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Abstract. To determine the relationship between ionizing 
radiation-induced levels of γ-H2AX foci and cell survival 
in cultured prostate cancer cell lines, three prostate cancer 
cell lines: LNCaP (wt TP53), DU145 (mut TP53) and PC3 
(TP53 null), were studied. For γ-H2AX foci induction, cells 
were irradiated with a single dose of 2 Gy and foci levels were 
studied at 30 min and 24 h after irradiation. Cell survival 
was determined by clonogenic assay, directly and 24 h after 
irradiation with doses ranging from 0 to 8 Gy. Irradiation was 
performed with a Siemens Stabilipan 250 KeV X-ray machine 
at a dose rate of approximately 3 Gy/min. Survival curves 
were analyzed using the linear-quadratic model S(D)/S(0) = 
exp-(αD+βD2). LNCaP cells clearly demonstrated potentially 
lethal damage repair (PLDR) which was assessed as increased 
survival levels after delayed plating as compared to cells plated 
immediately after irradiation. DU145 cells demonstrated only 
a slight PLDR and PC3 cells did not show PLDR at all. Levels 
of γ-H2AX foci were significantly decreased in all cell lines 
at 24 h after irradiation, compared to levels after 30 min. The 
LNCaP cells which demonstrated a clear PLDR also showed 
the largest decay in the number of γ-H2AX foci. In addition, 
the PC cells which did not show PLDR had the lowest decay of 
γ-H2AX foci. A clear correlation was demonstrated between 
the degree of decay of γ-H2AX foci and PLDR.

Introduction

DNA double-strand breaks (DSBs) are generally assumed 
to play a major role in radiation-induced cell death  (1). 

Phosphorylation of the histone protein H2AX (γ-H2AX) is one 
of the earliest markers of DNA damage after ionizing radia-
tion. These γ-H2AX ionizing radiation-induced foci (IRIF), 
which appear already at 3 min after irradiation and increase 
in time reaching a maximum at 20-30 min after irradiation, 
have been reported to mark the locations of DNA DSBs (2-7). 
After the breaks are rejoined, γ-H2AX is dephosphorylated 
again. The disappearance of the foci is related to repair of the 
DNA (8).

An important factor in responses of cells to irradiation 
is potentially lethal damage repair (PLDR). Repair of PLD 
is usually complete between 6 and 12 h after irradiation (9). 
PLDR can be studied with delayed plating experiments of 
plateau-phase cultures. Survival of cells plated after a delay of 
24 h following irradiation is compared with survival of cells 
plated directly after irradiation (10-13). In cells demonstrating 
PLDR, cell survival is enhanced if the cells are allowed to 
remain undisturbed for some time after irradiation before they 
are assayed for colony formation (10,11). Several studies have 
demonstrated that PLDR can be influenced by the status of 
the tumor protein 53 (TP53) (14-18). However, some studies 
have suggested that PLDR does not depend on functional 
TP53 (19-21).

Survival curves are commonly described and analyzed 
using the linear-quadratic (LQ) model: S(D)/S(0) = exp 
-(αD+βD2) (22-24). Studies investigating the repair of poten-
tially lethal damage are critical as factors influencing PLDR 
may alter tumor radiocurability. The advantage of using the 
LQ model is that changes in PLDR can be determined quan-
titatively by analyses of the linear parameter α, describing the 
low dose range of the survival curve, separately from the para
meter β dominating the high dose range (10,25-27). Analysis of 
survival curves from numerous studies has shown that PLDR 
is most clearly demonstrated by changes of the linear param-
eter α (24,28-30).

The relationship between radiation sensitivity and the 
induction of γ-H2AX IRIF is not always clear. Foci of 
γ-H2AX are also induced by factors other than ionizing radia-
tion, such as during the process of replication. Not all cell lines 
have similar numbers of γ-H2AX foci after equal radiation 
doses. Several studies showed that the induction of γ-H2AX 
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foci is not directly correlated with the cellular survival after 
radiation (4,31). However, it has been demonstrated that there 
is a correlation between the number of residual DNA DSBs 
at 10 h after irradiation and cell survival (32,33). Previous 
studies suggested that the induction of γ-H2AX after single 
and fractionated irradiation appears to be a useful marker of 
cellular radiosensitivity (8,34).

The aim of the present study was to establish whether PLDR 
is correlated with repair of DNA DSB. As the status of TP53 is 
important for PLDR (16), the level of PLDR was determined in 
three prostate cell lines with different TP53 status. Then, the 
induction of γ-H2AX foci after a 2 Gy dose was determined 
directly and 24 h after radiation. The data indicate correlations 
between TP53 status and PLDR, and decay of γ-H2AX foci 
and the level of PLDR.

