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Abstract. Cancers arise owing to mutations that confer selective 
growth advantages on the cells in a subset of tumor suppressor 
and/or oncogenes. To understand oncogenesis and diagnose 
cancers, it is crucial to discriminate these two groups of genes 
by using the difference in their mutation patterns. Here, we 
investigated >120,000 mutation samples in 66 well-known 
tumor suppressor genes and oncogenes of the COSMIC 
database, and found a set of significant differences in muta-
tion patterns (e.g., non-3n-indel, non-sense SNP and mutation 
hotspot) between them. By screening the best measurement, 
we developed indices to readily distinguish one from another 
and predict clearly the unknown oncogenesis genes as tumor 
suppressors (e.g., ASXL1, HNF1A and KDM6A) or oncogenes 
(e.g., FOXL2, MYD88 and TSHR). Based on our results, a third 
gene group can be classified, which has a mutational pattern 
between tumor suppressors and oncogenes. The concept of the 
third gene group could help to understand gene function in 
different cancers or individual patients and to know the exact 
function of genes in oncogenesis. In conclusion, our study 
provides further insights into cancer-related genes and identi-
fies several potential therapeutic targets.

Introduction

Cancer is responsible for one in eighth deaths all over the world 
(1), and it is well accepted that cancer is a genetic disease caused 
by a sequential mutation of oncogenes and tumor suppressor 
genes (2). Oncogenes are mutated in ways that render the gene 
constitutively active or active under conditions in which the 
wild-type gene is not. Taking oncogene BRAF for example, the 
activated BRAF kinase was able to phosphorylate downstream 
targets such as extracellular signal-regulated kinase leading 
to uncontrolled growth (3). Tumor suppressor genes, which 
suppress tumorigenesis are mutated to reduce the activity of 
the gene product (4).

Nowadays, the central aim of cancer research has been 
to identify the mutated genes that are causally implicated in 
oncogenesis (5). As the sequencing method becoming cheaper 
and easier, many large-scale studies have been published iden-
tifying mutations both in coding regions and in whole genome 
of human tumors (6-12). Cancer research emphasis is more 
and more on large-scale sequence of cancer genome, in 2010, 
the international cancer genome consortium was launched to 
investigate genome sequences of 25,000 tumors (13). With the 
databases flooded with massive information, Bert Vogelstein 
(the Ludwig Center for Cancer Genetics and Therapeutics at 
Johns Hopkins), pointed out the obstacle of cancer research: 
‘The difficulty is going to be figuring out how to use the infor-
mation to help people rather than to just catalogue lots and lots 
of mutations.’

With the massive mutational data, a great progress has been 
made to understand the somatic mutation pattern of cancer-
related genes. The different patterns of mutations were noted 
between oncogene and tumor suppressor gene. In particular, 
tumor suppressor genes are characterized by diverse mutation 
types, ranging from SNPs and small indels to whole gene dele-
tion, which have the common result of abolishing of the function 
of the gene product, oncogenes are mutated more conserved, 
both with respect to the type of mutation and its location in the 
gene, the mutations usually recurrent and are nearly always 
missense (14,15). It has also been observed that the distribution 
of 3n and non-3n indels in oncogenes and tumor suppressor 
genes is non-random and different, in which tumor suppressor 
genes have much more proportion of non-3n indels than onco-
genes (16).

The distinct mutation patterns of the functionally-different 
genes in oncogenesis could be very helpful to detect oncogenic 
mutations at early stage and to discriminate the roles of a gene 
in this process. To reach these goals, it is essential to find 
appropriate measurements to characterize the detail mutation 
patterns of individual genes. Here, we analyzed a large number 
of both cancer-related and non-related genes as controls, and 
searched various parameters to define mutational patterns for 
each of these genes. Our analyses covered most of the well-
known tumor suppressor genes and oncogenes with >120,000 
mutational samples from the COSMIC database. In the total 
of 37 tumor suppressor genes and 29 oncogenes, we found 
a remarkable difference in the mutational patterns between 
them. In addition, our analysis confirmed a consistent muta-
tion pattern for a gene in different tissues. Based on the highly 
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consistent results, a role played by a gene could be predicted. 
Indeed, some of oncogenesis-unknown genes can be identified 
as tumor suppressor (e.g., ASXL1, HNF1A and KDM6A) or as 
oncogenes (e.g., FOXL2, MYD88 and TSHR). These indices, 
developed by our study, could be very useful in the functional 
prediction of genes in oncogenesis and cancer diagnosis.

