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Abstract. Valproic acid (VPA), a histone deacetylase 
inhibitor (HDACi), has been shown to be an effective tool in 
cancer treatment. Although its ability to induce apoptosis has 
been described in many cancer types, the data come from 
experiments performed in normoxic (21% O2) conditions only. 
Therefore, we questioned whether VPA would be equally 
effective under hypoxic conditions (1% O2), which is known to 
induce resistance to apoptosis. Four neuroblastoma cell lines 
were used: UKF-NB-3, SK-N-AS, plus one cisplatin-resistant 
subline derived from each of the two original sensitive lines. 
All were treated with VPA and incubated under hypoxic condi-
tions. Measurement of apoptosis and viability using TUNEL 
assay and Annexin V/propidium iodide labeling revealed that 
VPA was even more effective under hypoxic conditions. We 
show here that hypoxia-induced resistance to chemotherapeutic 
agents such as cisplatin could be overcome using VPA. We also 
demonstrated that apoptosis pathways induced by VPA do not 
differ between normoxic and hypoxic conditions. VPA-induced 
apoptosis proceeds through the mitochondrial pathway, not the 
extrinsic pathway (under both normoxia and hypoxia), since 
inhibition of caspase-8 failed to decrease apoptosis or influence 
bid cleavage. Our data demonstrated that VPA is more efficient 
in triggering apoptosis under hypoxic conditions and overcomes 
hypoxia-induced resistance to cisplatin. The results provide 
additional evidence for the use of VPA in neuroblastoma (NBL) 
treatment.

Introduction

Neuroblastoma (NBL) is the most common extracranial solid 
tumor in children and a major cause of neoplastic death in 

infancy. It originates from undifferentiated cells of the sympa-
thetic nervous system. Based on its cellular and biological 
heterogeneity, NBL behavior can range from low-risk cancers 
with a tendency toward spontaneous regression or maturation, 
to high-risk cancers with extensive growth, early metastasis and 
a poor prognosis (1). Treatment of high-risk neuroblastomas 
(HR  NBL) usually fails despite intensive therapy, which 
includes megatherapy followed by hematopoietic progenitor 
cell transplantation, biotherapy and immunotherapy. Treatment 
failure is due to drug resistance that arises in the majority of 
patients who initially responded well to chemotherapy. The 
necessity to develop new treatment modalities is indisputable.

An increasing body of information indicates that 
epigenetic modifications are associated with cancer onset 
and progression. This awareness has led to prolific research 
into drugs that interfere with the epigenome (2,3). Histone 
deacetylase inhibitors (HDACi) represent such a group of 
compounds since histones are the main protein components 
of chromatin and have an indispensable role in gene regulation. 
Cancer cell histones are frequently hypo-acetylated, due to 
overexpression of histone deacetylases (HDACs), and are 
often connected with impaired gene transcription in tumors 
(4), including dysregulation of genes responsible for growth 
control and apoptosis. Consequently inhibition of HDACs can 
reactivate gene transcription and restore the balance between 
pro- and anti-apoptotic genes and eventually lead to apoptosis 
(5). HDAC inhibition also decompacts chromatin structure 
making the DNA structure more available to other cytotoxic 
agents that target DNA. Despite advances in understanding, 
the mode of anti-tumor action of HDACi is complex and still 
not completely understood (6,7).

Valproic acid (VPA) has been studied as an anti-cancer 
drug excessively over the past years because it can be taken 
orally, is well tolerated by patients and there is cumulative 
experience coming from its use as an anti-epileptic drug. 
Although earlier reports showed the cytotoxic potential of 
VPA on NBL cells in vitro and in vivo (8,9), the studies were 
carried out solely under normoxic conditions and little was 
known about its anti-tumor activity under hypoxic conditions.

Hypoxic areas are common in solid tumors. Hypoxia arises 
as a consequence of pathological microcirculation within the 
tumor. Rapid tumor growth can outstrip its own blood supply 
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and therefore cancer cells are exposed to oxygen deprivation 
(chronic hypoxia) (10). Another factor that contributes to tumor 
hypoxia is the poor quality of the newly developing tumor 
vessels, which often display severe structural abnormalities. 
Whereas normal vasculature shows a hierarchical branching 
pattern, tumor blood vessels are often tortuous in appear-
ance with uneven diameters, branch irregularity and form 
arterio-venous shunts. These vessels are more susceptible to 
thrombosis and on occasion collapse, which ultimately leads 
to acute hypoxia within the tumor mass (11).

