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Plasma proteome predicts chemotherapy
response in osteosarcoma patients

YITING LI!, TU ANH DANG?, JIANHE SHEN!, JOHN HICKS2, MURALI CHINTAGUMPALA!,
CHING C.LAU! and TSZ-KWONG MAN!

ITexas Children's Cancer Center, Texas Children's Hospital, and Department of Pediatrics,

2Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030;
3cell Biosciences, Inc., 3040 Oakmead Village Drive, Santa Clara, CA 95051, USA

Received September 3,2010; Accepted November 1,2010

DOI: 10.3892/0r.2010.1111

Abstract. Osteosarcoma is the most common malignant bone
tumor that affects hundreds of children and young adults every
year. The major prognostic factor in patients with localized
osteosarcoma is the development of resistance towards pre-
operative chemotherapy. However, modifications of post-
operative chemotherapy based on the histological response
have not significantly improved the outcome of patients.
Thus, it would be of tremendous clinical value if the poor
responders could be identified at the time of diagnosis, so
that ineffective therapy can be prevented and intensified or
alternative therapy could be provided to improve their out-
come. We hypothesized that plasma proteomic profiles could
be used to distinguish good from poor responders prior to the
start of treatment. In order to test this hypothesis, we analyzed
the proteomic profiles in two sets of plasma samples (n=54)
from osteosarcoma patients collected before (n=27) and after
(n=27) pre-operative chemotherapy. Using a linear support
vector machine algorithm and external leave-one-out cross
validation, we developed two classifiers that classified good
and poor responders with an equal accuracy of 85% (p<0.01
after 5000 permutations) in both sets of plasma samples. In
order to understand the biological basis of the classifiers, we
further identified and validated two plasma proteins, serum
amyloid protein A and transthyretin, in the classifiers. Our
results suggest that plasma proteomic profiles can predict
chemotherapy response before treatment as accurately as after
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treatment. Our study could lead to the development of a
simple blood test that can predict chemotherapy response in
osteosarcoma patients. Since the two identified proteins are
involved in innate immunity, our findings are corroborated
by the notion that boosting the innate immunity in conjunction
with chemotherapy, achieves a better anti-tumor activity, thus
improving the overall survival of osteosarcoma patients.

Introduction

Osteosarcoma is a primary malignant bone tumor bone arising
from primitive bone-forming mesenchymal cells and is
characterized by the production of osteoid material (1). It is a
common malignant bone tumor occuring in children and
accounts for ~60% of malignant bone tumors which occur
during the first two decades of life (2). Since the 1970s, the
accepted standard of care for osteosarcoma involves four
steps: Diagnosis by an initial biopsy, pre-operative chemo-
therapy, definitive surgery to resect the tumor, and post-
operative chemotherapy (Fig. 1). Besides facilitating limb-
sparing procedures by shrinking the tumor, pre-operative
chemotherapy can theoretically be used as an in vivo
indicator of the chemosensitivity of an individual tumor, thus
providing a guide for the customization of post-operative
chemotherapy. However, the strategy of pre-operative chemo-
therapy has not improved disease-free survival for patients
with osteosarcoma. Despite a number of multi-institutional
clinical trials of pre-operative chemotherapy in both Europe
and North America, the overall survival rate has remained
unchanged over the past 30 years (3).

One recognized approach for improving the outcome is to
develop new and more effective therapeutic agents. However,
at the present time, there are still no effective treatments
against chemoresistant osteosarcoma. Development of risk-
based stratification of patients will help future clinical trials
to identify effective drugs for the treatment of poor responders.
Another approach is to tailor existing therapy based on
predictive factors. This could improve survival in patients
who are predicted to have resistant disease by intensifying
the use of the known effective agents. It could also allow for
the reduction of dose-related toxicity while maintaining good
survival rates for patients who are predicted to have a good
prognosis. Both approaches are based on our ability to stratify
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patients with either a good or poor response to pre-operative
chemotherapy before the treatment is given, i.e. at the time of
initial diagnosis.

In order to address this clinically important problem, we
previously identified a chemoresistant signature that can
predict the response of chemotherapy by using RNA
expression profiling, suggesting that ‘omics’ approaches can
be used to detect poor-responding osteosarcoma patients (4).
However, the RNA expression profiling of tumor samples is
not always possible due to a number of factors, such as RNA
degradation, availability of tumor biopsies, and the involve-
ment of invasive procedures for tumor collection. In this
study, we used an alternative approach for identifying poor
responders, known as surface-enhanced laser desorption/
ionization-time of flight mass spectrometry (SELDI-TOF MS),
which is a rapid and high-throughput proteomic technique for
the discovery of biomarkers in various cancers (5,6). We
previously demonstrated that a plasma-based proteomic
signature generated by SELDI-TOF MS can be used to
distinguish osteosarcoma from benign osteochondroma
patients (7). However, the problem of classifying good and
poor responders was not addressed in that study. Thus, we
performed additional analyses of the previously generated
plasma profiles of the 27 plasma samples from osteosarcoma
patients collected at the time of diagnosis (pre-treatment) and
generated plasma profiles of 27 additional plasma samples
collected at the time of definitive surgery (post-treatment),
that were not previously used before. Two support vector
machine (SVM) classifiers were developed to test whether
poor responders could be detected using the pre- or post-
treatment samples. We also identified and validated two
proteins in the classifiers that are related to the host response.