Materials and methods

Cell cultures. Human prostate cancer cell lines with different 
status of TP53 were used: LNCaP, wt TP53; PC3, TP53 null; 
and DU145, mut TP53, as previously described (35-37). All 
three cell lines were cultured in RPMI-1640 medium (Gibco, 
Invitrogen) supplemented with 10% fetal calf serum, 100 U/ml 
penicillin/streptomycin and 1 mM glutamine in a humidified 
atmosphere of 5% CO2/95% air. The doubling time of all three 
cell lines was 24 h.

Western blotting. Western blotting of TP53 induction at 4 h 
after 4 Gy is shown in Fig. 1. In LNCaP cells, TP53 was induced 
at 4 h after 4 Gy; in DU145 cells, the mutated TP53 protein 
was present before and after irradiation; and in PC3 cells, no 
TP53 was detected. Erk-2 protein was used for loading control.

Radiation treatment. Confluent cultures of cells growing in 
monolayers were irradiated at 37˚C in a waterbath and 5% 
CO2/95% air was supplied during irradiation. Irradiation 
was performed with a Stabilipan 250 KeV X-ray machine 
(Siemens, Germany). For determination of γ-H2AX foci, a 
radiation dose of 2 Gy was applied and for the survival experi-
ments cells were exposed to single doses of 0, 2, 4, 6 and 8 Gy. 
The distance between the focus and the culture dish was 9 cm. 
A 0.5-mm Cu filter was used and the dose rate was ~3 Gy/m.

Clonogenic survival. Directly and 24 h after irradiation, cells 
were trypsinized and replated for clonogenic survival assay 
in appropriate cell numbers in 6-well macroplates (38,39). 
Subsequently, cells were incubated for 10 days. Surviving colo-
nies were fixated and stained with glutaraldehyde-crystal violet 
solution and counted. Survival curves were analyzed using 
SPSS statistical software (Chicago, IL, USA) by means of fit 
of data by weighted linear regression, according to the linear-
quadratic formula: S(D)/S(0) = exp-(αD+βD2) (10,27,40,41). In 
the formula, the S(D) is the survival at dose D and S(0) is the 
survival at dose 0. As a measure of PLDR, the ratio PLD-α 
is calculated as the ratio of the value of linear parameter α of 
cells immediately plated (ip) after irradiation and cells delayed 
plated (dp) 24 h after irradiation.

Immunohistochemistry for γ-H2AX. We counted the number of 
γ-H2AX foci in cells that were grown on cover slides (42,43). The 

cover slides (21x26 mm) were sterilized with alcohol and were 
placed in 60-mm cell culture dishes. The cells were reseeded at 
a density of 2.5x105 cells on cell culture dishes containing sterile 
cover slides and were grown until a confluent layer was obtained. 
The cells were then irradiated. The number of γ-H2AX foci was 
determined 30 min and 24 h after irradiation.

Following irradiation, cells were washed with phosphate-
buffered saline (PBS) and fixed in PBS containing 2% para- 
formaldehyde for 15 min. After three further washes with PBS, 
cells were treated with PBS containing 0.1% Triton X-100 and 
1% FCS (TNBS) for 30 min to permeabilize the cells.

A primary mouse monoclonal anti-γ-H2AX antibody 
(Millipore) was diluted 1:100 in TNBS. Fixed, permeabilized 
cells on the cover slides were incubated with 50 µl primary 
antibody under a parafilm strip for 90 min at room tempera-
ture. Cells were then washed with PBS for ~5 min and the 
parafilm strip was removed. Subsequently, cells were washed 
2 times with TNBS.

Cells on cover slides were incubated with 50 µl secondary 
antibody anti-Mouse Cy3 (Jackson) (1:100 in TNBS) under a 
parafilm strip for 30 min at room temperature. Cells were then 
washed 2-3 times with TNBS for ~5 min and the parafilm strip 
was removed. Nuclei were stained with DAPI (2.5 µg/ml) for 
5 min and embedded in Vectashield. Then, cover slides were 
sealed to microscope slides. Rubber cement was used to seal 
the whole construct.

γ-H2AX foci scoring. Digital image analysis was performed 
to determine the number of γ-H2AX IRIF. Fluorescent 
photomicrographs of γ-H2AX foci were obtained using Image 
Pro Plus software. Stack images of cells were obtained using 
a Leica DM RA HC Upright Microscope equipped with a 
CCD camera. Stack images of 50 cells/sample were captured 
using Image Pro Plus software. One stack image consisted of 
23 slices with a 300‑nm interval between the slices along the 
Z-axis. Images were then processed and the number of foci in 
cells was scored using custom-made software (42-45).