Hypoxia also induces adaptational changes in cells that 
are otherwise physiological, in the sense that they are normal 
and noncancerous; however, due to regional hypoxia these 
cells contribute to chemo- and radio-resistance in hypoxic 
cancer cells (12-14). Notably, hypoxia-induced resistance is 
not limited to only conventional chemotherapy but it can also 
decrease the efficiency of targeted therapy, as documented 
with imatinib in cases of chronic myeloid leukemia (15). 
Additionally, hypoxia induces genomic instability that leads to 
progressive transformation of cancer cells into more malignant 
phenotypes (16). The presence of hypoxic regions within the 
tumor mass correlates with more aggressive phenotypes, lower 
response rates and a decline in overall disease survival (17-19).

In our study, we addressed the issue of whether hypoxia 
promotes resistance to VPA and if apoptosis pathways differ 
between normoxic and hypoxic conditions, with respect to 
VPA treatment.

Materials and methods

Cell lines and chemicals. The UKF-NB-3 cell line was established 
from bone marrow metastases of HR NBL with MYCN ampli-
fication. The line was kindly provided by Professor J. Cinatl Jr. 
(Institute for Medical Virology, Hospital of the Johann Wolfgang 
Goethe University, Frankfurt, Germany). Cells were grown in 
Iscove's modified Dulbecco's medium (IMDM) with 10% fetal 
calf serum (PAA Laboratories, Pasching, Austria). The SK-N-AS 
cell line was derived from bone marrow metastasis of a female 
patient with HR NBL. SK-N-AS, with normal diploid MYCN 
status, was purchased from the European Collection of Cell 
Cultures (ECACC, Salisbury, UK) and was cultivated according 
to the manufacturer's instructions. The CDDP-resistant sub-
line, designated UKF-NB-3CDDP was also kindly provided 
by Professor J. Cinatl Jr. SK-N-ASCDDP was prepared in our 
laboratory by incubation of parental cells with increasing 
concentrations of CDDP. Solutions of CDDP (EBEWE 
Pharma Ges.m.b.H. Nfg. KG, Unterach, Austria) were prepared 
according to the manufacturer's instructions. CDDP-resistant 
cell lines were cultivated in a medium containing 1 µg/ml of 
CDDP. Valproic acid (dissolved in distilled water) and tricho-
statin A (dissolved in DMSO) were purchased from Sigma 
Chemical Co. (St. Louis, MO, USA). The specific caspase-8 
inhibitor, Z-IETD-FMK (specific caspase-8 inhibitor), was 
obtained from R&D Systems, Inc. (Minneapolis, MN, USA). It 
was dissolved in DMSO and was used at a final concentration 
of 2 µM, as recommended by producer. All other chemicals 
used in experiments were of analytical purity or better.

Hypoxic environment. A hypoxia chamber purchased from 
Billups-Rothenberg (Del Mar, CA, USA) was prepared with an 

atmosphere containing 1% O2, 5% CO2, and 94% N2. Controls 
were grown at 5% CO2 and all samples were grown at 37˚C.

Annexin V/propidium iodide labeling. Annexin V, a phospholipid-
binding protein with a high affinity for phosphatidyl serine, 
was used to measure apoptosis and viability. Apoptosis was 
determined using an Annexin V-FITC Apoptosis Detection kit 
according to manufacturer instructions (Biovision, Mountain 
View, CA, USA). Cells were washed in PBS and resuspended in 
a ‘binding buffer’ after incubation with different compounds, 
under normoxic and/or hypoxic conditions, as described 
below. Cells were incubated with Annexin V and propidium 
iodide for 10 min at room temperature and then analyzed using 
flow cytometry (FACSCalibur, BD, San Jose, CA, USA). Data 
obtained from flow cytometry were evaluated using the same 
technique described in a study by Bossy-Wetzel (20).

TUNEL assay. Apoptotic cells were determined using an 
ApoDirect DNA Fragmentation Assay kit per manufacturer's 
instructions (Biovision). Cells were fixed with 1% paraformal-
dehyde and then incubated with terminal deoxynucleotidyl 
transferase and FITC-dUTP for 60 min at 37˚C and counter-
stained with propidium iodide. Cells were then analyzed using 
flow cytometry.

