
ONCOLOGY REPORTS  28:  1681-1686,  2012

Abstract. Multidrug resistance is one of the major causes 
limiting the efficacy of chemotherapeutic agents to control 
esophageal cancer. Herein, we investigated that the effect and 
mechanism of tetrandrine (TET) in the human esophageal 
squamous carcinoma cisplatin-resistant cell line YES-2/DDP. 
The human esophageal squamous carcinoma cisplatin-resis-
tant cell line YES-2/DDP was isolated by stepwise selection 
in increasing concentrations of cisplatin. The CCK-8 method 
was carried out to measure the cell viability when cells 
were exposed to TET with or without cisplatin, and the IC50 
and resistance index (RI) of cisplatin was then calculated. 
Real-time RT-PCR and western blotting were used to detect 
the mRNA and protein expression of multidrug resistance 1 
(MDR1), multidrug resistance-associated protein 1 (MRP1) 
and breast cancer resistance protein (BCRP), respectively. 
Flow cytometry was adopted to determine CMFDA efflux and 
cell apoptosis, respectively. The resulting cell line YES-2/
DDP was 16.4-fold resistant to cisplatin, the cytotoxicity of 
cisplatin to YES-2/DDP cells was enhanced by TET in a dose-
dependent manner. Further, it was found that the expression 
of MDR1 and BCRP was similar in different treated cells. In 
contrast, the expression of MRP1 was markedly increased in 
YES-2/DDP cells, which was dose-dependently decreased by 
TET. In agreement with the results, MRP1 activity was also 
reversed by TET. In conclusion, TET possesses a reversal 
effect on drug resistance in YES-2/DDP cells through down-
regulation of MRP1, and has the potential to be an adjunct to 
chemotherapy for esophageal cancer.

Introduction

Chemotherapy is regarded as an important line of defense 
against esophageal cancer which is one of the most aggres-
sive and lethal malignancies. However, on account of drug 
resistance especially multi-drug resistance (MDR), only a 
limited proportion of cancer patients respond favorably to 
commonly used chemotherapeutic drugs (1). With respect 
to the mechanisms of drug resistance, ATP-binding cassette 
(ABC) transporters, such as ABCB1/multidrug resistance 1 
(MDR1), ABCC1/multidrug resistance-associated protein 1 
(MRP1) and ABCG2/breast cancer resistance protein (BCRP), 
mediate energy-dependent drug efflux and play a main role in 
chemoresistance (2,3). Therefore, it seems imperative to find 
new drugs or methods especially targeting ABC transporters 
to reverse tumor drug-resistance.

Tetrandrine (TET) (Fig.  1), a bis-benzylisoquinoline 
alkaloid isolated from the Chinese herb ‘Han-Fang-Ji’ (Radix 
Stephania tetrandra S. Moore), has been found to have immu-
nosuppressive, free radical scavenging and anti-inflammatory 
activities (4-6). Furthermore, many recent studies have shown 
that TET exerts antitumor effects (7,8). In addition to inhibiting 
proliferation and inducing apoptosis of several cancer types, 
TET has exhibited potential as an adjunct to chemotherapy in 
many drug-resistant cancer cell lines (9,10). However, it remains 
unclear whether TET can reverse ABC transporter-mediated 
drug efflux. Moreover, it is also unknown whether TET can be 
used as an adjunct to chemotherapy for esophageal cancer.

In this study, a human esophageal squamous carcinoma cell 
line (YES-2) was selected by stepwise exposure to increasing 
concentrations of cisplatin to produce a cisplatin-resistance 
esophageal cancer cell line (YES-2/DDP). We examined 
whether TET can effectively reverse cisplatin resistance in 
YES-2/DDP and evaluated its possible mechanisms.