Materials and methods

Patients and samples. A total of 54 plasma specimens from
36 osteosarcoma patients were used in this study (Table I).
All specimens were collected through IRB-approved protocols
from three collaborative institutions, Texas Children's
Hospital, Cook Children's Hospital in Forth Worth, Texas,
and Oklahoma Children's Hospital, after informed consent
was obtained from all patients. Plasma samples were collected
in EDTA-containing tubes and centrifuged at 1,000 rpm for
10 min. The plasma supernatant was collected and divided
into aliquots and stored at -80°C until use. As is shown in
Fig. 1,27 plasma samples were collected at the time of initial
diagnosis (pre-treatment) and these were used as part of our
previous study to distinguish osteosarcoma from benign
osteochondroma (7). After diagnosis, all the osteosarcoma
patients who had enrolled in this study received three-drug
(cisplatin, doxorubicin and high-dose methotrexate) pre-
operative chemotherapy. Then, patients underwent definitive
surgery, at which time the osteosarcoma tissue was resected
and the extent of tumor necrosis was evaluated by a pathol-
ogist (J.H.). Patients with tumor necrosis of <90% were
classified as poor responders. For the poor responders, the
treatment regimen was intensified by using high-dose
cytoxan/melphalan as well as stem cell rescue during post-
operative chemotherapy. For the good responders (tumor
necrosis of 290%), the same pre-operative regimen was used
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Figure 1. The schema of the treatment and sample collection protocol for
this study. CDDP, cisplatin; DOX, doxorubicin; MTX, methotrexate.

for their post-operative chemotherapy. At the time of definitive
surgery, 27 plasma samples were collected (post-treatment
plasma). As shown in Table I, patients were divided into two
groups, good and poor responders, with similar distributions
of age, gender and primary tumor sites. All of the patients,
except one from each of the pre- or post-treatment groups,
were followed-up for at least 20 months. Their survival status
is shown in Table I. Eighteen patients contributed both pre-
and post-treatment plasma samples, which were used for
paired analysis.

SELDI-TOF MS analysis. The SELDI-TOF MS analysis of
the 27 pre-treatment plasma samples has been previously
reported (7). For the post-treatment samples used in this
study, a similar approach was carried out. In brief, 20 ul of
each plasma sample were denatured and separated into six
fractions by an anion-exchange Q HyperD F 96-well filter
plate based on stepwise pH gradient (Ciphergen Biosystems,
Fremont, CA; is now sold by Bio-Rad, Hercules, CA). The six
fractions were either flow-through (fraction 1), pH 7 (fraction
2), pH 5 (fraction 3), pH 4 (fraction 4), pH 3 (fraction 5) or
organic eluant fractions (fraction 6). The proteins in the
fractions were then captured by the weak cation exchange
(CM10) ProteinChip (Ciphergen). The fractionated samples
were diluted in CM Low Stringency Buffer and sinapinic
acid (Ciphergen) was added to facilitate the desorption and
ionization of the proteins. Then the samples were randomly
spotted in duplicates on chips in a 96-well format using the
Biomek 2000 Robotic Station (Beckman Coulter, Fullerton,
CA). The intensities of the protein peaks were measured by
the Protein Biology System PBS Ilc (Ciphergen) using three
different laser intensities under the low, medium and high
power settings, as previously reported (7). Mass calibration
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Table I. Clinical information of the plasma samples and osteosarcoma patients used in this study.

Time of plasma collection

Pre-treatment (n=27)

Post-treatment (n=27)

Characteristics GR PR GR PR
Total number of samples 14 13 12 15
Age at diagnosis (years)

Median (range) 13 (9-22) 13 (9-17) 13 (9-22) 13 (8-18)

<10 2 2 2 2

11-17 10 11 9 12

>18 2 0 1 1
Gender

Male 9 8 9 8

Female 5 5 3 7
Primary site

Extremities 13 13 12 15

Others 1 (palate) 0 0 0
Metastasis at diagnosis

Yes 3 3 2 2

No 11 10 10 13
Survival

Died from disease 3 7 4 8

Alive 10 6 8 6

Unknown 12 0 0 12

Lost during the follow-up within 20 months after the initial diagnosis. GR, good responders; PR, poor responders.

was performed using the All-in-1 peptide and All-in-1 protein
II molecular mass standards (Ciphergen).

Proteomic profiles were baseline subtracted and normal-
ized based on total ion current using Ciphergen Express
Software 3.0 (Ciphergen). Peaks were detected with the
similar settings as previously reported (7). In this study, the
m/z ranges for low-, medium- and high-molecular weight
proteins were 2,000-10,000, 10,000-30,000 and 30,000-
200,000, respectively. Peak intensities of duplicates from the
same sample were averaged before the analysis.

