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Abstract. Colon cancer is the third most common cancer 
and one of the leading causes of cancer-related death in the 
world. Therefore, identification of biomarkers with potential in 
recognizing the biological characteristics is a key problem for 
early diagnosis of colon cancer patients. In this study, we used 
a random forest approach to discover biomarkers based on a 
set of oligonucleotide microarray data of colon cancer. Real-
time PCR was used to validate the related expression levels 
of biomarkers selected by our approach. Furthermore, ROC 
curves were used to analyze the sensitivity and specificity of 
each biomarker in both training and test sample sets. Finally, 
we analyzed the clinical significance of each biomarker based 
on their differential expression. A single classifier consisting 
of 4 genes (IL8, WDR77, MYL9 and VIP) was selected by 
random forests with an average sensitivity and specificity of 
83.75 and 76.15%. The differential expression levels of each 
biomarker was validated by real-time PCR in 48 test colon 
cancer samples compared to the matched normal tissues. 
Patients with high expression of IL8 and WDR77, and low 
expression of MYL9 and VIP had a significantly reduced 
median survival rate compared to colon cancer patients. 
The results indicate that our approach can be employed for 
biomarker identification based on microarray data. These 4 
genes identified by our approach have the potential to act as 
clinical biomarkers for the early diagnosis of colon cancer.

Introduction

Colon cancer is the third most common cancer, and one of 
the leading causes of morbidity and mortality in the world 
(1). According to the United States' statistics released in 2010 

the incidence rate of colon has decreased (2). Over the last 
decade, many studies have proposed various kinds of statis-
tical methods to analyze gene expression patterns and identify 
new biomarkers for prognostic and/or predictive information 
in relation to human diseases (3,4). However, most of the early 
studies applied unsupervised approaches to data-mining and 
identification of differential gene expressed profiling of certain 
diseases, such as hierarchical clustering for class discovering, 
taking an unbiased approach to searching for subgroups in 
the data (5). Along with the statistical methods extensively 
penetrated into the field of biomedicine, many supervised clus-
tering analysis and machine learning approaches were adopted 
to deal with gene expression profiling data and sieved feature 
genes which contained more information to classify different 
kinds of diseases or subclasses of the same disease.

Various methods of statistics and machine learning, 
including clustering (6,7), Bayesian algorithms (8), and support 
vector machines (9), have been proposed to analyze micro-
array data generated through high-throughput experiments. 
Over the last few years, the technology of multiclassifier 
fusion developed substantially, and became very successful in 
improving the accuracy of certain classifiers. Random forests 
(RF) (10,11), a tree-based method of classification and regres-
sion, is one of the most important methods of multiclassifier 
fusion. Besides the outcome of classification, RF also returns 
several measures of variable importance according to which 
feature genes can be selected. Since RF is comparable with 
other methods and even better to a certain extent (12), it is 
used broadly especially for microarray data (13). Additionally, 
RF can be used as not only a supervised algorithm but also 
an unsupervised one (14), which depends on whether the gene 
expression data come from known classes or not.

In this study, we adopted an RF-based method for feature 
gene selection incorporating deductive reasoning to process 
the differential gene expressed profiling of colon cancer. We 
thus, selected 4 feature genes (IL8, WDR77, MYL9 and VIP) 
for colon cancer classification. Then, the differential expres-
sion level of each biomarker was validated by real-time PCR 
and in 48 test colon cancer samples compared to their matched 
normal tissues with high sensitivity and specificity. The results 
showed that our approach could filter out genes of great impor-
tance based on microarray data, and the genes selected by our 
approach were validated with high accuracy in classifying 
colon cancer and matched normal samples.
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Materials and methods

Micoarray data set. In 1999, Alon, et al (15) detected the 
whole genome of 40 colon tumor and 22 normal samples using 
an Affymetrix oligonuleotide array (Hum6000) and a two-way 
clustering approach to classify genes into functional groups. 
The microarray data was downloaded at: http://genomics-
pubs.princeton.edu/oncology/affydata/index.html. To further 
study this group of microarray data and rediscover potential 
biomarkers not been mined completely, we used an RF-based 
machine learning method in our investigation.

RF algorithm. One of the most important supervised methods 
RF was used for data-mining in this study. The reliable measure 
is based on the decrease of classification accuracy when values 
of a variable in a node of a tree undergo random permutations 
(16). All training set observations were assigned to different 
terminal nodes in a tree and distinct split values were deter-
mined through several criterions such as the Gini index. The 
class of majority of training set observation in the terminal 
node was selected as the class of the node. We selected fewer 
genes with which the classifiers produced smallest out-of-bag 
(OOB) errors and highest classification scores.