Materials and methods

Data source. All mutation data are obtained from the COSMIC 
database (the Catalogue of Somatic Mutations in Cancer; 
http://www.sanger.ac.uk/cosmic). This large-scale database, 
founded by the Welcome Trust Sanger Institute, is designed 
mainly to store and catalog somatic mutation information 
with regard to human cancers. Data in COSMIC are gathered 
from publications in scientific literature and the output of the 
genome-wide screens from the Cancer Genome Project (CGP) 
at the Sanger Institute (17,18). The frequently mutated genes 
usually are oncogenes and tumor suppressors that are involved 
in the generic processes including cell cycle control, signal 
transduction and stress responses (19). COSMIC was initiated 
in 2004 and by now is providing over 160,000 mutations in 
almost 19000 genes for investigation (20). The data can also be 
queried by tissue, which allows us to analyze different muta-
tions occurring within different tissues.

Analysis of mutation pattern in cancer-related genes. Sixty-six 
genes with >20 mutated samples in COSMIC database were 
selected to analyze their mutation patterns, 37 of the 66 genes 
are suggested to be tumor suppressor genes while 29 of them 
are recommended to be oncogenes by previous studies. We 
defined mutation pattern of a gene by five statistic standards: 
the portion of indel mutation number to all indels and SNPs 
combined (indel/indel + SNP), the portion of non-3n-indel 
number to total indels (non-3n-indel/indel) (genes with one 
indel only were removed), the portion of non-sense mutation 
number to total SNPs (non-sense/SNP), the portion of synony-
mous SNP to total SNPs (synonymous/SNP) and the portion of 
missense SNP to total SNPs (missense/SNP).

Definition of mutation hotspots in cancer-related genes. Within 
the 66 genes mentioned above, 60 genes with >20 single-base 
substitution samples, 21 genes with >20 insertion samples and 
31 genes with >20 deletion samples were selected for analysis 
of their mutation hotspots. We define one amino acid site (3 bp) 
with most mutations of each gene as the first unit, and denote 
the second to the fifth unit as the second to the fifth abundant 
mutation unit (3-bp region) in this gene. Based on these defini-
tions, we calculate the portion of mutations in the first unit to 
the total number of mutations (first/total). Then we continued 
to calculate the following parameters, (first + second)/total, 
(first + second + third)/total, (first + second + third + fourth)/
total and (first + second + third + fourth + fifth)/total. The 
higher the proportion, the more centralized the mutation 
distribution is within the gene. 

Mutational analysis of the data from the same cancer gene in 
different tissues. Within these 66 genes, 16 tumor suppressor 
genes and 15 oncogenes, which mutated in more than one 
tissue and had no <20 mutational samples within each tissue, 

have been selected for the mutational analysis. We calculated 
the three good parameters (non-3n-indel/indel, non-sense/SNP 
and missense/SNP) for each of these genes. 

Selection of genes as controls. The 1000 Genomes Project 
aims to characterize human genome sequence variation (21). 
The sequences in this project contain three parts of data: low-
coverage sequencing of 179 individuals from four populations; 
high-coverage sequencing of two mother-father-child trios; 
and exon-targeted sequencing of 697 individuals from seven 
populations. The exon-targeted sequencing targeted capture of 
8,140 exons from 906 randomly selected genes (total of 1.4 Mb) 
and found 5,708 synonymous SNPs, 7,063 non-synonymous 
SNPs, 59 small in-frame indels and 37 small frameshift indels. 
In total, the three parts of data identified 60,157 synonymous 
SNPs, 68,300 non-synonymous SNPs, 714 small in-frame 
indels and 954 small frameshift indels. We used the exon-
targeted part of the project as control 1, and the whole project 
(three parts combined) as control 2. All five statistic parameters 
used in this study were calculated for these data.