Materials and methods

Materials. TET (C38H42O6N2, MW:622.8, purity ≥98%) deter-
mined by HPLC as previously described (11) was the product 
of Sigma Chemical Company (St. Louis, MO, USA). Cisplatin 
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was obtained from Qilu Pharmaceutical Company (Shandong, 
China). MDR1, MRP1 and BCRP were purchased from 
Chemicon International (Temecula, CA, USA), and β-actin 
antibodies were products of Cell Signaling Technology (Boston, 
MA, USA). Bicinchoninic acid (BCA) protein assay kit and 
enhancer chemiluminescent (ECL) reagents were obtained 
from Pierce Biotechnology (Rockford, IL). Cell Counting Kit-8 
(CCK-8) and Annexin V-FITC Apoptosis detection kit were 
purchased from Beyotime Institute of Biotechnology (Nanjing, 
China) and KeyGen Biotech (Nanjing, China) respectively. 
Chloromethylfluorescein diacetate (CMFDA) were obtained 
from Invitrogen (Carlsbad, CA, USA).

Cell lines and cell culture. YES-2 cells, a human esophageal 
squamous carcinoma cell line, and its cisplatin-resistant cell 
subline, YES-2/DDP, were cultured in DMEM medium with 
10% fetal bovine serum, penicillin (100 U/ml) and streptomycin 
(100 U/ml), and maintained at 37˚C in a humidified atmosphere 
of 5% CO2. The cisplatin-resistant cells of YES-2/DDP were 
isolated by stepwise selection in increasing concentrations 
of cisplatin starting with 0.01  µg/ml. When cells became 
confluent in medium containing cisplatin, the drug concentra-
tion was increased to 0.03, 0.05, 0.1, 0.3, 0.5, and 1 µg/ml, the 
maximal concentration used. The YES-2/DDP cell subline was 
passaged in cisplatin-free medium and remained stably resis-
tant to cisplatin for several months. To prevent the outgrowth 
of revertants, the cells were periodically reselected in the pres-
ence of 0.1 µg/ml cisplatin. Under these conditions no change 
in resistance was observed over 1.5 years.

Cell viability. The effects of TET and/or cisplatin on the growth 
of YES-2/DDP and YES-2 cells were measured by CCK-8 
method. The cells were dispensed in 96-well plate at a density 
of 1x105 cells per well. After 24 h of incubation, they were 
treated with different concentration of TET and/or cisplatin, 
and were cultured for 72 h. After such treatments, the cells were 
incubated with 20 µl CCK-8 for 2 h at 37˚C, and then measured 
the absorbance at 450 nm using model 550 microplate reader 
(Bio-Rad, USA). The cell growth inhibition was determined 
by triplicate assays. The half of inhibition concentrations (IC50) 
values were calculated from cytotoxicity curves. The resistance 
index (RI) was calculated by dividing the IC50 for MDR cells by 
that for parental sensitive cells.

Apoptosis of cells. To measure the apoptosis of cells, annexin 
V-FITC Apoptosis detection kit was used. Annexin V binding 
on the surface of apoptotic cells expressing phosphatidyl-
serine and propidium iodide (PI) incorporation by dead cells 
were analyzed by using standard protocols. Briefly, cells were 
detached by trypsin treatment, resuspended in PBS at a concen-
tration of 105 cells/ml, and labeled with 5 µl Annexin V-FITC 
for 10 min. After addition of 10 µl PI, the samples were analyzed 
by flow cytometry.

Quantitative reverse transcription-PCR. Total RNA was 
isolated from cells using TRIzol reagent according to the manu-
facturer's protocol. First-strand complementary DNA (cDNA) 
was synthesized. The reverse transcription was conducted by 
incubating for 60 min at 43˚C followed by 10 min at 70˚C. 
SYBR® Premix Ex Taq™ (Takara) was used to quantitatively 

