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Abstract. Pulmonary fibrosis is a common delayed side effect 
of radiation therapy. Since its mechanism is almost unknown, 
little can be done to prevent or treat it. Th2 cytokines have 
been clearly implicated as mediators of asthma, and evidence 
is mounting that type 2 immune responses may also promote 
the development of pulmonary fibrosis. The aim of this study 
was to investigate whether Th2-like immune responses 
account for the development and progression of chronic 
radiation pulmonary fibrosis. C57BL/6 mice received thoracic 
irradiation of 12 Gy and were sacrificed at 1 h and 1, 2, 4, 8, 16 
and 24 weeks post-irradiation (p.i.). We assayed the expression 
of IL-13 in serum, and the expression of hydroxyproline and 
the mRNA and protein of GATA-3 and Arg-1 in lung tissue. 
mRNA and protein analysis revealed the expression of these 
Th2-immune response-associated factors (GATA-3, IL-13 and 
Arg-1) in mice after irradiation. Without causing conspicuous 
fibrotic pathological changes at the early post-irradiation 
phase (1 and 2 weeks p.i.), a Th2 profile was confirmed by 
significantly elevated expression of Th2-specific transcription 
factor GATA-3 mRNA (P<0.01). Protein analysis confirmed 
the GATA-3 mRNA expression. Following significantly 
elevated expression of hydroxyproline (P<0.01) at 16 weeks 
p.i., IL-13 and Arg-1 expression reached maximal values in 
serum and lung tissue and maintained high levels up to 24 

weeks p.i., respectively (P<0.01). Our data indicate that lung 
irradiation induces Th2 polarization. Furthermore, Th2-like 
immune response may take part in radiation-induced pulmo-
nary fibrosis (RILF), and GATA-3 may play an important 
role in promoting RILF. Thus, GATA-3 may be an important 
target for the treatment of RILF.

Introduction

Radiation-induced lung fibrosis (RILF) is a common delayed 
side effect of radiotherapy for thoracic malignancies, which 
limits the delivered dose to the tumor target and may thus 
hamper tumor control (1). RILF is believed to result from 
cytokine-mediated multicellular interactions with induction 
and progression of fibrotic tissue reactions (2,3); however, 
the mechanism(s) underlying the pathogenesis of RILF at the 
molecular and cellular levels has not yet been identified.

Naive CD4+ T-helper (Th) cells can be differentiated into 
at least two functional subsets during the immune response: 
Th1 cells, which secrete Th1 cytokines such as INF-γ, TNF-β, 
IL-2, IL-12; and Th2 cells which secrete Th2 cytokines, 
such as IL-4, IL-5, IL-6, IL-10 and IL-13 (4). Th1 and Th2 
cytokines are crucial to Th1 and Th2 immune reactions, 
which both promote the growth/differentiation of their subset 
and inhibit the growth/differentiation of the opposing subset 
(5). Th2-dominated immune responses secrete multiple Th2 
cytokines, key players in humoral immunity. They also play a 
central role in the pathogenesis of a variety of fibrotic disorders, 
including progressive systemic sclerosis, idiopathic pulmonary 
fibrosis, bleomycin lung and hepatic fibrosis (6-8). Recent 
studies have shown that several Th2 cytokines are expressed 
in RILF. Buttner et al (9) and Huaux et al (10) reported 
elevated levels of the type 2 cytokine interleukin (IL)-4 in rats 
during RILF. Tabata et al (11) showed that all-trans-retinoic 
acid prevents RILF by suppressing the expression of IL-6 in 
mice lung tissue after irradiation. IL-10 was also found to be 
released in RILF (12). Yang found that increased expression 
of IL-13 and IL-4 are associated with an earlier onset and 
enhanced degree of RILF (13). Although these studies provide 
little more than vignettes of the molecular events in the lung 
after irradiation, they provide some useful hypotheses as to the 
role of Th2-like immune response in RILF.

Collagen, elastin and a component of complement are 
proteins that contain hydroxyproline. Since collagen is by far 
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the most abundant protein in the lung, comprising 60-70% of 
the tissue mass, analysis of the hydroxyproline content in lung 
tissues provides a reliable quantitative index for pulmonary 
fibrosis (14).