All experiments were carried out in triplicates, indepen-
dently from each other. Numbers of foci in unirradiated control 
cells were subtracted from numbers in irradiated samples. 
S-phase cells were excluded using an EdU (5-ethynyl-2'-de-
oxyuridine) staining (Invitrogen, Eugene, OR, USA) to mark 
these cells. The ratio of the number of γ-H2AX foci at 30 min 
and 24 h after irradiation was calculated as a measure of foci 
decay resulting from repair of DNA DSBs.

Figure 1. Western blot analysis of TP53 status in LNCap, DU145 and PC3 
prostate cancer cells. Induction of TP53 was measured at 4 h after 4 Gy. 
Clear induction of TP53 in LNCaP (wt TP53), no induction TP53 in DU145 
(mut TP53) and absence of TP53 in PC3 (TP53 null) cells.
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Results

To assess TP53 status of the used cell lines, western blot 
analysis was performed of TP53 induction after 4 Gy radiation 
dose (Fig. 1). In LNCaP cells, wt TP53 induction was visible; 
in the DU145 cells, mutant TP53 was present; and in the PC3 
cells, no TP53 was observed.

Fig. 2 shows the radiation-induced number of γ-H2AX 
foci in the different prostate cancer cells. At 30 min after 
irradiation, LNCaP cells had the highest number and PC3 
cells had the lowest number of γ-H2AX foci. On the contrary, 

24 h post-treatment PC3 cells had the highest number and 
LNCaP cells had the lowest number of foci. The DU145 cells 
had intermediate numbers of foci for both post-irradiation 
conditions. Initial number of foci at 30 min after irradiation 
ranged between 10 and 18 foci/cell. At 24 h after treatment, 
the numbers ranged between 2.7 and 7 foci/cell. The decline 
in foci number was the highest for LNCaP cells and the lowest 
for PC3 cells.

Survival curves of the different cell lines are presented 
in Fig. 3. LNCaP and DU145 cells clearly showed increased 
survival after dp as compared to ip cells after irradiation. 

Figure 2. (A) Representative nuclei of LNCAP, DU145 and PC3 cells with 
γ-H2AX foci at 30 min and 24 h after 2 Gy. (B) Quantification of the number 
of γ-H2AX foci. At least 150 cells are counted in 3 different experiments; 
error indicates standard error of the mean (SEM) N=3.

Figure 3. Survival curves of the different prostate cancer cell lines immedi-
ately plated (ip) after irradiation and delayed plated (dp) 24 h after irradiation. 
LNCaP show clear PLDR, DU145 show only slight PLDR and PC3 do not 
show PLDR. PLDR is the increase in survival after dp as compared to ip. 
Error bars indicate standard error of the mean (SEM) N=3.



VAN OORSCHOT et al:  γ-H2AX FOCI DECAY CORRELATES WITH POTENTIALLY LETHAL DAMAGE REPAIR2178

Survival curves of PC3 cells plated immediately and 24 h after 
irradiation do not show any difference. Values of the linear 
and quadratic parameters, α and β, the PLD-α ratio (= αip/αdp) 
as a measure of PLDR, the ratio of the number of γ-H2AX foci 
at 30 min and 24 h after irradiation, and the TP53 status of the 
different cell lines are presented in Table I. The decay of foci 
correlates well with PLDR. In Table II, the surviving fractions 
and the number of foci after 2 Gy are given for immediately 
and delayed plated cells. It can be observed that in almost all 
cases, high survival levels correlated with low residual foci 
numbers and, vice versa, low survival levels correlated with 
high residual numbers of foci.

Discussion

The three prostate tumor cell lines examined in this study 
differ in their TP53 status. The TP53 status was confirmed 
with western blotting. In LNCaP cells, TP53 was induced 
4 h after 4 Gy irradiation; in DU145 cells, the mutated TP53 
protein was present before and after irradiation; in PC3 cells, 
TP53 was not detected at all. Earlier studies reported that an 
intact TP53 status is required for repair of potentially lethal 
damage (14-17). Therefore, the level of PLDR was investigated 
in the three cells lines. The LNCaP cells with wt TP53 protein 
clearly demonstrated PLDR. As expected, in the DU145 cell 
line harbouring mutated TP53 PLDR was reduced and in the 
PC3 cells (TP53 null) PLDR was not seen at all.