Results

Difference of mutational types between tumor suppressor 
genes and oncogenes. To characterize mutational patterns for 
individual genes, we selected cancer-related genes as many as 
possible. In total, 37 tumor suppressor genes and 29 oncogenes 
satisfied our criterion: >20 mutational samples in the COSMIC 
database. We used mutational parameters to measure different 
types of mutations as many as possible for the characteriza-
tion of cancer-related genes. These standards are the ratio of 
indel/(indel + SNP), the ratio of non-3n-indel/indel, the ratio 
of non-sense/SNP, the ratio of synonymous/SNP and the ratio 
of missense/SNP. In general, there are significant differences 
(t-test; P<0.01) between tumor suppressor genes and onco-
genes in each of the above parameters (Fig. 1), suggesting 
that different mutational patterns exist between these two 
functional gene groups. 

To evaluate effectiveness among parameters for the discrim-
ination of two functional-known cancer-related genes, we used 
the average ratio and standard variation for each parameter. 
There is a large difference in the average ratios of all the 
five standards between tumor suppressor genes and oncogenes. 
In particular, the average ratios of indel/(indel + SNP) are 0.102 
and 0.450 for oncogene and tumor suppressor gene, while 
the standard variations are almost the same, 0.202 and 0.193, 
respectively. The greatest difference is observed in the average 
ratios of non-3n-indel/indel, 0.167 and 0.891 with the standard 
variation 0.278 and 0.121, respectively, for the two groups of 
genes. The greatest ratio difference and the relatively small 
standard variation suggest that this parameter is the best one to 
distinguish these two functionally-different groups of cancer 
genes. On the other hand, the average values (± standard 
variations) of non-sense/SNP are 0.006±0.0129 (for onco-
genes) and 0.404±0.226, where the tumor suppressor genes 
are nearly 70 times higher than oncogenes. The extremely 
low average ratio and standard variation in oncogenes indi-
cate that the oncogenes separate in a much smaller range in 
this value and the non-sense/SNP may be a uniquely good 
parameter to characterize oncogenes. The average ratios of 
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missense/SNP are 0.977±0.031 and 0.535±0.219, respectively 
for the groups. The smallest difference is found to be the average 
ratios of synonymous/SNP (0.014±0.027 and 0.065±0.064) 
in oncogenes and tumor suppressor genes, respectively, indi-
cating that this is not a good parameter to separate two gene 
groups. 

In addition, we could visually check the exotic gene numbers 
within a gene group. For example at indel/(indel + SNP) posi-
tion in Fig. 1, there are 7 oncogenes within the ratio range of 
tumor suppressor genes. For the other parameters (orderly in 
Fig. 1), there are 3 oncogenes crossing over the border of tumor 
suppressor genes, no crossover between two gene groups, all 
the oncogenes located within the range of tumor suppressor 
genes, and only 1 exotic oncogene within the range of tumor 
suppressor genes, respectively. In fact, the visual inspection is 
highly consistent with the average ratio and standard variation 
for a parameter. Therefore, we conclude that non-3n-indel/indel, 
non-sense/SNP and missense/SNP are three good parameters 
to distinguish oncogenes and tumor suppressor genes, synony-
mous/SNP is not good, but indel/(indel + SNP) could be used 
although it is not as good as the top three parameters.