GATA-binding protein 3 (GATA-3) was first identified 
as a T-cell-specific transcription factor in 1991 by Ko and 
Engel (15). GATA-3 plays a pivotal role in the development of 
the Th2 phenotype while inhibiting Th1 cells and producing 
type 2 cytokines (16). IL-13, a Th2 cell hallmark cytokine, is 
regarded as a strong inducer of tissue fibrosis (17,18). studies 
have shown that IL-13 is regulated by GATA-3 and the IL-13 
promoter is mediated by a functionally critical GATA-3 site 
that binds endogenous GATA-3 proteins, resulting in an 
increase in IL-13 production (19,20). Arginase 1 (Arg-1), an 
enzyme that catalyzes the hydrolysis of arginine during the 
urea cycle, produces urea and L-ornithine. L-ornithine is 
further metabolized by ornithine decarboxylase and ornithine 
amino transferase, and produces polyamines and L-proline, 
which control cell growth and collagen synthesis, respectively. 
Thus, Arg-1 is required for tissue remodeling and fibrosis 
(21,22). studies have shown that Th2-cytokines up-regulate 
Arg-1 expression in vivo and in vitro (23,24). From these 
observations, it appears that GATA-3 plays a pivotal role in 
the Th2-like immune response, and produces type 2 cytokines 
to regulate Arg-1 expression and hydroxyproline content.

In order to investigate the relationship between the Th2-like 
immune response and pathogenesis of RILF, C57BL/6 mice 
received thoracic irradiation, and the levels of associated 
factors (GATA-3, IL-13 and Arg-1) and hydroxyproline 
content were measured in lung tissue and serum at various 
times from 1 h to 24 weeks after irradiation.

Materials and methods

Animals and radiation schedule. Specific pathogen-free 
(SPF) C57BL/6 mice were purchased from Vital River 
Laboratories (Beijing, China). Eight-week-old female mice 
(~20 g each) were divided into 2 groups: i) non-irradiated 
control group (14 mice) and ii) radiation group (35 mice). A 
dose of 12 Gy to the mid-plane of the lungs was adminis-
tered in a single fraction via a posterior field using a linear 
accelerator (Siemens Primus-Hi). A plastic jig was used to 
restrain the mice without anesthesia, and lead blocks were 
placed to shield the head and abdomen. Characteristics of the 
radiation were as follows: beam energy, 6-MV photons; dose 
rate, 1.886 Gy/min; source-surface distance (SSD), 1 m; size 
of the radiation field, 2.6x38 cm. The depth of the maximum 
dose of the 6-MV photon beam was significantly reduced by 
the tissue-equivalent plastic material (thickness 10 mm) of 
the restraining jig. Film dosimetry was used to determine the 
relative dose distribution. Dosimetry was performed with a 
cylindrical ionization chamber. Following irradiation, mice in 
the two groups were maintained in an SPF environment and 
provided with a standard diet and water. The experimental 
protocols were approved by the Medical Sciences Animal 
Care Committee of Hubei province, China.

Tissue isolation. Radiated and control mice were humanely 
sacrificed at 1 h and 1, 2, 4, 8, 16 and 24 weeks post-irra-
diation (p.i.). The left lung lobes were used for histological, 

histochemical and hydroxyproline content analyses, and the 
right lobes were quickly frozen in liquid nitrogen until RNA 
and protein isolation. Sera samples were used for ELISA.

Histology. Paraffin-embedded tissues were sectioned at an 
average thickness of 4 µm. Tissue staining was carried out 
using hematoxylin and eosin (H&E) to determine histo-
logical changes, and Masson's stain was used for collagen 
detection.

Immunohistochemistry. Tissue dewaxing in xylene and 
rehydration in graded alcohol were performed according to 
the manufacturer's protocol. The specimens were incubated 
overnight at 4˚C with 100-fold-diluted rabbit polyantibody 
against Arg-1 (Santa Cruz Biotechnology Inc., Santa Cruz, 
CA, USA) and goat anti-rabbit secondary antibody (Maixin 
Biotechnology, Fuzhou, China).

Hydroxyproline determination. lung tissue samples were 
stored at -80˚C until analysis. To measure the content of 
hydroxyproline in the lung tissue, alkaline hydrolysis assay 
kits (25) (Jiancheng biological institution, Nanjing, China) 
were used according to the instructions provided by the 
manufacturer. The quantity of hydroxyproline was determined 
based on the following formula: content of hydroxyproline 
(µg/mg, wet weight)= [absorbance(sample) - absorbance(blank)]/
[absorbance(standard) - absorbance(blank)] x 5 µg/ml x 10 ml/wet 
weight(tissue).