Development of proteomic classifiers. The normalized
intensity values of all protein peaks were log-2 transformed
and imported into BRB ArrayTools 3.5.0 (8). Two criteria
were used for the selection of informative protein peaks for
classification: A univariate misclassification rate of <0.25
and a fold-change between the two responder groups of >1.2.
A linear SVM algorithm was used to construct two separate
multivariate classifiers for the classification of good and poor
responders using the proteomic profiles generated from the
pre- and post-treatment samples, respectively. SVM finds the
most optimal hyperplane for the separation of data by
projecting them into a high-dimensional space (9). The
classification accuracy was measured by external leave-one-
out cross validation (LOOCYV), in which the feature selection
and model building were performed at each cross validation

iteration to minimize the underestimation of classification
error (10,11). Hierarchical clustering of the samples was
performed using the informative protein peaks with Pearson's
correlation and average linkage. Other statistical analyses were
performed using SPSS 12.0 (SPSS Inc., Chicago, IL). The
specificity, sensitivity, and positive and negative predictive
values, were calculated as previously described (7).

Protein identification and validation. Four samples with a
high-level expression of the biomarker were pooled as the
positive control. Four samples from the same fraction of
plasma with a low-level expression of the biomarker were
also pooled as the negative control. The pooled samples were
resolved by 4-20% Novex Tris-Glycine SDS-PAGE gel
(Invitrogen, Carlsbad, CA). The bands of interest matching
the expected sizes that were higher in the positive control and
low in the negative control, were excised from the gel and
were subjected to overnight tryptic digestion (proteomics
sequencing grade, Sigma, St. Louis, MO). Subsequently, 3 y1
of the digestion mixture were analyzed on a reverse phase H4
ProteinChip Array with a-cyano-4-hydroxycinnamic acid
(Ciphergen). Masses of the trypsin-digested peptides were
then measured by PBS Ilc. Background peaks were removed
by referencing the spectrum of trypsin-digested gel without
the protein. The spectrum was calibrated internally by using
two protein standards: Human angiotensin I (1296.5 Da) and
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Table II. The informative protein peaks used in the post-treatment classifier.

GR PR PR/GR

No. Protein peak Fraction Average SD Average SD Ratio

1 m/z 2,566 Fl1 1.62 2.58 0.63 225 0.39

2 m/z 2,868 F4 0.72 2.36 1.27 235 1.78

3 m/z 2,975 Fl1 0.78 1.73 1.05 1.17 1.36

4 m/z 3,159 F2 0.70 1.98 1.30 1.47 1.87

5 m/z 3,214 F2 1.17 322 0.52 29 045

6 m/z 3,391 Fl1 0.84 1.42 1.16 1.57 1.38

7 m/z 3,868 F5 0.61 2.69 1.30 1.79 2.15

8 m/z 4,303 F1 141 1.74 0.83 1.60 0.59

9 m/z 5,721 F1 1.26 2.74 0.77 2.29 0.61
10 m/z 5,826 F1 1.90 248 0.78 2.00 041
11 m/z 5,829 F4 1.59 1.97 0.82 1.48 0.52
12 m/z 5,851 F6 2.39 2.77 091 1.58 0.38
13 m/z 6,436 F3 0.78 1.31 1.05 1.82 135
14 m/z 6,438 Fl1 0.81 1.20 0.99 1.27 1.23
15 m/z 6,501 Fl1 0.80 1.38 1.08 1.19 1.34
16 m/z 6,661 F3 0.84 1.30 1.17 1.58 1.39
17 m/z 6,944 F2 0.78 1.57 1.10 1.30 141
18 m/z 8,587 Fl1 1.72 1.99 0.73 1.7 042
19 m/z 8,682 F1 1.29 1.75 0.83 1.49 0.64
20 m/z 8,907 F3 0.81 1.38 1.18 1.25 1.46
21 m/z 9,448 F6 0.90 1.40 1.09 1.32 121
22 m/z 9,683 F6 0.82 1.36 1.09 1.20 133
23 m/z 10,098 F2 0.88 1.65 1.27 1.44 1.44
24 m/z 10,735 F5 0.90 1.79 1.57 2.18 1.74
25 m/z 11,157 F1 1.31 3.68 0.53 3.67 040
26 m/z 11,419 F1 1.70 3.86 0.78 1.60 046
27 m/z 11 467° F6 3.88 5.06 0.97 1.84 0.25
28 m/z 11472 F5 3.58 4.58 0.97 1.76 0.27
29 m/z 11,501 F4 5.27 7.55 0.62 3.08 0.12
30 m/z 11,530° F6 4.19 5.00 1.03 1.67 0.25
31 m/z 11,543 F5 238 5.62 0.81 1.64 0.34
32 m/z 11,565 F3 2.76 3.49 0.89 1.62 0.32
33 m/z 11,647 F5 3.62 4.77 0.98 2.06 0.27
34 m/z 11,680 F1 2.85 5.88 091 1.66 0.32
35 m/z 11,702 F4 7.00 7.82 1.08 1.96 0.15
36 m/z 11,713 F6 4.34 478 0.92 1.48 0.21
37 m/z 11,720 F5 247 395 0.74 1.71 0.30
38 m/z 11,757 F1 228 3.53 0.93 1.29 041
39 m/z 11,766 F3 1.82 225 0.82 1.44 045
40 m/z 11,897 F6 297 332 0.92 1.93 0.31
41 m/z 13,127 F1 0.71 1.68 1.06 1.32 1.50
42 m/z 13,256 F6 047 7.80 1.18 2.03 2.52
43 m/z 13,876 F1 0.70 2.02 1.09 1.29 1.55
44 m/z 15,296 F1 1.52 3.05 1.06 1.37 0.70
45 m/z 27,817 F1 1.32 1.83 0.94 1.55 0.71
46 m/z 30,193 F1 1.92 3.04 0.83 1.74 043
47 m/z 36,034 F6 1.38 2.06 0.84 1.95 0.61
48 m/z 38,720 F6 1.18 1.36 0.92 1.34 0.78
49 m/z 39,541 F6 1.54 1.86 0.76 1.85 049
50 m/z 39,915 F6 145 1.73 0.76 1.55 0.52
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Table II. Continued.