Difference of mutational distribution between tumor suppres- 
sor genes and oncogenes. Our analysis on mutational types 
revealed significant differences in the pattern of mutations 
between tumor suppressor genes and oncogenes. The results 
indicate that different distribution pattern along a gene may 
exist between these two groups of cancer-related genes. To 
detect the uneven distribution of mutations, we defined the 
first to the fifth 3-bp unit which has the most to the least 
abundant mutations (Materials and methods for details). Then 
a graph was drawn to show the distribution of these mutations 
(Fig. 2). Generally, mutation hotspots exit in both types of 
genes. However, for most of the genes, the mutation hotspots 
dominate in oncogenes compared with those in tumor 
suppressor genes. We analyzed mutation hotspots of single 
base substitution, insertion, deletion respectively in tumor 
suppressor genes and in oncogenes. The results are roughly 
the same, mutations in oncogenes usually bind to the same 
site or several amino acid sites while mutations in tumor 
suppressor genes are more separately located. We detected 
whether these hotspot correlates with GC% variance of gene 
sequence, and no clear relationship was found between the 

Figure 1. Mutation patterns of 66 tumor suppressor genes and oncogenes. Tumor suppressor genes are shown in blue lines while oncogenes are shown in yellow 
lines. Two control groups of genes are shown in black lines. 

Figure 2. Mutation distribution of tumor suppressor genes and oncogenes. (a), (b) and (c) show the distribution of SNP, insertion and deletion, respectively. The 
horizontal axis (hotspot) stands for the first amino acid site (3-bp nucleotides) with the largest number of mutations, the first and the second sites (total 6-bp), ... 
, and all the five sites (first + second + third + fourth + fifth; total 15-bp). The definition of each amino acid site is described in Materials and methods. The ver-
tical axis stands for to the proportion of mutations in corresponding number of hotspots to total mutations in a tumor suppressor or an oncogene. For example, 
if all mutations occur in the first site of amino acid, the proportion is equal to 1 at the first site. Of course, the proportion is still equal to 1, although no mutation 
occurs in the other four amino acid sites. Tumor suppressor genes are shown in blue lines while oncogenes are shown in yellow lines. 
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mutation hotspot location and GC% variance. Thus the 
hotspots are assumed to bind to gene function. In this scenario, 
for example in oncogenes, only the mutations in specific amino 
acid sites enable the gene to have the function in uncontrolled 
cell proliferation, resulting in such apparent mutational hot 
spots observed.

Mutation patterns of cancer genes in different tissues. In the 
COSMIC database, the mutation samples were from different 
cancer tissues, e.g., from kidney, lung, ovary, bone, brain and 
others (17). The different mutation patterns between oncogene 
and tumor suppressor gene could be only present in some 
tissues. To examine whether there are consistently different 
patterns between these two gene groups, we calculated the 
average ratios of three good parameters (non-3n-indel/indel, 
non-sense/SNP and missense/SNP) of the genes with enough 
samples in each tissue (Materials and methods for details).

First, we inspected whether there is a significant difference 
among tissues in the ratio of each parameter for each gene by 
Chi-square test (some examples in Fig. 3). Although certain 
variations exist in some ratios, especially in the parameter non-
3n-indel/indel in oncogenes, no significant difference was found 
except for the gene PIK3CA in the liver tissue, in which the 
ratio of non-3n-indel/indel is significantly higher than that from 
the other tissues (P=0.05). This result indicates that there is a 
consistent mutation pattern among different tissues for most 
genes. However, due to the obvious variation in some ratios of 
certain genes, our result cannot exclude this possibility: that 

the function (oncogenesis or tumor suppressor) of certain genes 
may be different in some tissues (e.g., the great ratio variation 
of 3 oncogenes and 3 tumor suppressor genes in different 
tissues are shown Fig. 3).

Second, we checked the ratio differences among tissues 
between oncogene and tumor suppressor gene. Fig. 3 visually 
shows that the differences in all these ratios are consistently 
present between the two groups of genes, except for PIK3CA. 
PIK3CA is a known oncogene and contrarily high ratio of 
non-3n-indel/indel is the indicator of tumor suppressor gene, 
so in liver this gene may act differently. Overall in each of three 
parameters calculated, there is a significant difference between 
these two groups of genes by t-test (P<0.01). These results strongly 
suggest that in general, the oncogene and tumor suppressor gene 
have different mutational patterns in all tissues. 