Western blot was used to determine the expression of BID 
protein. Cells were homogenized in RIPA buffer. Protein 
concentrations were assessed using the DC protein assay (Bio-
Rad, Hercules, CA, USA) with serum albumin as a standard. 
10-45 µg of extracted proteins were subjected to SDS-PAGE 
electrophoresis on a 10% gel. After migration, proteins were 
transferred to a nitrocellulose membrane and incubated with 
5% non-fat milk to block non-specific binding. The membranes 
were then exposed to specific anti-BID (1:1000, AbCam, 
Cambridge, UK ) rabbit monoclonal antibodies overnight at 
4˚C. Membranes were washed and exposed to peroxidase-
conjugated anti-IgG secondary antibody (1:3000, Bio-Rad), 
and the antigen-antibody complex was visualized using an 
enhanced chemiluminescence detection system according to 
the manufacturer's instructions (Immun-Star HRP Substrate, 
Bio-Rad). The resulting films (MEDIX XBU, Foma, Hradec 
Králové, Czech Republic) were scanned with a computerized 
image-analyzing system (ElfoMan 2.0, Ing. Semecký, Prague, 
Czech Republic).

Caspase activity. Caspase-8 activity was measured using a 
caspases-8 assay kit according to manufacturer's instructions 
(Biovision). Briefly, cells were lysed in cell lysis buffer after 
incubation with VPA. Total protein (200 µg) were added to 
the reaction buffer, which contained IETD-pNA colorimetric 
substrate, and incubated for 2 h at 37˚C. Hydrolyzed pNA was 
detected using a VersaMax plate reader (Molecular Device 
Inc., Sunnyvale, CA, USA) at 405 nm.

Real-time PCR analysis. Total RNA was extracted from cells 
lines using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). 
The quality of the isolated RNA was verified using horizontal 
agarose gel electrophoresis and RNA quantity was measured 
using a BioMate 3 UV-Vis Spectrophotometer (Thermo 
Scientific, Waltham, MA, USA). Complementary DNA was 



ONCOLOGY REPORTS  27:  1219-1226,  2012 1221

synthesized from 500 ng of RNA using random hexamers and 
MultiScribe reverse transcriptase (Applied Biosystems, Foster 
City, CA, USA). RT-PCR was performed using assays for vascular 
endothelial growth factor (VEGF), carbonic anhydrase-9 (CA9) 
and β-2-microglobulin (B2M) purchased from Generi Biotech 
(Hradec Kralove, Czech Republic). B2M was used as a refer-
ence gene. Relative expression and statistical significance were 
determined using REST-MCS software (Dr Michael Pfaffl, 
Germany) using the technique described by Pfaffl (21).

Results

VPA induces apoptosis under both normoxic and hypoxic 
conditions. We set up dose and time course experiments in 
order to prove efficacy of VPA under hypoxic and normoxic 
conditions. Concentrations of VPA ranged from 0.5 to 10 mM. 
Cells were grown under normoxic conditions for 24 h after 
plating and then VPA was added. Plates were then put into the 

hypoxia chamber, while control cells stayed under normoxic 
conditions. Apoptosis was determined using Annexin V (An) 
and propidium iodide (PI) staining at 24, 48 and 72 h after 
addition of VPA. We observed time- and dose-dependent apop-
tosis. UKF-NB-3 showed higher sensitivity to VPA compared 
to SK-N-AS (Fig. 1A and B). We did not observe any hypoxia 
induced resistance to VPA. Moreover, slightly more Annexin 
positive/propidium iodide negative cells (early apoptotic) and 
Annexin positive/propidium iodide positive cells (late apoptotic 
or necrotic) were seen under hypoxic conditions in both cell 
lines (Table I). For instance, 13.4% Annexin V single positive 
(An+/PI-) cells were observed after treatment with 5 mM VPA 
under normoxic conditions whereas 19.0% An+/PI- cells were 
observed in the hypoxia SK-N-AS cell line. Although the higher 
number of apoptotic cells, under hypoxic conditions, was not 
statistically significant, this trend was clearly obvious in all cell 
lines tested. This result indicates that VPA promotes apoptosis 
irrespective of oxygen tension and therefore should be equally 

Figure 1. Cell viability measured as An-/PI- cells. Maternal cell lines SK-N-AS and UKF-NB-3 (A and B) and cell lines resistant to cisplatin (rCDDP) derived 
from them (C and D). Cells were grown under normoxic conditions for 24 h before administration of VPA.