monitor the accumulation of DNA products. Melting curves 
were performed to assure that the fluorescence was derived 
from dye intercalating into a specific, homogeneous amplifi
cation product. For amplification primers of MDR1, MRP1 and 
BCRP were 5'-GTG TTT CTG GTC AGC CCA ACT-3' (sense) 
5'-TTG GAT CTC AGG ATG GCT AGG-3' (antisense); 5'-GTG 
TTT CTG GTC AGC CCA ACT-3' (sense) and 5'-TTG GAT 
CTC AGG ATG GCT AGG-3' (antisense); 5'-ACG AAC GGA 
TTA ACA GGG TCA-3' (sense) and 5'-CTC CAG ACA CAC 
CAC GGA T-3' (antisense), respectively. The primers used for 
amplification of GAPDH cDNA as an internal standard were 
5'-CCA CCC ATG GCA AAT TCC-3' (sense) and 5'-TGG GAT 
TTC CAT TGA TGA CAA-3' (antisense). Each reaction 
contained 12.5 µl of SYBR Premix Ex Taq, 0.5 µl of each 
primer, and 2 µl of template made up to 20 µl with filter steril-
ized water. Real-time PCR was performed on a CFX96 
Real-time detection systems (Bio-Rad, USA) with initial dena-
turation at 95˚C for 30 sec followed by 40 cycles of 95˚C for 
5 sec, 60˚C for 30 sec, 72˚C for 30 sec and 85˚C fluorescent 
signal acquirement. Relative expressions were determined via 
the Ct method normalized to MDR1, MRP1, BCRP or GAPDH 
standards.

Western blotting. The different treated cells were harvested. 
Total proteins were prepared according to the method described 
by the protein extract kit (Piece Biotechnology, Rockford, USA). 
Protein concentrations were determined by BCA protein assay 
kit. Protein extracts were fractionated on 12% polyacrylamide-
sodium dodecyl sulfate (SDS) gel and then transferred to 
nitrocellulose membrane. The membrane was blocked with 5% 

Figure 1. Chemical structure of TET.

Figure 2. Effect of TET on cell viability of YES-2 or YES-2/DDP cells. 
Cells were treated with an increasing concentration of TET for 72 h; the cell 
viability was measured by CCK8.
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(w/v) fat-free milk in Tris-buffered saline (TBS) containing 
0.05% Tween-20, followed by incubation with a rabbit primary 
polyclonal antibody at 4˚C overnight. Then the membrane was 
treated with horseradish peroxidase-conjugated goat anti-rabbit 
secondary antibody (1:10,000). Antibody binding was visualized 
with an ECL chemiluminescence system and short exposure of 
the membrane to X-ray film (Kodak, Japan).

MRP1 activity assay. To assess MRP1 activity, a MRP specific 
probe CMFDA(12) was used to detect intracellular CMFDA 
accumulation, which is similar to functional activity of drug 
efflux pumps. Single cell suspensions obtained by trypsinization 
from confluent monolayers of YES-2/DDP or YES-2 cells, 
were incubated at 37˚C for 60 min in the presence of TET and 
cisplatin in serum-free DMEM containing CMFDA 1.0 µmol/l, 
then washed three times with ice-cold PBS, resuspended in ice-
cold PBS containing 1% fetal bovine serum and kept on ice until 
the analysis by flow cytometry.

Statistical analysis. Results were analyzed using Student's 
test or by ANOVA where appropriate. All data in this study 
were expressed as mean ± SD. P-values ≤0.05 was considered 
significant.

Results

The effect of TET on cell viability of YES-2 or YES-2/DDP 
cells. We first examined the cell viability and cytotoxicity of 
TET itself on the cisplatin-resistant cell line YES-2/DDP and 
its parental cell line YES-2. Both cell lines were pretreated 
with increasing concentration of TET from 0.1 to 30  µM 
for 72 h, respectively. There were no obvious cytotoxicity 

on YES-2/DDP and YES-2 treated by varying dose of TET 
(Fig. 2). Cell survival was >95% in both YES-2 and YES-2/
DDP cells when exposed to 10 µM or lower concentrations of 
TET. Therefore, TET concentrations of 1, 3, and 10 µM were 
used in following experiment.