Finally, the mutation rate of oncogenes and tumor suppressor 
genes was studied. It is well known that mutated genes in cancer 
vary from one individual or one tissue to another. Some cancer 
genes often mutate in different tissues while the others tend to 
mutate in specific tissues (obviously shown in the COSMIC 
database). It is still unknown fully whether the function of a 
cancer gene changes from one tissue to another. Some cancer 
genes, like TP53 and CDKN2A, found to be mutated in diverse 
tissues but the mutation rates vary greatly. For example, TP53 
has a mutation rate of 42% (4509/10626) in large intestine 
tumors but a mutation rate of 6% (66/1199) in cervix tumors. 
Although mutation rates of TP53 vary, its mutation patterns tend 
to remain unchanged in different tissues (also apply to most of 

Figure 3. Mutation patterns of oncogenes and tumor suppressor genes in different tissues. Each color stands for one tissue for a gene. (a), (b) and (c) are 
oncogenes which have the most mutated tissues; (d), (e) and (f) are tumor suppressor genes with the most mutated tissues. 
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the other genes). This result indicates that the variable mutation 
rates for a gene in different tissues may not affect its function 
and that its mutation pattern is a more important reflection of 
its function.

Indices for identification of tumor suppressor genes and 
oncogenes according to their mutation pattern. According 
to the strong relationship between mutation pattern and gene 
function, an oncogene and a tumor suppressor gene could be 
identified from the oncogenesis-unknown genes. In COSMIC 
database, there are 11 oncogenesis-unknown genes with suffi-
cient mutational samples (>20). To discriminate the function 
of these genes, it is necessary to know the best parameter or 
index of several parameters. In principle, there are two ways to 
develop such parameters or indices: one is the use of a single 
parameter and another of weighted parameters. To assess which 
way is the best, we still used the difference of average ratio and 
the number of crossover genes between two gene groups by 
using the 66 functionally known genes. 

Table I shows the difference average ratio and the number of 
crossover genes. Clearly, the larger the difference or the smaller 
the number, the better it is for the parameter or index. Based on 
the values in Table I, each single parameter is not good for func-
tional discrimination. For example for the parameter 
non-3n-indel/indel, the difference is the largest (0.724) but the 
number is also the largest (16). Therefore, we tried to use 
different approaches to calculate the weighted index. Technically, 
we could use two or three parameters and weigh them by the 
total number of mutations or either of indels and SNPs. For 
example, the parameter non-3n-indel/indel can be weighted by 
indel/total mutations (= indel + SNP), and the non-sense/SNP by 
SNP/total mutations. Then sum ratio of these weighted two 
parameters can be used as an index to measure the tendency of 
function in oncogenesis-unknown genes. In fact, this sum ratio 
is equal to (non-3n-indel + non-sense)/total mutations. By 
searching many approaches of calculations (orderly in Table I), 

three best ones were found (the third, fourth and sixth in Table I). 
In each of these indices, oncogenes (yellow ones) and tumor 
suppressor genes (blue ones) were well separated without  
overlapping (Fig. 4). 

These indices provide better measurements to predict the 
function of oncogenesis-unknown genes in oncogenesis (the 
red ones in Fig. 4). Based on their positions, 3 out of 11 genes 
(ASXL1, HNF1A and KDM6A) locate within the range of 
tumor suppressor genes in all three indices as typical tumor 
suppressor genes. Three genes (FOXL2, MYD88 and TSHR) lie 
in the range of typical oncogenes in these indices. For the other 
5 genes, they locate around the border between two groups of 
genes. The function of these genes cannot be determined here.