GR PR PR/GR
No. Protein peak Fraction Average SD Average SD Ratio
51 m/z 55474 F1 2.84 3.20 0.68 227 0.24
52 m/z 66,830 F2 0.72 2.17 1.11 1.3 1.53
53 m/z 67 447 F2 0.67 2.39 1.06 1.28 1.57
54 m/z 67,746 F2 0.67 242 1.04 1.26 1.54
55 m/z 67,822 F2 0.70 221 1.05 1.26 1.50
56 m/z 68,087 F2 0.71 234 1.06 1.26 1.50
57 m/z 69,631 F5 0.70 1.85 0.98 1.28 1.39
58 m/z 78,507 F4 1.44 2.58 0.70 2.02 049
59 m/z 78,522 F4 1.47 1.44 0.80 1.33 0.55
60 m/z 80,235 F5 1.38 1.93 0.71 1.92 0.52
61 m/z 116,619 F6 0.78 1.84 1.03 1.37 1.32
62 m/z 122,843 F6 0.74 1.62 1.18 2.69 1.60
63 m/z 133,362 F6 0.61 2.88 1.44 1.81 2.35
64 m/z 138,499 F2 0.82 1.66 0.99 1.29 1.21
65 m/z 196,316 F4 0.90 1.40 1.11 1.17 1.23

These peaks were selected based on a misclassification rate of <0.25 and a fold-change of >1.2. The peaks are arranged in an ascending order of
their m/z values. SD, standard deviation; GR, good responders; PR, poor responders. *Peaks which were also identified in the pre-treatment

classifier.

-endorphin (3465.0 Da). Peptide masses were searched
against the NCBI database using the search engine ProFound
to identify the target protein (12).

Western blot analysis was performed to validate the
differential abundance of the plasma proteins between good
and poor responders. The protein concentration was measured
using the DC Protein Assay (Bio-Rad). For validation, 20 pg
of total protein from each sample were separated in a 4-12%
Bis-Tris SDS-PAGE gel (Invitrogen) and transferred to a
PVDF membrane. The membrane was blocked with the
Odyssey Blocking Buffer (LI-COR, Lincoln, NE) for 1 h at
room temperature, and then incubated overnight at 4°C with
mouse monoclonal anti-human serum amyloid A (SAA)
antibody (Santa Cruz Biotechnology, Santa Cruz, CA) or
rabbit anti-human transthyretin (TTR) antibody (Santa Cruz
Biotechnology) at 1:200 dilution. The secondary antibody
was IRDye 680 conjugated goat anti-mouse IgG or goat anti-
rabbit IgG (LI-COR) at 1:2000 dilution. The signal was
detected using the Odyssey Infrared Imaging System (LI-
COR). The PVDF membrane was dried and stained with
SimplyBlue Safe Stain (Invitrogen) after the protein detection.
The staining of the albumin band (66 kDa) on the membrane
was used as the loading control.

Results

The proteomic classifier of post-treatment plasma. In order to
test whether plasma proteomic profiles can be used to detect
which osteosarcoma patients would respond poorly to pre-
operative chemotherapy, 54 plasma samples of osteosarcoma
patients collected at the time of initial diagnosis (pre-treatment,