The reversal effect of TET on resistance to cisplatin in YES-2/
DDP cells. In order to investigate whether TET modulated 
the sensitivity of cells to cisplatin, YES-2 or YES-2/DDP 
cells were incubated with various concentrations of TET and 
a full range of concentrations of cisplatin for 48 h. The IC50 
and RI of cisplatin in the different treated cells were evaluated 
by CCK-8. As demonstrated in Table I, it was clear that the 
sensitivity to cisplatin in YES-2 cells was significantly more 
than that in YES-2/DDP cells, and TET could effectively 
reverse the drug resistance dose-dependently. Similar outcome 
was also shown in the analysis of apoptosis measured by flow 
cytometry (Fig.  3), TET dose-dependently enhanced cell 
apoptosis induced by cisplatin.

Figure 3. Effect of TET on the cisplatin-induced apoptosis of YES-2/DDP cells. Cells were treated with cisplatin (10 µg/ml) and TET (1, 3, 10 µM, respectively) 
for 72 h; the apoptosis of cell was measured with a PI and Annexin Ⅴ kit by flow cytometry.

Table I. Effect of TET on the IC50 and RI of cisplatin in YES-2/
DDP cells.

Cell treatment	 IC50 (µg/ml)	 RI

YES-2	 0.97	 1.0
YES-2/DDP	 15.91	 16.4
YES-2/DDP + 1 µg/ml TET	 11.43	 11.8
YES-2/DDP + 3 µg/ml TET	 8.62	 8.9
YES-2/DDP + 10 µg/ml TET	 4.57	 47.0
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The effect of TET on the expression of MDR1, MRP1 and 
BCRP. Since the overexpression of ABC transporters in 
cancers is considered to be a primary determinant of the MDR 
phenotype, we detected the expressions of three main ABC 
transporters by qRT-PCR and western blotting to find whether 
TET reversed the drug resistance to cisplatin through mediating 
these ABC transporters. It was indicated that MDR1 and BCRP 
expression have not obvious changes in different treated cells. 
In contrast, the expression of MRP1 was markedly increased 
in YES-2/DDP cells, which was dose-dependently decreased 
by TET (Fig. 4).

The effect of TET on the accumulation of intracellular CMFDA. 
Based on MRP1 hyperexpression on YES-2/DDP cells, we 
used a specific MRP1 probe CMFDA to incubate the different 
treated cells for 60 min. Further, we analyzed the accumulation 
of intracellular CMFDA in the different treated cells by flow 
cytometry. As shown in Fig. 5, compared with that in YES-2/
DDP cells, the accumulation of intracellular CMFDA was 
more intense in drug-sensitive YES-2 cells. It was also demon-
strated that TET exhibited dose-dependent enhancement in the 
accumulation of intracellular CMFDA.

Discussion

In this study, we first established a human esophageal squa-
mous carcinoma cisplatin-resistant cell subline, YES-2/DDP, 

which express a high level of MRP1 mRNA and protein, 
and was 16.4-fold resistant to cisplatin as compared to its 
parent cell line, YES-2. We found that TET could effectively 
reverse the resistance of cisplatin in YES-2/DDP cells, and 
dose-dependently inhibited the expression of MRP1 but not 
MDR1 and BCRP. Thereby, we deduced that MRP1, 190 kDa 
glycoprotein mainly localized in cell membrane in almost 
all tissues, is considered as an ATP-dependent efflux pump 
and has 14% structural homology with MDR1, but differs 
substantially from MDR1. Its main physiological functions 
involve cellular transportation and secretion, protecting the 
body from biological damage (13,14). The overexpression of 
MRP1 has been reported in a variety of human malignan-
cies, which causes increased efflux of chemotherapeutic drugs 
leading to the occurrence of drug resistance (15-17). 