ELISA assay. IL-13 concentrations were measured in mouse 
serum using ELISA kits (eBioscience, San Diego, CA, USA) 
following the manufacturer's protocols. Purified murine IL-13 
from the ELISA kits was used to generate the standard curves 
for calculation of the cytokine concentrations in each serum 
sample. Microtiter plates (96-well) were read at 450 nm in an 
automated microplate reader. The detection limits of these 
assays were 4 pg/ml for IL-13.

RT-PCR analysis. Total RNA was extracted using the TRIzol 
reagent according to the manufacturer's protocol (Invitrogen, 
Carlsbad, CA, USA). RNA integrity was assessed using 
denaturing agarose gel electrophoresis. First-strand cDNA 
was synthesized using the EnergicScript® cDNA synthesis 
kit (ShineGene, Co., Ltd., Shanghai, China) according to 
the manufacturer's protocol. RT-PCR was performed as 
described in a previous report (26). PCR primers and probes 
for murine GATA-3, Arg-1 and the housekeeping genes, such 
as GAPDH, were designed by ShineGene Co., Ltd., based 
on cDNA sequences obtained from the GenBank database 
(Table I). RT-PCR amplifications were performed using the 
ShineProbe® Real-Time qPCR MasterMix kits (ShineGene) 
in the FTC-2000 sequence detection system (Funglyn Biotech 
Inc., Toronto, Canada). For reproducibility within and between 
PCR amplifications, we used a standard normal cDNA in each 
PCR amplification. Relative mRNA expression of test cDNA 
samples was referenced to the standard cDNA and expressed 
as the ratio of the level of the test mRNA compared to the 
base mRNA. For example, relevant mRNA expression (E) = 
2–(Ct of test – Ct of GAPDH), where Ct represents the cycle threshold 
in the PCR.
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Western blot analysis. Cell extracts from the lung tissue 
samples were prepared using cold cell lysate radioimmuno-
precipitation assay buffer (RIPA, Sigma-Aldrich, Shanghai, 
China). The protein concentration was determined using 
the micro-BCA kit (Applygen Technologies Inc., Beijing, 
China). According to the conventional methods modified by 
Fuentes et al (27), equal amounts of protein (50 µg/condition) 
from individual mice in each group were re-electrophoresed 

on 8-10% SDS-PAGE gel and then electrotransferred to 
polyvinylidene fluoride (PVDF, Millipore) membranes. The 
membranes were blocked by rocking with blocking buffer 
for 1 h at room temperature. The blots were then incubated 
overnight at 4˚C with primary antibodies raised against 
GATA-3 (1:500) and Arg-1 (1:500), with β-actin (1:1000) used 
as an internal control. After 3 rinses with TBS-T buffer, the 
blots were incubated with horseradish peroxidase-conjugated 
anti-rabbit IgG Abs (1:3000 dilution in TBS-T) at room 
temperature for 1 h and washed with TBS-T buffer for 30 min. 
Finally, the reaction was visualized with a chemiluminescence 
reagent kit (BioTime, Beijing, China) and exposed to Kodak 
Scientific Imaging Systems film. All primary antibodies were 
purchased from Santa Cruz Biotechnology.

Statistical analysis. Statistical analysis was performed with 
the SPSS software package (version 13.0) for Windows. All 
data are expressed as means ± SD. Between group compari-
sons were performed using the Mann-Whitney U test, and 
the data for the various time points were analyzed with the 
independent samples t-test. A value of P<0.05 was considered 
statistically significant.

Results

Histological changes. Following irradiation, histological 
changes of interstitial pneumonia were evident. At 1 week after 
radiation, lungs of the radiated mice showed mild structural 
changes. The initial injury included edema of the alveolar 
walls, intra-alveolar hemorrhage, alveolar exudation, neutro-
phil infiltration and interstitial edema. At 4 and 8 weeks p.i., 
continuied inflammation was evident. The alveolar septa were 
thickened, and the alveolar spaces were smaller (Fig. 1A). 
Large deposits of collagen were observed in the alveolar 
septa and bronchiolar area, with obliteration of the alveoli, 
particularly between 16 and 24 weeks (Fig. 1B).

Immunohistochemistry
Expression of Arg-1 in lung tissue. The staining patterns of 
Arg-1 in the lung tissues are shown in Fig. 2. Compared with 

Table I. Primer and probe sequences for murine GATA-3, Arg-1 and GAPDH.