n=27) and during definitive surgery (post-treatment, n=27)
were subjected to SELDI-TOF MS analysis using weak
cationic protein arrays (CM10). All 783 protein peaks identi-
fied by SELDI-TOF MS from six different fractions and
three laser power settings were combined to construct a
multivariate classifier as previously described (7). As the
histological response is measured clinically at the time of
definitive surgery, we first tested whether we could identify a
proteomic signature of chemotherapy response using the
post-treatment plasma samples collected during definitive
surgery. A good responder was defined as a patient who
exhibited at least 90% tumor necrosis after pre-operative
chemotherapy. Among the protein peaks, we identified 65
informative peaks based on both the misclassification rate
and the fold-change criteria described in the Materials and
methods (Table II). These 65 protein peaks constituted a post-
treatment signature of chemotherapy response and contained
information which could be used to separate the plasma
samples into two clusters of good and poor responders
(Fig. 2A). The levels of 29 protein peaks were higher and
those of 36 protein peaks were lower in the plasma of poor
responders relative to that of the good responders. We then
used a supervised approach to test whether we could distinguish
the good from the poor responders in a more precise manner.
We developed a linear SVM classifier to classify the two
responder groups using the plasma proteomic profiles of the
post-treatment samples. This time the accuracy of the
classification was measured using external LOOCV, which
includes both feature selection and model building steps at
each iteration (13), and hence provides a more accurate
estimation of classification error (10). The results showed
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Figure 2. Hierarchical clustering of good and poor responders using (A) post- and (B) pre-treatment osteosarcoma plasma samples. Intensities of the protein
peaks were mean centered. Pearson's correlation and average linkage were used for clustering. Red to green scale represents a log peak intensity from -2 to 2.
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Figure 3. (A) The relative performance and (B) confusion matrix of the pre-
and post-treatment proteomic classifiers developed in this study. PPV, positive
predictive value; NPV, negative predictive value; GR, good responders; PR,
poor responders.

that the post-treatment classifier correctly classified 85% of
the samples (misclassified 4 from 27 cases) with 93% sensi-
tivity and 75% specificity in identifying poor responders
(Fig. 3A). One out of the 15 poor responders and three of the
12 good responders were misclassified by the post-treatment
classifier (Fig. 3B). The positive and negative predictive values
of detecting poor responders were 82 and 90%, respectively.

The proteomic classifier of pre-treatment plasma. However,
it would be of much greater clinical value if we could predict
the chemotherapy response before the start of treatment, so
that alternative or personalized treatment could be offered to
improve the outcome of the resistant patients. Therefore, we
tested whether the proteomic profiles of the pre-treatment
plasma collected at the time of initial diagnosis (n=27) could
be used to detect the potential poor responders. Using the
same selection criteria as the post-treatment samples, we
identified a proteomic signature of chemotherapy response in
the pre-treatment plasma samples, which consisted of 56
protein peaks (Table III). Similar to the post-treatment
signature, hierarchical clustering of the pre-treatment plasma
samples based on the pre-treatment signature formed two
major clusters, which corresponded to good and poor
responders (Fig. 2B). In the pre-treatment signature, 32 and
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Table III. The informative protein peaks used in the pre-treatment classifier.
PR PR/GR
No. Protein peak Fraction Average SD Average SD Ratio
1 m/z 2,213 Fl1 0.94 1.33 1.15 1.98 1.22
2 m/z 2,299 Fl1 1.79 2.50 0.81 2.18 0.45
3 m/z 2,311 Fl1 1.40 2.27 0.60 232 043
4 m/z 2,431 F2 1.08 3.65 043 2.51 0.40
5 m/z 2,576 F2 1.30 143 0.76 2.36 0.59
6 m/z 2,675 Fl1 1.56 2.26 0.82 1.84 0.53
7 m/z 2,720 F2 143 1.63 045 352 0.31
8 m/z 2,996 Fl1 1.19 1.73 0.73 1.45 0.62
9 m/z 3,587 F2 1.36 1.61 0.85 1.61 0.63
10 m/z 3,870 Fl 0.94 247 1.31 141 1.40
11 m/z 3,888 Fl 0.84 1.82 1.62 1.85 1.93
12 m/z 4,650 F2 0.55 2.39 0.99 2.04 1.82
13 m/z 4,985 F5 0.59 2.36 1.24 1.46 2.11
14 m/z 5,165 Fl 0.68 1.83 1.11 1.82 1.63
15 m/z 5,567 Fl 1.10 1.44 0.66 1.60 0.59
16 m/z 5,909 Fl 1.40 1.93 0.90 221 0.64
17 m/z 7,172 F6 1.13 1.35 0.82 1.58 0.73
18 m/z 7,574 F2 0.93 201 142 1.53 1.52
19 m/z 7,773 F6 0.67 1.83 1.13 1.29 1.70
20 m/z 7,776 F5 0.61 1.93 1.19 1.30 1.93
21 m/z 7,777 F2 0.72 142 142 1.66 1.97
22 m/z 7,845 Fl1 0.88 1.55 1.18 1.40 1.34
23 m/z 8,074 F2 0.63 332 1.26 1.78 1.98
24 m/z 8,789 Fl1 1.23 1.51 0.71 1.68 0.58
25 m/z 9,088 F2 0.57 4.03 0.94 242 1.65
26 m/z 9,198 F2 0.54 2.75 1.09 241 2.03
27 m/z 9,292 F2 045 3.65 1.19 2.09 2.61
28 m/z 9,294 F6 0.88 1.23 1.07 1.21 1.22
29 m/z 9,426 F2 0.52 2.94 1.10 240 2.12
30 m/z 10,274 F5 0.62 2.34 1.48 227 2.40
31 m/z 11,337 F6 1.86 2.32 0.83 1.75 0.45
32 m/z 11,4672 F6 2.00 3.58 0.72 1.94 0.36
33 m/z 11,530° F6 248 3.78 0.83 1.46 0.33
34 m/z 11,538 Fl1 2.63 3.86 0.63 294 0.24
35 m/z 12,159 Fl1 1.06 2.24 0.50 340 0.47
36 m/z 12,890 F3 0.81 1.69 1.07 1.75 1.32
37 m/z 17,219 Fl1 1.57 2.04 0.89 2.14 0.57
38 m/z 17,276 F5 0.83 1.49 1.13 1.50 1.37
39 m/z 17,409 F5 0.84 1.48 1.15 1.59 1.37
40 m/z 18,352 Fl1 0.67 2.74 0.97 2.11 1.44
41 m/z 18,492 Fl1 0.44 2.95 1.04 3.29 2.35
42 m/z 18,616 F2 0.65 1.83 1.44 1.79 2.20
43 m/z 18,653 Fl1 048 248 1.10 247 2.28
44 m/z 20,632 F2 1.06 3.13 0.70 1.58 0.66
45 m/z 20,802 F2 1.20 1.56 0.78 1.49 0.65
46 m/z 25,612 F5 0.84 1.46 1.16 1.27 1.38
47 m/z 29,721 F5 1.29 1.40 0.82 141 0.64
48 m/z 39,337 F6 1.20 1.81 0.88 2.06 0.73
49 m/z 43,298 F5 0.81 141 1.15 1.32 1.42
50 m/z 43,308 F3 0.92 1.19 1.11 1.22 1.21
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Table III. Continued.
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GR PR PR/GR
No. Protein peak Fraction Average SD Average SD Ratio
51 m/z 51,242 F5 0.78 1.48 1.25 1.52 1.60
52 m/z 51,273 F6 0.59 2.12 1.43 1.48 241
53 m/z 52,555 F6 0.63 1.84 1.34 1.67 2.11
54 m/z 52,573 F3 0.95 2.14 0.47 2.11 0.50
55 m/z 52,583 F5 0.82 1.60 1.19 1.78 1.44
56 m/z 99,777 F5 1.21 1.30 0.92 1.25 0.76