Discussion

Differences of mutation patterns between oncogenes and tumor 
suppressor genes. Cancers arise from somatic mutations that 
confer selective growth advantages on the cells (14). Therefore, 
extensive studies have recently focused on the detection of 
somatic mutation patterns in tumorigenesis (7,22). High muta-
tion rates have been observed in cancer-related genes for a long 
time (5), and mutation hotspots have repeatedly been revealed 
in certain locations in these genes. Much higher proportion 
and greater diversity of indels are also commonly present in 
somatic mutation of cancer-related genes (16). Surprisingly, a 
much higher proportion of 3n-indels in oncogenes than that 
in tumor suppressor genes is found to be a general pattern, 
indicating that this distinctive characteristic could be used for 
cancer diagnosis (16). Recently, an example of the mutational 
difference in these two groups of genes was reported in the 
ovarian clear cell carcinoma (15). Based on this criterion, the 
authors obtained the prediction of PPP2R1A as an oncogene 
and ARID1A as a tumor-suppressor gene. 

These studies display a great potential to use the muta-
tional difference in two gene groups for the prediction of gene 

Table I. Candidate indices used to identify oncogenes and tumor suppressor genes.

Candidate indices	 Ratio difference	 Crossover genes

Non-3n-indel/indel	 0.7241	 16
Non-sense/SNP	 0.3974	   2
1-missense/SNP	 0.4416	   4
(Non-3n-indel + non-sense)/(indel + SNP)	 0.6010	   0
(SNP-missense + non-3n-indel)/(indel + SNP)	 0.6204	   0
(Non-sense + SNP-missense)/(indel + SNP)	 0.4266	 26
2/3*(non-sense + SNP-missense + non-3n-indel)/(indel + SNP)	 0.5493	   0
1/2*non-sense/SNP + 1/2*non-3n-indel/indel	 0.5952	   5
1/2*(1-missense)/SNP + 1/2*non-3n-indel/indel	 0.6173	   3
1/2*non-sense/SNP + 1/2*(1-missense)/SNP	 0.4195	   0
1/3*non-sense/SNP + 1/3*(1-missense)/SNP + 1/3*non-3n-indel/indel	 0.5440	   2

The ratio difference is the average difference between oncogene and tumor suppressor gene for each index. The crossover genes stand for 
the total number of gene overlapping between these two gene groups. (1-missense/SNP) is used here instead of missense/SNP, so generally 
the values of all the three single indices (non-3n-indel/indel, non-sense/SNP and 1-missense/SNP) of tumor suppressor genes are higher than 
oncogenes.
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function, for cancer diagnosis and the mechanism of somatic 
mutation in cancer-related genes. Our study further shows 
that the essential difference lies in how deleterious the muta-
tions are in these two gene groups. Clearly the non-3 sizes 
and abundant indel mutations are more destructive, and the 
non-sense and missense mutations are also harmful to gene 
function. By using a large number of genes, somatic mutations 
and various tissue samples, our results strongly demonstrate 
that the differences in destructive mutations exist as a general 
phenomenon between oncogene and tumor-suppressor gene. 
It is understandable that indels more easily cause a gene to 
lose function than single base substitution, among which 
non-3n indels are more destructive than 3n indels. Also the 
non-sense mutation will end up with pre-termination which is 
lethal to a gene. Accordingly, tumor suppressor genes have a 
higher portion of indel/(SNP + indel), non-3n-indel/indel and 

non-sense/SNP than oncogenes. The differences of mutation 
patterns between oncogenes and tumor suppressor genes are 
closely associated with their functional difference in oncogen-
esis, hence, the tumor suppressor genes are dysfunctional and 
oncogenes are activated (23).