Table I. Percentage of apoptotic cells measured as An+/PI- cells.

	 Control	 24 h	 48 h	 72 h
	 ------------------------------------	 ------------------------------------	 ------------------------------------	 ------------------------------------
	 N (%)	 H (%)	 N (%)	 H (%)	 N (%)	 H (%)	 N (%)	 H (%)

SK-N-AS (5 mM)	 1.6	 1.1	 5.59	 6.63	 13.86	 14.91	 13.37	 19.02
SK-N-ASrCDDP (5 mM)	 2.59	 3.99	 7.51	 11.51	 13.61	 16.82	 40.63	 53.47
UKF-NB-3 (2 mM)	 6.3	 6.66	 10.13	 9.29	 21.49	 20.70	 19.39	 16.57
UKF-NB-3rCDDP (2 mM)	 2.89	 2.73	 7.81	 7.43	 9.12	 16.60	 7.22	 25.49

Concentration of VPA was 2 mM for UKF-NB-3 and UKF-NB-3 resistant to cisplatin (rCDDP) and 5 mM for SK-N-AS and SK-N-ASrCDDP. 
Cells were grown for 24 h under normoxic conditions before administration of VPA and before being placed into a hypoxia chamber. Similar 
or even lower number of apoptotic cells under hypoxic conditions in UKF-NB-3 was due to shift from An+/PI- quadrant to An+/PI+ quadrant 
because of the high sensitivity of this cell line. Data from one representative experiment are shown.
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efficient throughout the entire tumor volume. We performed the 
same experiments with cell lines resistant to cisplatin, which 
had been derived from SK-N-AS and UKF-NB-3, and obtained 
similar results (Fig. 1C and D).

We also evaluated apoptosis using TUNEL assay in order 
to validate the data using an independent method. Both 
SK-N-AS and UKF-NB-3 cell lines revealed higher number 
of apoptotic cells (TUNEL positive) under hypoxic condi-
tions than under normoxic conditions. The TUNEL results 
therefore supported the data obtained using An/PI staining 
(data not shown).

VPA has a synergistic effect with cisplatin. As mentioned in a 
previous section, VPA is capable of overcoming hypoxia resis-
tance; however, its overall toxicity to NBL cells is quite poor 

considering that clinically achievable concentrations are <1 mM. 
Thus, we addressed the issue of whether small concentrations 
of VPA, which are clinically well tolerated, could be useful in 
overcoming hypoxia induced resistance to chemotherapeutic 
agents, such as cisplatin (CDDP), which are commonly used in 
HR NBL therapy.

Cells were treated with lower concentrations of VPA 
(1 mM) or CDDP (1 µM) alone and in combination. Apoptosis 
was assessed 24 h after administration of the drugs using a 
TUNEL assay. The degree of apoptosis induced by CDDP alone 
was diminished by hypoxic conditions, while VPA alone was 

Figure 2. VPA synergizes with cisplatin (CDDP) under hypoxic conditions. 
UKF-NB-3 cells were exposed to 1 mM VPA and 1 µM CDDP at the same 
time. One representative experiment is shown.

Figure 3. Caspase-8 activity and VPA treatment. VPA increased activity of 
caspase-8 in both parental cell lines (UKF-NB-3 and SK-N-AS).

Figure 4. (A) Cells were incubated with different concentrations of VPA 
(0.5, 1 and 5 mM) for 24-72 h, this led to a decrease of full-length BID in a 
dose- and time-dependent manner in UKF-NB-3 under normoxic conditions 
(N), whereas it was cleaved only upon treatment with high concentration of 
VPA under hypoxic conditions (H). (B) Cleavage of bid was less expressed 
under normoxic conditions (N) in SK-N-AS. There was almost no detectable 
amount of bid under hypoxic conditions (H) in SK-N-AS.