MRP1 can actively transport the drugs into subcellular 
organelles, or indirectly affect the distribution of drugs to reduce 
drug concentration in the nucleus, thereby cut down the DNA 
injury. MRP1 can also reduce the pH value in the cytoplasm or 
organelles through forming chloride ion channel or changing 
channel activity, which will result in the acidic environment 
where the protonated drugs are largely discharged. In addition, 
MRP1 can even shift drugs out of cells into the extracel-
lular fluid by vesicle transportation or exocytosis (14,18,19). 
Numerous studies have shown that inhibition of MRP1 
expression by a variety of methods eased the development of 
drug resistance, thus supported clinical chemotherapy (20-22). 
Regarding the expression of MRP1 in esophageal cancer, it has 
been demonstrated that MRP1 often overexpressed in different 
esophageal cancer cell lines or cancer tissues of patients (23-25). 
It was even reported that the proportion of MRP1-positive 
samples in the esophageal cancer was significantly higher than 
that in the adenocarcinomas of the stomach and the colorectal 
adenocarcinomas, showing MRP may play a great role in the 
drug resistance in esophageal cancer (26). Therefore, to find and 
develop drugs targeting MRP seems to be very favorable for 
clinical chemotherapy for esophageal cancer.

Many studies have indicated that TET possess a reversal 
effect on MDR in many cancer cell lines, and might enhance 
the efficacy of chemotherapy such as cyclosporine A, dauno-
rubicin, etoposide, cytarabine and droloxifene (27,28). It was 
mostly demonstrated that TET exerted its reversal effect 
through downregulating MDR1. For example, in human oral 
cancer MDR KBv200 cells, TET enhanced the antitumor effect 
of vincristine via directly binding to MDR1 and increasing 
intracellular VCR accumulation (29). It was even reported 
that TET exhibited stronger activity to reverse drug resistance 
to daunorubicin, vinblastine and doxorubicinin in human T 
lymphoblastoid leukemia MDR MOLT-4 cells, when compared 
to well-known MDR1 inhibitor cyclosporine A (CsA) (30). 

The derivatives of TET such as H1, bromotetrandrine and 
isotetrandrine were also found to be candidates of effective 
MDR reversing agent in cancer chemotherapy (31-33). In 
addition to the inhibitory effect of TET on MDR1 expression, 
it was also shown that TET could significantly inhibit MDR 
of tumor cells induced by chemotherapy via other means 
including reducing lung resistance-related protein (LRP) 
expression, diminishing the activity of topoisomerase  II 
or suppress activation of NF-κB (34,35). In this study, we 
reported that TET had a reversal effect on drug resistance 

Figure 4. Effect of TET on ABC transporters expression of YES-2/DDP 
cells. Cells were treated with PBS or different doses of TET (1, 3, 10 µM, 
respectively) for 72 h; the expression of ABC transporters were determined 
by QRT-PCR (A) and western blotting (B). *P<0.05, **P<0.01.
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to cisplatin in MDR human esophageal cancer YES-2/DDP 
cells. Compared with untreated YES-2/DDP cells, TET-treated 
YES-2/DDP cells got more sensitivity to cisplatin. Moreover, 
further study suggested that TET probably intervened in occur-
rence of drug resistance by inhibiting MRP1 expression and 
activity, indicating TET might be considered as a potential 
adjunct to chemotherapy for esophageal cancer overexpressing 
MRP1. However, regardless whether TET targets MDR1 or 
MRP1, the detailed molecular mechanism which TET modu-
lates MDR needs to be further investigated, and has now been 
thought as the key unsolved question which influences further 
development of TET as an antitumor drug.

To conclude, we reported that TET reversed drug resistance 
through regulating MRP1 not MDR1, and has the potential to 
be an adjunct to chemotherapy for esophageal cancer. Further 
studies in vitro and in vivo are needed to expound the modula-
tion mechanisms, which will provide a better opportunity to 
exploit TET.
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