Identification of tumor suppressor gene and oncogene. 
Personalized cancer therapy is based on targeting underlying 
genetic mutations involved in each patient, and presupposes 
that sustained inactivation of tumor suppressors and activa-
tion of oncogenes is essential in cancers (24). It has long been 
hoped that reactivation of tumor suppressor genes will finally 
cure cancer, and several methods have been used to search for 
tumor suppressor genes. Loss of heterozygosity is regarded as 
hallmark of chromosomal regions harboring tumor suppressor 
genes (25,26), and frequently promoter methylation in tumors 

Figure 4. Index values of tumor suppressor genes, oncogenes, oncogenesis-unknown genes and control groups. (a), (b) and (c) described the weighted parameter 
(non-3n-indel + non-sense)/(indel + SNP), (SNP-missense + non-3n-indel)/(indel + SNP) and 2/3*(non-sense + SNP-missense + non-3n-indel)/(indel + SNP) 
for all these genes, respectively.
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is another hallmark of a tumor suppressor gene that could 
be used for its identification. Recently, RNA interference is 
also used in identifying tumor suppressor genes (27). Now the 
difference of mutational patterns between tumor suppressor 
gene and oncogene could be a potential measurement for the 
prediction of gene function and cancer diagnosis.

Normally, the cancer-related genes are supposed to be 
either oncogenes or tumor suppressor genes (also known as 
dominant acting gene and recessive gene) (14,15). However, 
based on the distribution of these indices for the genes analyzed 
(Fig. 4), the function of the 11 genes could be categorized as 
three groups: typical oncogenes, typical tumor suppressor genes 
and functionally-uncertain genes (a transition state between 
two typical genes, five red bars in the middle in Fig. 4). This 
group consists of non-typical oncogenes or non-typical tumor 
suppressor genes. Maybe the function of this type of gene could 
vary. The concept of third gene group could help to understand 
gene function in different cancers or individual patients. With 
the adding of this group, the combinational use of those indices 
could provide more reliable results to predict the exact func-
tion of genes in oncogenesis. It is worth to note that all the 
indices developed are based on the genes with large mutation 
samples, it is difficult to distinguish the function of genes with 
few samples.

TP53, the best known tumor suppressor gene has been 
extensively studied for many years. A great progress has been 
made in cancer therapy by reactivation of TP53 in TP53-mediated 
tumors (24,28-30). On the other hand, several oncogenes, ABL, 
KIT and EGFR, have been used as the target for cancer therapy 
and shown significance clinical results (31-33). Thus, a method 
for the identification of tumor suppressor genes and oncogenes 
could be very useful for cancer therapy. The mutation-based 
identification developed in this study could be one of methods 
to effectively distinguish the function of cancer-related genes 
in oncogenesis.

Underlying mechanisms of specific mutation patterns in 
cancer-related genes. Oncogenesis is a development process 
analogous to Darwinian evolution (34). Historically, this 
process was considered to be a stepwise acquisition of new 
mutations, then the selection may eliminate less competitive 
cells or it may foster cells carrying mutations that confer 
competitive growth advantage, resulting in clonal expansion 
(35). Our study shows that mutations both in tumor suppressor 
genes and oncogenes share a hallmark of selection. 

The ratio of non-synonymous/synonymous can be used to 
estimate the extent of selection overall on non-synonymous 
changes and often used for identifying driver mutations (7). 
The parameters and indices in this study may be better to find 
the driver forces for somatic mutations of cancer-related genes. 
For example, the non-3n-indel/3n-indel (small indels only) 
is also a strong indicator of selection. Non-3n-indel is more 
deleterious mutation analogous to non-synonymous SNP but 
3n-indel is comparable to synonymous SNP. Compared with 
control groups, the values of non-3n-indel/3n-indel are two 
times more in 35 out of 37 tumor suppressor genes or six-times 
less in 28 out of 29 oncogenes. The significant difference must 
be a result of selection. 

Though the underlying mechanism of the mutational 
patterns starts to be shown, the detail occurrence is still 

unknown. Maybe the mutation samples observed only reflect 
the final outcome which has experienced a long selection 
process. At the beginning of cancer occurrence, the mutations 
could take place randomly. Another possibility could be that 
the mutations are more or less induced at some fragile sites in 
cancer genes, and then these fragile sites mutate preferentially 
under certain circumstances such as exposure to carcinogens. 
If the fragile sites do exit, it will explain both the selection 
hallmark and the mutational hotspots. Further study is needed 
to explore the truth. 
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