Name	 Sequence (5'-3')	 Amplicon length (bp)

GATA-3	 FW: ACTGCGGGGCAACCTCTA
	 RV: CGGTTCTGCCCATTCATTTT	 100
	 FP: CCACTGTGGCGGCGAGATGGTAC
Arg-1	 FW: TTGATTCCAACGACATCTACCA
	 RV: CGTTTTCCATTAGCTCCTTCAT	 87
	 FP: CTGCCTACCGCCTGGGCTCTGA

GAPDH	 FW: TGTGTCCGTCGTGGATCTGA
	 RV: CCTGCTTCACCACCTTCTTGA	 77
	 FP: CCGCCTGGAGAAACCTGCCAAGTATG

forward (FW) and reverse (rV) primers were always located in different exons. Fluorogenic probes (FP) were FAM-labelled at the 5'-end and 
TAMRA-labelled at the 3'-end.

Figure 1. (A) H&E staining for pathological features of radiation-induced 
lung injury in mouse lung tissues. Four representative slides indicate the 
control (control), 1 week p.i. (irradiation 1w), 4 weeks p.i. (irradiation 4w), 
8 weeks p.i. (irradiation 8w). Original magnification, x200. (B) Masson's 
staining for collagen in mouse lung tissues of the two groups at 24 weeks. 
Two representative slides are shown for the no treatment (control) and 
irradiated (irradiation 24w) groups. collagen deposition (light blue stain). 
Original magnification, x200.
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the control, mild expression of Arg-1 was noted in the lung 
tissues at 2 weeks p.i. At 16 weeks p.i., the lung parenchyma 
had already revealed a pronounced increased expression of 
Arg-1, and vascular endothelial cells and alveolar macrophages 
may have served as important sources of Arg-1 expression. At 
the same time, there was evidence of interstitial fibrosis with 
accumulation of elastic fibers, deposition of collagen, and, 
consequently, destruction of normal tissue architecture.

Measurement of hydroxyproline content. In general measure-
ments, the content of hydroxyproline in the radiation group 
was different from that in the control group (P<0.05). the 
irradiated mice expressed significantly increased amounts 
of hydroxyproline at 16 and 24 weeks (0.708±0.081 and 
0.744±0.098 µg/mg) (P<0.01) (Fig. 3), compared to the mice 
in the control group.

ELISA analysis. Serum from the C57BL/6 mice treated with 
irradiation was analyzed for expression of IL-13 at different 
time points. In general, the irradiation group tended to express 
different levels of IL-13 compared to the control group  

(P<0.01). Upon analysis for each time point, expression of 
IL-13 in the serum from the irradiated group was significantly 
greater than that in the control group at every time point, apart 
from 2 weeks p.i. (P<0.01). a maximal value (92.958±2.488 pg/
ml) appeared at 16 weeks p.i. (P<0.01) (Fig. 4).

RT-PCR analyses
GATA-3 mRNA expression. The GATA-3 mRNA expression in 
the different study groups are shown in Fig. 5A. There was a 
significantly statistical difference between the groups (P<0.01). 
The control group exhibited relative levels of GATA-3 mRNA 
expression between 0.017 and 0.03. radiation-induced GATA-3 
was obviously increased and reached maximal values at 1 and 
2 weeks p.i. (relative mRNA expression, 0.221±0.041 and 
0.179±0.032, respectively) (P<0.01).

Arg-1 mRNA expression. There was no statistical difference 
between the groups (P>0.05). As shown in Fig. 5B, in contrast 
to the control group, Arg-1 mRNA was decreased at the early 
stage of radiation-induced lung injury, particularly at 2 and 4 
weeks p.i. (P<0.05), but increased suddenly at 16 weeks p.i. 
(relative mRNA expression, 0.056±0.004) and maintained a 
high level up to 24 weeks p.i. (P<0.01).

Figure 2. Differences in immunohistochemical stainings are shown for Arg-1 expression in mouse lung tissues for different treatments at different time 
points. Six representative slides are shown for the control and irradiated mice. (A and D) Control, (B and E) irradiated 2 weeks p.i., and (C and F) irradiated 16 
weeks p.i. groups. (A-C, original magnification, x200; D-F, original magnification, x400). White arrows show alveolar macrophages and black arrow shows 
vascular endothelial cells in F.

Figure 3. Time course and comparison of hydroxyproline expression in 
mouse lung tissues after irradiation.