These peaks were selected based on a misclassification rate of <0.25 and a fold-change of >1.2. The peaks are arranged in an ascending order of
their m/z values. SD, standard deviation; GR, good responders; PR, poor responders. “Peaks which were also identified in the post-treatment

classifier.
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Figure. 4. (A) Differential abundance of m/z 11,467 (des Arg Ser SAA) and m/z 11,530 (des 1-Arg SAA) in pre- and post-treatment plasma samples. (B) The
correlation analysis of m/z 11,467 and 11,530 protein peaks on paired samples collected before and after chemotherapy. Empty and filled circles denote good
and poor responders, respectively. The line represents the fitted line of the plot. (C) Western blot analysis validated the higher abundance of SAA in the pre-
and post-treatment plasma samples of good responders. The upper panel shows the SAA levels (11.5 kDa) in the individual plasma samples. The lower panel
shows the albumin (ALB) band (66 kDa) in each sample as the loading control. Lanes 1-4 represent good responder samples and lanes 5-8 poor responder
samples. GR, good responders; PR, poor responders.
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Figure. 5. (A) Differential abundance of the m/z 13,876 protein peak in the post-treatment plasma samples of good and poor responders. (B) SDS-PAGE of
pooled plasma samples with a high (+) or low (-) level of the 13.8 kDa protein peak. The arrow indicates the position of the candidate TTR band. (C) The
ProFound database search result and the probability of matching the candidate 13.8 kDa protein with TTR. (D) Western blot analysis validation of a higher
TTR level in the plasma samples of poor responders relative to that in the plasma of good responders. The upper panel shows TTR in the individual plasma
samples. The lower panel shows the albumin (ALB) band (66 kDa) in each sample as the loading control. Lanes 1-4 represent poor responder samples and
lanes 5-8 good responder samples. GR, good responders; PR, poor responders.

24 protein peaks in the plasma of the poor responders were
higher and lower, respectively, than those in the plasma of
the good responders. A linear SVM classifier was developed
based on the pre-treatment samples and it achieved the same
classification accuracy as the post-treatment classifier using
LOOCV (85%, Fig. 3A). However, the pre-treatment classifier
had a lower sensitivity (77%) but a higher specificity (93%)
in recognizing poor responders when compared to the post-
treatment classifier (Fig. 3A). Specifically, the pre-treatment
classifier misclassified three of the 13 poor responders, and
one of the 14 good responders (Fig. 3B). The positive and
negative predictive values for the poor responders were 91
and 81%, respectively.