Furthermore, the present data demonstrates that the decay of 
γ-H2AX foci after 2 Gy radiation dose correlates with PLDR. 
Phosphorylation of H2AX occurs rapidly after induction of 
DNA DSB. The γ-H2AX foci have been suggested to be a valid 
measure for radiosensitivity and the disappearance of the foci 
might be related to the repair of DNA damage following radiation 
treatment (8). It has already been shown by MacPhail et al (46) 
that the decay of γ-H2AX foci is associated with cell survival 
and repair of DSB. Yoshikawa et al (31) suggested that there was 
no close correlation between residual foci and radiosensitivity 
in some tumor cell lines. However, Yoshikawa et al (31) only 
studied survival of cells plated immediately after irradiation. 
In our study, we irradiated cells and plated them both directly 
and 24 h after irradiation in order to study PLDR. The cell line 
with the highest PLDR was also found to have the largest decay 
in number of foci, resembling a more proficient repair of DNA 
DSB. This is also corroborated by our observation that higher 
surviving fractions after 2 Gy correlated with a lower number of 
residual γ-H2AX foci in the prostate cell lines (Table II).

The linear-quadratic model is based on well-accepted 
biophysical concepts, involving the assumption that lethal 
damage can be induced by single-particle tracks and by inter-
action of damage from multiple particles.

In a review of published data on the dependence of different 
types of lethal damage on the linear energy transfer of ionizing 
particles, Barendsen (23,25,26) derived evidence that sublethal 
lesions and potentially lethal lesions show similar RBE-LET 

Table I. LQ parameters α and β, PLD-α, ratio of foci decay and the TP 53 status of the different prostate cancer cell lines.

LQ parameter cell line	 α, Gy-1	 β, Gy-2	 PLDR-α	 Ratio foci decay	 TP53 status

LNCaP
  ip	 0.31±0.09	 0.08±0.03	 10.3±3.9	 6.9±0.3	 TP53+

  dp	 0.03±0.01	 0.08±0.02
DU145 
  ip	 0.22±0.06	 0.04±0.01	   3.1±1.6	 4.2±0.7	 TP53 mutated
  dp	 0.07±0.03	 0.05±0.01
PC3 
  ip	 0.39±0.04	 0.03±0.01	   1.3±0.22	 1.6±0.2	 TP53 null
  dp	 0.30±0.04	 0.04±0.01

LQ, linear-quadratic; PLDR, potentially lethal damage repair; ip, cells immediately plated after irradiation; dp, cells delayed plated 24 h after 
irradiation. Error indicates standard error of the mean (SEM) N=3.

Table II. Surviving fraction and the number of radiation-induced γ-H2AX foci after 2 Gy.

	 LNCaP	 DU145		 PC3
	 ------------------------------------------------------------------	 -------------------------------------------------------------------	 -------------------------------------------------------------------
2 Gy	 Surviving fraction	 No. of foci	 Surviving fraction	 No. of foci	 Surviving fraction	 No. of foci

ip	 0.39±0.10	 17.8±0.7	 0.55±0.08	 12.1±0.9	 0.41±0.05	 10.8±1.0
dp	 0.70±0.15	 2.7±0.4	 0.71±0.10	 2.9±0.4	 0.46±0.05	 6.8±0.5

ip, cells immediately plated after irradiation and foci after 30 min; dp, cells delayed plated and foci at 24 h after irradiation. Error indicates 
standard error of the mean (SEM) N=3.
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(relative biological effect-linear energy transfer) relationships 
as DNA DSBs, with only a relatively low RBE at the optimal 
LET (27). This is evidently different from the high RBE values 
commonly derived for unrepairable lethal lesions and chromo-
some aberrations. The hypothesis was proposed that sublethal 
lesions and potentially lethal lesions are both DNA-DSBs. 
The present results on the decay of γ-H2AX foci, which mark 
DNA DSBs, and the correlation with PLD repair are consis-
tent with this hypothesis. Potentially lethal lesions contribute 
only a part to the linear parameter α in the LQ model and are 
similarly repairable as sublethal damage. In earlier studies, we 
demonstrated a correlation between survival, chromosomal 
aberrations and PLDR, which was shown by a decrease in the 
value of α with higher survival and lower number of chromo-
somal aberrations (12,13). Herein, we further demonstrated 
that there is an association between PLDR α and a decrease 
of DNA DSB, which strengthens the biological basis of the 
LQ model. However, our study remains to be confirmed in an 
isogenic system with cells only different in TP53 status.
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