For sample j, we defined mrj as the difference between its 
accuracy rate and misclassifying rate. Additionally, we defined 
the mean decrease of accuracy rate of gene g as MDA (g). The 
calculating formulas of mrj and MDA (g) are represented as 
follows:

I(g) denotes indicator function; ntree is the number of 
tree classifiers; N, total samples; OOBj(i) = T, represents that 
sample j exists in OOB data set for tree i. If j is correctly 
classified by i, Vj(i) = Tclass. Similarly, j is correctly clas-
sified after the value of gene g is randomly permuted Vj(g)

(i) = Tclass.

RNA isolation and real-time-PCR. A total of 48 colon cancer 
and matched normal tissues from Wuhan General Hospital of 
Guangzhou Command were used in this study for real-time-
PCR experiment. Total RNA was extracted from the tissue 
samples according to a standard TRIzol protocol (Invitrogen, 
Carlsbad, CA, USA). Total RNA (5 µg) was reverse transcribed 
to cDNA with 200 U M-MLV reverse transcriptase (Promega, 
Madison) according to a standard manufacturer's protocol. 
The reverse transcription reaction conditions were: 37˚C for 
60 min, 72˚C for 10 min. Real-time-PCR was performed in 
a total 20 µl reaction mixture with 2 µl of cDNA, 0.6 µl 20X 
EvaGreen (CapitalBio, Beijing, China), and 0.5 µl of each 
10 µM forward and reverse primers, 0.5 µl of 2.5 mM dNTP, 
1.5 U Cap Taq polymerase (CapitalBio), 10 µl of 2X PCR buffer 
for EvaGreen and 6.1 µl of ddH2O. Quantification of differ-
entially expressed genes was conducted with an RT-Cycle™ 
2.0 system (CapitalBio). Real-time-PCR was carried out with 
programmed parameters, heating at 9˚C for 5 min followed by 
40 cycles of a 3-stage temperature profile of 95˚C for 30 sec, 
57˚C for 30 sec, 72˚C for 30 sec. All reactions were designed 
with 3 duplications and the final Ct values were determined by 
the average Ct value of the duplicated reaction. The melting 
curves for each PCR reaction were carefully analyzed to avoid 
non-specific amplifications in PCR products. The expression 
of each gene was transformed using the 2-ΔΔCt formula and 
normalized with the β-actin expression (17).

Receiver operating curve (ROC) and statistical analysis. ROC 
curve analysis was conducted using the MedCalc software 

  Eq. 1

  Eq. 2

  Eq. 3

  Eq. 4

Table  Ⅰ. Top 20 genes with high classification score by the 
random forrest algorithm.

GenBank ID	 Accession no.	 Gene symbol	 Score

M26383	 NM_000584	 IL8	 0.8776
H08393	 NM_024102	 WDR77	 0.8520
J02854	 BM473095	 MYL9	 0.8263
M36634	 NM_003381	 VIP	 0.8124
J05032	 NM_001349	 DARS	 0.8108
T92451	 CR590682	 TPM2	 0.8065
R36977	 AK057993	 GTF3A	 0.8065
M22382	 BC047350	 HSPD1	 0.8065
U25138	 BC025707	 KCNMB1	 0.8065
D00860	 NM_002764	 PRPS1	 0.8007
H43887	 BQ712715	 CFD	 0.8007
X63629	 NM_001793	 CDH3	 0.8007
T51571	 BQ683841	 S100A11	 0.7963
Z50753	 NM_007102	 GUCA2B	 0.7963
T96873	 CR627338	 CBWD1	 0.7786
H64489	 NM_005727	 TSPAN1	 0.7786
T60155	 BX647362	 ACTA2	 0.7786
D14812	 BC035249	 MORF4L2	 0.7786
T54303	 CR607281	 KRT8	 0.7692
L41559	 BM550965	 PCBD1	 0.7692

Bold indicates the genes selected as a classifier of colon cancer.
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packages (version 8.2.1.0; Mariakerke, Belgium). The AUC 
curves provided a measure of the overall performance of a 
diagnostic test. The ratio of gene signal intensities and the Ct 
value of each gene were used for ROC calculation in training 
and test samples, respectively. The clinical data were analyzed 
using the Chi-square test. The cumulative survival curve was 
compared by the log-rank test. For all analyses, a difference 
with P<0.05 was considered statistically significant.

Results

Biomarker rediscovery by the RF approach. We processed 
the microarray data of colon cancer using an RF-based algo-
rithm. According to the OOB error rate, we identified 4 genes 
as a classifier to classify colon cancer and normal samples, 
composed of two upregulated genes IL8 and WDR77, and two 
downregulated genes MYL9 and VIP (Tables Ⅰ and Ⅱ). The 
classification accuracy of the 4-gene classifier was 91.94% 
(Fig. 1A). The average expression levels of each gene and the 
clustering graphical overview are shown in Fig. 1B and C.