Identification and validation of two proteins in the classifiers.
Although multivariate classifiers based on proteomic patterns
are generally more accurate than a single biomarker, it is
important to determine the identities of the discriminatory

proteins in order to understand the biological basis of the
classification. We previously reported that SAA levels were
higher in the pre-treatment plasma samples from the
osteosarcoma patients relative to a benign bone disease (7).
However, the correlation between SAA and chemotherapy
response was not analyzed previously. In this study, we
discovered that two protein peaks (m/z 11,467 and 11,530)
were informative in distinguishing the poor from the good
responders in both the pre- and post-treatment classifiers
(Tables II and III; Fig. 4). The levels of these two protein
peaks were significantly higher in the plasma of the good
responders than in that of the poor responders (p<0.05). The
size of these two protein peaks (m/z 11,467 and 11,530)
matched the size of two known SAA variants, des Arg Ser
and des 1-Arg of SAA, respectively (14). Further analysis
indicated that the intensities of these two peaks in the samples
were highly correlated with each other (r=0.97), suggesting
that they could be variants of the same protein. A correlation
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analysis of 18 paired patient samples collected before and
after the chemotherapy indicated that the poor responders
had a low level of SAA before and after the treatment. A
similar phenomenon occurred in the good responders, except
that they had a relatively higher level of SAA before and after
the treatment (Fig. 4B). These results suggest that higher levels
of SAA could have a beneficial effect on the patient response
to chemotherapy. We then performed Western blot analysis
to validate the MS results. Eight plasma samples with a high
(good responder group) or low level of the ion peaks (poor
responder group) were selected for the validation. The results
from the Western blot analysis confirmed that SAA levels
were higher in both the pre- and post-treatment plasma
samples of the good responders (Fig. 4C).

Based on m/z ratios, we also discovered that the size of
another protein peak (m/z 13,876) in the post-treatment
classifier was similar to the reported size of the plasma
protein, TTR (15) (Table II). In the post-treatment plasma,
the levels of this peak in the plasma of the good responders
were significantly lower than those in the plasma of the poor
responders (p<0.05, Fig. 5A). The peak with the same m/z
ratio in the pre-treatment plasma was also lower in the plasma
of the good responders. However, it did not reach statistical
significance (data not shown). To confirm the identity of the
m/z 13,876 protein peak, pooled plasma samples from the
poor (increased TTR) and good responders (decreased TTR),
were separated by electrophoresis. Peptide fingerprint analysis
was performed on the gel slice with the molecular weight
from the poor responder sample being close to 13.8 kDa
(Fig. 5B). ProFound database searching of the peptides
indicated that the m/z 13,876 protein peak was indeed TTR
with a high probability (z=2.34, p=1) (Fig. 5C). In order to
further validate this result, we performed Western blot
analysis on individual plasma samples collected from the
post-treatment sample set using a specific TTR antibody. Our
result further confirmed that TTR was increased in the poor
responders relative to the good responders (Fig. 5D). TTR is
a negative host response protein, which decreases in reaction
to inflammation. As both SAA and TTR are known to be
involved in host response, the results from our study suggest
that the host or innate immune response could be critical for
the good response towards chemotherapy.

Discussion

Tumor resistance towards pre-operative chemotherapy is the
major poor prognostic factor for patients with localized osteo-
sarcoma (3). Despite efforts to identify prognostic markers in
osteosarcoma, the survival of osteosarcoma patients has not
improved significantly in the past three decades. The main
reason is that the use of post-operative chemotherapy, which
is based on the histological response of the tumor after pre-
operative chemotherapy, does not improve the outcome of
the poor responding patients. This suggests that these poor
responders need to be identified at an earlier point in time,
preferably at the time of initial diagnosis, before the resistant
tumor cells have had a chance to evolve and develop. We,
as well as others, have previously demonstrated the use of
genomic classifiers for the prediction of chemotherapy
response in patients with osteosarcoma (4,16,17). However,
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genomic classifiers require tumor biopsies, and these are often
difficult to obtain and not suitable for continuous monitoring.
Clinically, it would be much more preferable if we could
identify poor responders using peripheral blood samples from
patients, such as plasma or sera. In this study, we used the
proteomic profiles of the patient plasma samples to develop
two SVM classifiers for the detection of chemotherapy
response at the time of initial diagnosis (pre-treatment) and
during definitive surgery (post-treatment). The classifier
developed from the pre-treatment samples exhibited the same
classification accuracy as that from the post-treatment samples,
indicating that the poor chemotherapy response could be
predicted at the time of diagnosis and before the start of
treatment. Therefore, ineffective therapies could be avoided
and alternative or more aggressive therapies could be offered
to the patients who are likely to respond poorly to the
standardized treatment. The early detection of chemotherapy
response would also benefit future risk-based clinical trials,
so that different drugs and treatment regimens could be
evaluated at the time of diagnosis based on an expected
response towards the standardized chemotherapy. To the best
of our knowledge, this is the first study on the use of plasma
proteome for the prediction of chemotherapy response in
patients with osteosarcoma.

