was a shoulder of the 15103.0 peak. The strong
correlation between the intensity in the markers 7558.9 and
15103.0 in each of the 25 spectra (r=0.987, Fig. 1B) suggests
they are the doubly and singly charged ions of the same protein
product.

Evaluation of m/z 7668.9 and 15103.0 markers for early
detection of lung cancer. We attempted to investigate if the
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Figure 1. (A) Spectra at m/z 7558.9, 15103.0, and 15148.5 from lung cancer
patients and non-cancer controls. Top panel, the intensities of all three
spectral features, m/z 7558.9, 15103.0, and 15148.5, from all nine lung
cancer patients (left column) and matched non-cancer controls (right column).
The number at the top indicates the maximum intensities. Bottom panel, the
representative examples of individual spectral features. (B) Scatter plot of
the peak intensities at m/z 7558.9 and 15103.0.

Figure 2. (A) Intensities of the peaks at m/z 7558.9 and 15103.0 for seven
lung cancer patients over time. Intensities of both spectral features are from
the first and midpoint blood draws, as shown in Table I, ranging between 4
and 52 months before death. Intensities of the markers are either low or
decrease sharply during the time of progression to death. (B) Intensities of
the peaks at m/z 7558.9 and 15103.0 in lung cancer patients and non-cancer
controls over time. Cancer samples were collected at different time points
before death. A, >5 years; B, between 3 and 5 years; C, between 2 and 3
years; D, between 1 and 2 years; E, within 1 year. The numbers at the top
indicate the maximum intensities. (C) Intensities of the peak at m/z 9705.2
in lung cancer patients and non-cancer controls over time. Samples were
collected at different time points before death. A, >5 years; B, between 3
and 5 years: C, between 2 and 3 years; D, between 1 and 2 years; E, within
1 year; F, matched non-cancer controls. Representative examples of the spectral
region with m/z 9705.2 in a lung cancer patient and non-cancer control are
also shown.
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intensities of m/z 7668.9 and 15103 markers could be used
for possible identification of lung cancer patients in this
cohort several years before their death from lung cancer. We
first analyzed the intensities of m/z 7558.9 and 15103.0
markers in the available plasma samples of 7 of the 9 cancer
patients that were drawn at earlier time points. The time
range of these samples varied between 3 and 52 months.
Fig. 2A displays the intensities of the two markers plotted as
a function of time; it is obvious that either the intensities of
both markers were always low or decreased during the time
until death. We then examined the intensities of the m/z
7558.9 and 15103.0 markers in the plasma samples of all 50
lung cancer patients and their matched controls. The cancer
samples were divided into five groups according to the time
of blood draw until death. The results displayed in Fig. 2B
demonstrate that the intensities of both proteomic markers
decreased from >5 years (group A) to <1 year (group E)
before death. Some of the controls, however, were also found
to have low intensities of both markers.

One concern was that the low intensities of m/z 7558.9
and 15103.0 markers in cancer patients could be time-related,
especially in the two patients with a high level of these
markers, and may not be an indication of impending lung
cancer. To address this question, we analyzed another randomly
selected plasma proteomic marker at m/z 9705.2. As evident
in Fig. 2c, the intensity of this marker was neither time-
nor disease-related. This suggests that the intensity changes
in m/z 7558.9 and 15103.0 were primarily associated with
disease.

Discussion

The Tyler, TX cohort was unique in several respects; namely,
the workers of the pipe insulation material manufacturing
plant were exposed to high levels of pure amosite for an
extended period of time resulting in excess death from lung
cancer (11,14). Although not prospectively designed, the
availability of sequential plasma samples in this cohort,
especially in some lung cancer patients, allowed meaningful
molecular studies to search for diagnostic and potential early
detection markers. When plasma samples of the last blood
draw from patients within 12 months before death were
subjected to SELDI-TOF MS, the DD-KNN algorithm
identified two proteomic markers that could distinguish lung
cancer cases from matched disease-free controls. According
to the mass values and a high correlation coefficient, these
two markers likely represent the doubly and singly charged
ions of the same protein product. In separate runs that
constructed eight classifiers using either average-linkage
(ALC) or complete-linkage clustering (CLC) (2 or 3 features,
2-5 clusters), the peak at m/z 15103.0 was used in one of the
ALC classifiers and 6 of the 8 CLC classifiers with other
highly correlated features (data not shown). The robustness
of both markers also transcended several important and much
criticized technological challenges of SELDI-TOF MS
(18,19), including protein chip and instrument-related concerns
and also potential time-dependent changes in the plasma
proteomic profiles (unpublished data).

Several lines of evidence suggest that either of the two
biomarkers at m/z 7558.9 and 15103.0 can serve as a diagnostic

marker for lung cancer and possibly monitor the disease
before clinical diagnosis. First, the intensity of these highly
correlated biomarkers (r=0.987) was either low from the start
or decreased sharply during the time of progression to death
in the nine lung cancer patients, whose last blood draws were
within 12 months before death (Fig. 2A). Second, all 50 lung
cancer patients analyzed in different time periods starting
>5 years before death showed a trend toward decreased
intensities of both markers with the lowest intensity within
12 months prior to death (Fig. 2B). Although the pattern of
intensities of the two markers in 50 disease-free controls is
quite different from that of lung cancer cases, it is obvious
that many of the 50 cancer-free controls also had low intensities
of both markers. Since these 50 individuals of the Tyler, TX
cohort, used as age- and race-matched controls, were also
exposed to amosite for approximately the same length of time,
it is possible that at least some of them may become cases,
and the low intensities of m/z 7558.9 and 15103.0 markers
are an indication of the onset of lung cancer. Third, the low
intensity of the markers is not the result of a direct interaction
with amosite since the controls from the same cohort generally
have high intensity of the markers. Finally, it is possible that
the low intensity of m/z 7558.9 and 15103.0 markers in
sequential samples of the nine patients is not a time- or disease-
dependent decrease, but merely a fortuitous event. Although
this possibility cannot be ruled out, the measurement of
another randomly selected plasma proteomic marker in all
50 lung cancer patients (Fig. 2C) suggests that the decrease
in the intensity of m/z 7558.9 and 15103.0 proteomic markers
is an indication of lung cancer development.

In conclusion, despite some limitations of our study
(unavailability of the date of clinical diagnosis of lung cancer
and histological classification), we were able to identify two
robust proteomic markers with low intensities, which were
diagnostic for lung cancer. These markers, identified from
lung cancer patients with advanced disease (within 12 months
before death), also surprisingly had low intensities in the
plasma samples of patients several years before their death
from lung cancer. Given the fact that only 10-15% of patients
with all stages of lung cancer have a 5-year survival (2),
our data suggest that low intensities of m/z 7558.9 and
15103.0 proteomic markers can serve as indicators for lung
carcinogenesis; individuals with low intensities of these
markers should therefore be monitored closely for lung cancer
development.

Our study represents a proof-of-principle approach and
demonstrates the feasibility of identifying biomarkers for
the early detection of lung cancer using high-throughput
proteomic profiling of serial plasma samples from lung
cancer patients. Identification of the protein product that
generates two spectral features of m/z 7558.9 and 15103.0
would provide insight into the biological function(s) and its
relevance for lung carcinogenesis. While we hope to further
elucidate the identity of these two closely associated markers,
it is also important to validate these proteomic biomarkers in
a larger prospective clinical trial, with the outcome having
significant implications for the early detection of lung cancer
and better surveillance and management of high risk
patients well before the appearance of clinical symptoms of
cancer.
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