Real-time PCR and IHC staining validation. cDNA from 
48 colon cancer and matched normal tissues were used for 
real-time PCR experiment. The results showed that IL8 was 
upregulated in 37 of 48 cancer samples (77.1%) compared to 
the matched normal tissues with P-value of 0.032. Similarly, 
WDR77 was upregulated in 34 colon cancer samples (70.8%) 
with a P-value of 0.046. On the contrary, MYL9 was down-
regulated in 35 of 48 cancer samples (72.9%) with P-value of 
0.028 and VIP was downregulated in 33 colon cancer samples 
(68.8%) with a P-value of 0.177 (Fig. 2).

ROC curve analysis. In order to analyze the classification 
sensitivity and specificity of the candidate biomarkers, we 
used ROC analysis both in training and test sample data. We 
observed a high sensitivity and specificity of the biomarkers 
and consistent results from both training and test samples. 
AUC-values of IL8, WDR77, MYL9 and VIP were 0.853, 
0.875, 0.826 and 0.812 in the training group (Fig. 3A, Table Ⅲ); 
0.869, 0.867, 0.898 and 0.845 in the test group, respectively 
(Fig. 3B, Table Ⅲ).

Table Ⅱ. Four genes selected by the random forest method based on microarray data.

Expression level	 Gene symbol	 GenBank ID	 Fold-change	 Q-value (%)

Upregulated	 IL8	 M26383	 2.444	 0.665
	 WDR77	 H08393	 1.638	 3.547
Downregulated	 MYL9	 J02854	 0.011	 0
	 VIP	 M36634	 0.203	 0

Figure 1. Identification of 4 genes by RF based on gene expression profiling. (A) The expression levels showed that IL8 and WDR77 were downregulated in 
22 normal samples, and upregulated in tumor samples; MYL9 and VIP were downregulated in 40 tumor samples and upregulated in normal samples. (B) The 
smallest OOB error rate appeared when there were only 4 genes. The numbers of reserved genes were 320, 290, 260, 230, 200, 170, 140, 110, 80, 50, 20, 10, 5, 
4, 3, 2 and 1. (C) Graphical overview of these 4 genes. Hierarchical clustering of the data matrix consists of 4 differential expressed genes by 40 colon cancers 
and 22 matched normal tissues. Columns represent samples and rows represent genes (black, green, and red correspond to no-change, downregulated and 
upregulated, respectively). T, tumor; N, normal.
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Clinical significance of the biomarkers. The expression levels 
of IL8, WDR77, MYL9 and VIP were used for comparing 
some of the clinical indicators in 48 colon cancer patients. 
A significant difference was observed in two groups which 
represent positive expression and negative expression of 
IL8 as follows: IL8(+) and IL8(-). Patients with IL8(+) had 

significantly reduced median survival compared to those with 
IL8(-) (P<0.001). Meanwhile, we observed that the positive 
expression of IL8 was associated with gender (P=0.029), 
clinical stage (P<0.001) and survival status (P<0.001) of 
colon cancer patients (Table Ⅳ). The expression levels of 
WDR77 were associated with the clinical stage (P=0.008), 

Figure 2. Relative expression levels of the candidate biomarkers validated by real-time PCR. (A) The 2-ΔΔCt method was used to analysis the relative expression 
levels of the genes after real-time PCR. Quantitative real-time PCR results showed that IL8 and WDR77 were upregulated in colon cancer samples with 
P-values of 0.032 and 0.046; MYL9 and VIP were downregulated in colon cancer samples with the P-values of 0.028 and 0.177. (B) The same results were 
shown by semi-quantitative PCR.

Figure 3. ROC curve analysis of candidate biomarkers. (A) ROC analysis based on microarray data. The AUC values of IL8, WDR77, MYL9 and VIP were 
0.853, 0.875, 0.826 and 0.812 in the training group; (B) ROC analysis based on real-time PCR data (Ct value). The AUC values of IL8, WDR77, MYL9 and 
VIP were 0.869, 0.867, 0.898 and 0.845 in the test group, respectively.

Table Ⅲ. ROC analyses of the sensitivity and specificity of candidate biomarkers.