As osteosarcoma is a pediatric cancer with a relatively
low annual incidence rate, we did not have enough samples
to set aside for an independent validation set. Instead, we
performed a well-accepted alternative approach, which was
the external LOOCV. Our LOOCYV includes feature selection
and model building steps in each iteration, and hence
minimizes the underestimation of classification error (10). A
detailed examination of the classifier performances showed
that the sensitivities and specificities of the pre- and post-
treatment classifiers were slightly different. The pre-treatment
classifier was more specific, while the post-treatment classifier
was more sensitive in detecting poor responders. The two
classifiers complement each other to a certain degree in terms
of classification. Two of the four misclassified patients
analyzed by the pre-treatment classifier were also analyzed
by the post-treatment classifier. One of these two common
patients was classified correctly by the post-treatment classi-
fier. Similarly, three of the four misclassified patients in the
post-treatment classifier were analyzed in the pre-treatment
classifier. Two of them were correctly predicted by the pre-
treatment classifier. We are fully aware of the relatively
small sample size used in this study. Thus, the utility of the
classifiers needs to be validated in a large patient cohort from
different institutions. Nonetheless, our results show the
potential of using plasma proteomic profiles or proteins to
predict or monitor chemotherapy response in patients with
osteosarcoma. Our findings could lead to the development of
a simple blood test for detecting poor responders in osteo-
sarcoma before the start of treatment.

Identification of the informative proteins in the classifiers
is critically important for understanding the biological basis
of the classification. The two informative proteins identified
in this study were host response proteins. One is SAA, whose
amount was higher in the plasma of good responders. SAA is
a major component of the apolipoproteins in the high density
lipoprotein particle (18). They act as chaperones in the trans-
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port of high-density lipoprotein particles. SAA has been
found to be overexpressed in a number of cancers, including
renal and colorectal cancers (19,20). Previous studies have
shown that the association of SAA with cancers may not
merely be due to acute phase response (21,22). Evidence also
suggests that SAA affects other cellular processes, such as
calcium signaling and cell adhesion, which are important in
drug resistance (23,24). In our previous study, we demon-
strated that the amount of circulating SAA is higher in the
plasma of patients with osteosarcoma relative to that in the
plasma of patients with benign osteochondroma (7). Studies
have also shown that SAA is expressed in bone tissues and
osteosarcoma cell lines (25) and that the amounts of SAA in
the sera are associated with the relapse of osteosarcoma (26).
These results further implicate the importance of this protein
in the biology of osteosarcoma. To the best of our knowledge,
the role of SAA in chemotherapy response in patients with
osteosarcoma has never been described. By combining the
proteomic profiles of the pre- and post-treatment plasma
samples, we found that two protein peaks (m/z 11,467 and
11,530) were higher in the good responders before and after
chemotherapy. According to their size, we deduced that they
were two known variants of SAA with the deduction of
arginine and serine (des Arg Ser, m/z 11,467) or one arginine
(des 1-Arg, m/z 11,530) from the intact SAA protein (14).
The analysis based on the paired samples from 18 patients
indicated that the expression of these peaks in most of the
cases was not affected by the chemotherapy treatment. This
could reflect an initial state of host response in the patients
before receiving the treatment. Due to the lack of appropriate
antibodies, we were not be able to validate the results of the
two specific SAA variants. However, the results from our
Western blot analysis suggest that the total SAA level was
higher in the good responders relative to that in the poor
responders. We anticipate that the development of an immuno-
assay specific to either the des Arg Ser or des 1-Arg variant
of SAA will further confirm our results.

Another discriminatory protein identified in this study is
TTR. While two of the SAA variants exhibited differential
abundance, only one variant of TTR (m/z 13,876) was signifi-
cantly different between the good and poor responders. The
size of this TTR variant matches the cysteinylated TTR
reported by another SELDI study (15). TTR is involved in
the transport of thyroxine and retinol-binding protein in the
blood and cerebrospinal fluid. As a negative host response
protein, the synthesis of TTR is decreased by the liver in
reaction to inflammation. It has been reported that the down-
regulation of TTR is correlated with the early stage of ovarian
cancer, which suggests that TTR could be a reaction to the
tumor instead of just other inflammations (27).

Regardless of the other potential roles of the two identified
proteins in osteosarcoma, our results suggest that the acute
phase response plays an important role in the chemotherapy
response in patients with osteosarcoma. As the acute phase
response is part of the innate immune system, our results
further suggest that innate immunity is potentially activated
in the good responders before chemotherapy. Innate immunity
is the first immune defense mechanism of the body against
pathogens, trauma and malignancy. The activation of innate
immunity promotes the anti-tumor activity of chemotherapy.
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In osteosarcoma, the use of a specific immune stimulating
compound, muramyl tripeptide phosphatidylethanolamine
(MTT-PE), has been shown to stimulate and promote anti-
tumor activity in canines and humans with metastatic osteo-
sarcoma (28,29). It has been shown that MTT-PE can improve
the overall survival of osteosarcoma patients when used
together with conventional chemotherapy (30). Our results
corroborate these findings and further suggest that patients
with heightened innate immunity could have higher anti-
tumor activity, and hence a better histological response. In
summary, the use of plasma proteomic profiles, as well as
immunostimulating compounds and conventional chemo-
therapy, could improve the detection and treatment of the
poor responding osteosarcoma patients.
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