Figure 4. Time course and comparison of IL-13 expression in mouse serum 
after irradiation. 
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Western blot analysis. Fig. 6 shows the protein expression 
of GATA-3 and Arg-1. compared with the control, GATA-3 
protein expression was markedly increased at 2 weeks p.i. and 
was obviously increased from 4 weeks p.i.; particularly at 8 
weeks p.i., Arg-1 appeared to produce more proteins than the 
control at 8 weeks p.i. and was obviously increased at 16 and 
24 weeks p.i.

Discussion

Tissue fibrosis, which results in the destruction of normal organ 
function, is a leading cause of morbidity and mortality. The 
causes of fibrosis are diverse regardless of the tissue involve, 
and common features include the sequential recruitment of 
inflammatory cells, over-proliferation of matrix-producing 
cells, and the overproduction of extracellular matrix. Although 
the exact molecular mechanism leading to fibrosis is not yet 
clear, evidence from preclinical models strongly implicates 
Th2-specific signaling in the propagation of this process (3,28). 
In this study, C57BL/6 mice received thoracic irradiation. 
Based on the results from changes in histology and the content 
of hydroxyproline the mouse model of RILF was successfully 
established. in general measurements, compared with the 
control group, the levels of Th2-like immune response-associ-
ated factors (GATA-3, IL-13 and Arg-1) and the hydroxyproline 
content in the irradiated mice were up-regulated. It appears 
that the Th2-like immune response is associated with RILF.

Arg-1 generates L-ornithine, an important precursor for 
proline that enhances collagen biosynthesis, promoting cell 

growth and tissue repair (21). In this study, we found that the 
peak level of hydroxyproline in irradiated lung tissues followed 
the peak level of Arg-1 expression. Arg-1 up-regulated expres-
sion of hydroxyproline in the lung tissues after irradiation to 
promote the progression of fibrotic tissue reactions. Arg-1 is 
a hallmark of alternative macrophage activation, which plays 
a role in fibrosis (29,30). Upon immunohistochemistry, mild 
expression of Arg-1 was noted in the tissues at 2 weeks p.i. 
however, at 16 weeks p.i., the lung parenchyma had already 
revealed a pronounced increased expression of Arg-1, and 
Arg-1 was partly expressed in the macrophages. However, 
the vessel endothelial and other cells also exhibited positive 
staining of Arg-1. Similar observations of Arg-1 expression 
have been previously reported (31,32). These results indi-
cate that Arg-1 is the hallmark for alternatively activated 
macrophages and also for other mediators in other cells, and 
takes part in the pathogenesis of RILF. Thus, it can be used as 
an effective monitoring indicator for RILF.

studies have reported (30,33,34) that IL-13/IL-4 induced 
alternatively activated macrophages enhance the expression 
of Arg-1. In our study, we found that the increase in IL-13 
expression in the serum occurred earlier than the up-regulated 
expression of Arg-1 mRNA and protein in the lung tissues. 
It has been proposed that Arg-1 may be regulated by Th-2 
cytokines during RILF. GATA-3 has been found to regulate 
IL-13 in the development of the Th2 phenotype (20,21). In 
our study, we found that GATA-3 was obviously increased 
and reached maximal values at 1 and 2 weeks p.i., and the 
peak level of IL-13 in the serum irradiated mice followed 
the peak level of GATA-3 expression, suggesting a causative 
relationship. GATA-3 may regulate the expression of Th2 
cytokines during the phase of RILF. Moreover, the peak 
level of GATA-3 expression was noted earlier than any of the 
other factors (IL-13 and Arg-1) during RILF, suggesting that 
GATA-3 plays an important role in RILF and can be used as 
an effective predictor for RILF. From these observations, it 
seems that GATA-3 up-regulates expression of Arg-1 mRNA 
and protein by up-regulating the expression of Th2 cytokines 
during RILF.

In conclusion, the Th2-like immune response takes part 
in the promotion of pulmonary fibrosis, and GATA-3 plays a 
key role in this Th2-like immune response. Although a causal 

Figure 5. Time course and comparison of GATA-3 (A) and Arg-1 (B) relative mRNA expression in mouse lung tissues after irradiation. mRNA expression 
was determined from 1 h until 24 weeks (24w).

Figure 6. Western blot analysis was used to evaluate the protein expression 
of GATA-3 and Arg-1.
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relationship between the Th2-like immune response and the 
pathogenesis of RILF cannot be definitively established from 
this study, it does indicate that restoration of the immuno-
logical balance probably represents an important therapeutic 
intervention strategy for the treatment of RILF. Thus, GATA-3 
may be an important target for the treatment of RILF, which 
should be investigated in future studies.
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