Figure 5. Inhibition of caspase-8 did not influence apoptosis in UKF-NB-3 
or in SK-N-AS. Cells were preincubated with 2 µM of caspase-8 inhibitor 
for 15 min before VPA was added. Graphs shows number of apoptotic cells 
measured as An+/PI- cells.
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more efficient under hypoxic conditions than under normoxic 
conditions. Cells administered as combination of VPA and 
CDDP showed a higher degree of apoptosis under hypoxic 
conditions (Fig. 2), suggesting not merely a synergistic effect 
for VPA and CDDP, but the added ability of VPA to overcome 
hypoxia-induced resistance to CDDP.

VPA activates caspase-8. To clarify whether VPA activates 
the receptor-mediated apoptotic pathway, we determined the 
activity of caspase-8. Cells were grown for 24 h and then 
2 mM VPA was added to UKF-NB-3 cells and 5 mM was 
added to SK-N-AS cells. Caspase-8 activity was determined 
after 48 h of treatment. VPA increased the activity of caspase-8 
in both cells lines (Fig. 3). Of note, caspase-8 activity was 
higher under hypoxic conditions in the SK-N-AS line, albeit 
only slightly. This discovery supports the above mentioned 
observations that showed VPA to be more effective under 
hypoxic conditions. This result also suggests that caspase-8 
is the first caspase activated in the apoptotic cascade during 
VPA treatment, which is why we focused on the cleavage of 
the pro-apoptotic BID protein. Since BID is the substrate for 
caspase-8, its cleavage would clearly demonstrate the presence 
of activated caspase-8.

VPA initiates cleavage of BID. We addressed the question 
whether BID is cleaved to its active form, which could consecu-
tively activate the mitochondrial apoptotic pathway. Cells were 
treated with different concentrations of VPA (0.5, 1 and 5 mM 
for UKF-NB-3 and 1, 5 and 10 mM for SK-N-AS) for 24, 48 
and 72 h (Fig. 4A). We observed a time- and dose-dependent 
cleavage of BID in the UKF-NB-3 cell line under normoxic 
conditions. Whereas under hypoxic conditions BID was cleaved 
only when treatment with a relatively high concentration of 
VPA (5 mM). In the case of the SK-N-AS line, corresponding 
concentrations of VPA also led to a decrease of full-length BID 
albeit only marginally (Fig. 4B). This is in concert with the lower 
overall sensitivity of this cell line to VPA. We used 20 mM of 
VPA to confirm the dose-dependent manner of BID cleavage in 
SK-N-AS. This enormous concentration of VPA, exceeding IC50 
values of SK-N-AS, decreased full-length BID, confirmed that 
BID cleavage caused by VPA was really dose-dependent and 
also demonstrated the poor sensitivity of this cell line to VPA. 
Together these data indicate that BID is cleaved upon VPA 
treatment and can subsequently transfer the apoptotic signal 
from the receptor-mediated to the intrinsic apoptotic pathway.

Inhibition of caspase-8 does not influence VPA-induced 
apoptosis. Caspases-8 has been reported as the main effector 

responsible for BID cleavage (22). We therefore inhibited 
caspase-8 using a specific inhibitor, z-IETD-fmk, to deter-
mine whether its inhibition was capable of blocking apoptosis 
induced by VPA. Cells were treated with 2 µM z-IETD-fmk 
for 15 min preceding VPA addition. Cell cultures were then 
incubated together with caspase-8 inhibitor and VPA for 
48 h. We employed Annexin V/PI labeling to detect apoptotic 
changes. Surprisingly, overall viability measured as Annexin V/
PI double negative cells was not increased in samples treated 
with the caspase-8 inhibitor. This inhibition did not influence 
the percentage of early apoptotic cells (An+/PI-) (Fig. 5) nor 
the percentage of necrotic/late apoptotic cells (An+/PI+). We 
did not observe a shift of Annexin V/propidium iodide double 
positive cells to the Annexin V single positive population, 
which would have signaled that caspase-8 inhibition only 
delayed apoptotic progress. Moreover, there were no differ-
ences between normoxic and hypoxic conditions. WB analysis 
showed that BID was cleaved regardless of caspase-8 inhibi-
tion (Fig. 6), which further points to a non-essential role for 
caspase-8 in apoptosis induction.