Sample sets	 Biomarkers	 Sensitivity (%)	 Specificity (%)	 AUC	 95% CI 	 SE	 P-value

Training samples	 IL8	 100.0	 63.6	 0.853	 0.740-0.930	 0.0472	 0.0001
	 WDR77	 70.0	 95.5	 0.875	 0.766-0.945	 0.0434	 0.0001
	 MYL9	 90.0	 68.2	 0.826	 0.709-0.910	 0.0596	 0.0001
	 VIP	 75.0	 77.3	 0.812	 0.693-0.900	 0.0614	 0.0001

Test samples	 IL8	 93.8	 77.1	 0.869	 0.785-0.929	 0.0374	 0.0001
	 WDR77	 81.2	 83.3	 0.867	 0.782-0.928	 0.0377	 0.0001
	 MYL9	 91.7	 79.2	 0.898	 0.820-0.951	 0.0330	 0.0001
	 VIP	 72.9	 87.5	 0.845	 0.757-0.911	 0.0405	 0.0001

95% CI, 95% confidence interval; SE, standard error.
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numbers of the embolus (P=0.035) and the survival time of 
the patients. On the contrary, negative expression of MYL9 
and VIP were associated with median survival time of colon 
cancer patients (Table Ⅳ). In addition, negative expression of 
VIP was associated with the differentiation status of cancer 
cell (P=0.026) and recurrence risk (P=0.019) of colon cancer 
patients (Table Ⅳ). The details of clinical significance for all 
the candidate biomarkers are shown in Table Ⅳ.

Discussion

Colon cancer is one of the most common diseases in the 
world, but only few tumor-specific gene products have been 
identified that could serve as targets to aid in the diagnosis of 
colon cancer. Its high prevalence and bad prognosis encourage 
researchers to find new biomarkers for the diagnosis and 
treatment of colon cancer. The microarray technique provides 
an effective method to identify a large scale of candidate 
biomarkers. Gene expression, methylation and microRNA 
profiling of colon cancer have been performed (18-20).

High-throughput microarray technologies have gener-
ated a large amount of data, where, various statistical and 
machine learning methods were adopted to analyze the data 
for finding gene or protein expression patterns and search for 
new biomarkers of human diseases. Microarray data analysis 
involves selecting the biomarkers which contain useful 
information necessary for molecular classification of human 
diseases and for establishing a gene expression profile. In this 
study, we present a concise investigative mode for feature gene 
selecting. We used a supervised machine learning algorithm 
RF to select gene a classifier based on differential gene expres-
sion profiling. A series of biological experiments were used to 
validate the results from high-throughput data.

RF is an effective algorithm with classifying quality 
comparable to other methods such as support vector machines 
(SVM) (10). It can also select featured genes which embody 
differentially expressed levels among different samples. We 
applied RF to deal with a colon cancer dataset and identified 
4 genes which had great biological significance. The classi-
fier composed of the 4 genes produced a high accuracy on 
both the training and the test samples. Bootstrap aggregating, 
a resample technique, is used when building the RF. This 
technique allows RF not to prune like other tree-based clas-
sification algorithm. Furthermore, RF can avoid over-fitting 
effectively although the mechanism is not currently clear. 
Besides dealing with the gene expression microarray data, 
RF has been extensively used in other aspects of biomedicine 
territory. In the latest years, RF was adopted extensively to 
analyze the single-nucleotide polymorphisms data (21) and the 
gene pathway building investigation (22).

In order to identify biomarkers with high sensitivity and 
specificity, verification in the laboratory and detection of 
new test clinical samples are important. Real-time PCR and 
tissuemicroarray-based IHC staining provided us convenient 
and precise approaches to detect the expression levels of 
candidate biomarkers. Our results also showed that real-time 
PCR was sensitive and specific for gene expression level vali-
dation. The PCR-based detection method therefore, appears 
to provide us with an easy way in early clinical diagnosis of 
human cancer.

The function and clinical significance of IL8 and VIP 
have been reported. There are 1,182 studies describing the 
gene function of IL8, including the biological mechanism in 
progress of most kinds of human cancer such as: glioblastoma, 
gastric carcinoma, small cell lung cancer, prostate cancer, 
esophageal squamous cell carcinoma, acute myelogenous 
leukemia, and colon cancer (23-29). It was confirmed that IL8 is 
differentially expressed in colon cancer, and is associated with 
proliferation, migration, angiogenesis and chemosensitivity in 
colon cancer cell line models (30). The VIP gene has also been 
the focus of investigation in many studies ralating to human 
cancer (31-36). WDR77, also known as p44, was reported to 
be related to the differentiation and proliferation in prostate 
epithelium (37). Its differential expression was observed in 
ovarian cancer (38). However, there is no report associating 
WDR77 with colon cancer. Thus, WDR77 is a novel potential 
biomarker of colon cancer. Similarly to WDR77, MYL9 has 
not been well-documented as being functionally associated 
with human cancer, including colon cancer. Therefore we 
reconfirmed its expression levels both at the RNA and protein 
levels by PCR and IHC methods, respectively.

In summary, we used an RF-based method to process 
a differential gene expression profile of colon cancer and 
selected 4 featured genes as candidate biomarkers of colon 
cancer. We validated these biomarkers in clinical colon cancer 
samples by a real-time PCR method. Our results showed that 
this approach filtered out genes of great importance, like 
IL8 and VIP based on microarray data, also including some 
new genes as WDR77 and MYL9 with the potential to act as 
cancer-related biomarkers.
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