The effectivity of caspase-8 inhibition was also determined 
by measuring its activity after treatment with z-IETD-fmk. 
It was found that it was decreased to the level of untreated 
samples (data not shown); this confirmed that the concentration 
of z-IEDT-fmk used was sufficient. It is therefore evident that 
inhibition of caspase-8 has no significant effect on apoptosis 
and BID cleavage in NBL cell lines.

VPA decreases transcriptional activity of HIF-1. Hypoxia 
inducible factor 1 (HIF-1) influences the expression of many 
genes which can directly or indirectly inhibit apoptosis (23,24). 
HDACi have been described to attenuate stability of HIF-1 
hence re-establishing sensitivity to apoptosis. We employed 
real-time PCR techniques for determination of mRNA levels 
of two well-described (25,26) HIF-1 target genes, VEGF and 
carbonic-anhydrase 9 (CA9) in order to assess whether VPA 
diminish HIF-1 transcriptional activity in NBL cells. Cells 
were preincubated with 2 mM VPA or 100 µM trichostatin A 
for 24 h and then placed into a hypoxia chamber for 3 and 8 h, 
respectively. Expression of both genes was significantly (P<0.01) 
decreased, in a time-dependent manner in both SK-N-AS and 
UKF-NB-3 cell lines (Fig. 7). VPA attenuated expression of 
VEGF 2.2-fold and CA9 4.2-fold compared with untreated 
samples of UKF-NB-3 after 3 h of hypoxia. Similar results were 
obtained for SK-N-AS cells. These results indicate that inhibi-
tion of HIF-1 by VPA participates with higher efficiency of VPA 
under hypoxic conditions by sensitizing NBL cells to apoptosis 
as discussed below.

Discussion

Hypoxia is regarded as a negative prognostic factor for solid 
tumors. It correlates with higher risk of cancer malignancy, 
resistance to radio- and chemotherapy and poorer patient 
outcomes (27,28). Hence, agents capable of overcoming hypoxia 
resistance would be beneficial for cancer treatment. We found 
that VPA was able to induce apoptosis under hypoxic conditions 
and moreover, was even more efficient than under normoxic 
conditions. To our knowledge this is the first observation of 
increased VPA efficacy under hypoxic conditions. Moderate 

Figure 6. Cleavage of bid upon treatment with VPA (V) was not influenced 
by caspase-8 inhibitor (I). VPA (5 mM) was used for UKF-NB-3 and 10 mM 
for SK-N-AS.
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hypoxia (1% O2) caused apoptosis resistance in hypoxic cells 
(29,30). Resistance can be caused by both HIF-1-dependent 
and -independent mechanisms. The role of HIF-1 as an anti- or 
pro-apoptotic transcription factor is still controversial (31). It 
is dependent on the severity and duration of hypoxia, HIF-1 
phosphorylation status and cell type (32). HDACi have been 
previously reported to attenuate HIF-1 transcription activity (33). 
In concert with this observation, we showed that two HDACi 
(VPA and TSA) down-regulate expression of HIF-1 target genes 
VEGF and CA9 in hypoxic NBL cells. Several mechanisms can 
be proposed by which inhibition of HIF-1 by VPA promotes 
apoptosis under hypoxic conditions via attenuation of HIF-1 
transcriptional activity.

p53 is usually said to be stabilized by HIF-1 (34) hence 
promoting apoptosis. However, it has been recently shown that 
HIF-1 can also antagonize p53 pro-apoptotic function through 
several mechanisms. First, HIF-1 increases expression of 
tyrosinase-related protein 2 (TRP2; also called DCT) which 
then down-regulates p53, thereby impeding apoptosis (35). 
Second, homeodomain-interacting protein kinase-2 (HIPK2) 
is an important co-activator of p53. HIF-1 increases protea-
somal degradation of HIPK2 under hypoxic conditions, which 
eventually attenuates p53 pro-apoptotic function (36). Taken 
together, inhibition of HIF-1 by VPA can promote apoptosis 
by both re-establishing HIPK2 levels and attenuation of TRP2 
expression.

AP-1 is another transcription factor induced by hypoxia. 
Recent studies showed that induction of AP-1 is also involved 
in hypoxia induced resistance to apoptosis (37-39). On the other 

hand, we do not suspect a role for AP-1 regarding the higher 
efficacy of VPA during hypoxic conditions, since it has been 
shown that VPA enhances AP-1 mediated gene expression in the 
SH-SY5Y NBL cell line (40). Therefore, VPA acts, most likely, 
as an inductor of AP-1 rather than a suppressor. Additionally, 
lithium chloride (LiCl) also increases transcription activity of 
AP-1, however, we did not observe higher efficacy of LiCl during 
hypoxia (data not shown). It is therefore probable that AP-1 has 
no significant role in VPA induced apoptosis during hypoxia. 
The actual contribution of different transcription factors to 
hypoxia-induced apoptosis resistance depends on several things 
(e.g. cell type, severity and length of hypoxia and/or type of pro-
apoptotic stimuli); therefore a substantial role for HIF-1 is very 
likely in NBL cell lines.

Two points concerning the question of whether VPA 
should be used as monotherapy or in a combination regimen 
need to be addressed. First, despite the ability of VPA to 
overwhelm hypoxia resistance, sensitivity of some NBL cell 
lines, e.g. SK-N-AS in this study and UKF-NB-4, reported in 
our previous study (41) is quite low. For example, there was 
only a 20% induction of apoptotic cells by 5 mM VPA in 
SK-N-AS after 72 h, whereas 1 mM VPA has been reported 
to induce apoptosis in >50% of cells in some hematological 
malignancies (5). Second, plasma levels of VPA, in patients 
treated for epilepsy, usually do not exceed 0.7 mM and have 
minimal or no side effects in such concentrations. Serious 
adverse reactions are seen when the concentration exceeds 
3.1 mM (42). It can be argued that unlike epilectic patients, 
where very long-term therapy is necessary, cancer patients 

Figure 7. VPA and TSA decreased expression of HIF-1 target genes in both UKF-NB-3 (A and B) and SK-N-AS (C and D) after being cultivated for 3 h (A and C) 
and 8 h, respectively (B and D) under hypoxic conditions.
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could tolerate short-term application of higher doses of VPA. 
Our measurement of apoptosis when cells were treated with 
VPA and CDDP together demonstrated that low concen
tration of VPA (1 mM) were enough to overcome hypoxia 
induced apoptosis resistance to CDDP while still maintaining 
low VPA toxicity. Based on this we see VPA, in NBL treat-
ment, mainly used in combination regimens in which its low 
concentration would have minimal side effects, yet it would  
be able to synergize with other agents even in the hypoxic 
areas of a tumor.

BID is thought to be cleaved by caspase-8 upon activation 
of receptor mediated apoptosis. Truncated BID (tBID) then 
translocates from the cytosol to mitochondria where it promotes 
release of cytochrome c and caspase-9 which, in turn, forms 
apoptosome and activates executive caspase-3. However, BID can 
also be cleaved by caspase-3 and served as a self-amplification 
loop (22). We suspect that BID cleavage, during VPA treatment, 
is mediated by caspase-3, since inhibition of caspase-8 neither 
prevented BID cleavage nor influenced the number of apoptotic 
cells.

Although HDACi have been described to trigger apoptosis 
through both receptor mediated (43) and intrinsic pathways, 
the latter was shown to be dominant in NBL cells during VPA 
treatment (44). We also demonstrated this in our experimental 
setting. We further showed that mitochondrial activation is 
the first event in apoptosis induction and BID cleavage and 
caspase-8 activation were a consequence of the progressing 
apoptotic cascade. Notably, there was no difference in the 
pathway through which apoptosis proceeded relative to 
normoxic or hypoxic conditions and VPA treatment.

To conclude, we showed that VPA is effective in both 
normoxic and hypoxic conditions and can overcome hypoxia 
induced resistance to CDDP-induced apoptosis. Considering 
all its advantages (i.e. orally applicable, low toxicity, an 
already approved drug), VPA alone might be beneficial in 
NBL treatment keeping in mind that VPA alone failed to 
induce significant apoptosis in some NBL cell lines. However, 
VPA combined with conventional chemotherapeutic drugs 
should be much more effective and is worthy of consideration. 
Additionally, VPA seems to be a very suitable compound for 
continued research regarding hypoxia-induced resistance. We 
also presented a possible role for HIF-1 as it relates to the VPA 
mode of action, but the direct mechanisms by which it acts are 
unknown and need further elucidation.
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