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Abstract. Arsenic trioxide (As2O3) has been recognized as a 
potential chemotherapeutic agent, yet the details concerning 
its mechanism of action in solid cancers remain undeter-
mined. The present study assessed the role of Akt in the cell 
death induced by As2O3. The MTT assay showed that As2O3 
suppressed the proliferation of SGC-7901 cells in a dose- and 
time-dependent manner. Characteristic apoptotic changes were 
observed in the As2O3‑treated cells by Hoechst 33342 staining, 
and FACS analysis showed that As2O3 caused dose-dependent 
apoptotic cell death. As2O3 activated caspase-3 and -9, and 
PARP cleavage in a dose-dependent manner. Compromised 
mitochondrial membrane potential and an increased protein 
level of Bax indicated involvement of mitochondia. As2O3 
decreased the levels of p-Akt (Ser473), p-Akt (Thr308) and 
p-GSK-3β (Ser9), suggesting that As2O3 inactivated Akt kinase. 
In addition, LY294002 (a PI3 kinase inhibitor) augmented 
the apoptosis induced by As2O3. These results demonstrated 
that inhibition of PI3K/Akt signaling was involved in As2O3-
induced apoptosis of gastric cancer SGC-7901 cells.

Introduction

Gastric cancer has declined from the second to the fourth most 
common cancer in the world, yet it remains the second most 
common cause of cancer-related mortality among men and the 
fourth among women (1). It was estimated by the American 
Cancer Society that 989,600 new cases of gastric cancer and 
~738,000 related deaths occurred in 2008, with over 70% 
of new cases and deaths noted in developing countries (2). 
Gastric cancer is difficult to cure primarily since the majority 
of patients are diagnosed with advanced disease. It has been 
demonstrated that adjuvant therapy improves survival (3,4). 
Unfortunately, there is no internationally accepted standard 
chemotherapy for advanced gastric cancer, and uncertainty 
remains regarding the choice of the optimal regimen (5,6). 
Thus, the development of more efficacious therapies is criti-
cally needed for the treatment of this disease.

Arsenic trioxide (As2O3), an inorganic compound of triva-
lent arsenic, has been used as a drug in traditional Chinese 
medicine for thousands of years (7). At present, it is recognized 
as a potent chemotherapeutic agent and has been approved 
by the Food and Drug Administration for the treatment of 
certain leukemias (8-10). Previous studies have demonstrated 
that As2O3 may have beneficial effects in the treatment of 
solid tumors including gastric cancer  (11), hepatocellular 
carcinoma (12), breast cancer (13), lung cancer (14) and neuro-
blastoma (15); however, there are limitations to its application 
in the treatment of solid tumors owing to the necessity of high 
concentrations for antineoplastic efficacy (16,17). Therefore, a 
better understanding of the underlying mechanisms of action 
of As2O3 may facilitate the development of strategies to induce 
therapeutic responses using lower concentrations of As2O3 (18).

Despite extensive research, the mechanism of action of 
As2O3 is not fully clear. Several studies have indicated that 
arsenic-induced apoptotic death may be crucial for its anti-
leukemic action  (19,20). Specifically, the arsenic-induced 
apoptotic death process involves the reciprocal regulation 
of Bcl-2/Bax, loss of mitochondrial membrane potential 
(Δψm), activation of caspases, and fragmentation of DNA, 
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suggesting that activation of mitochondrial-mediated intrinsic 
apoptotic signaling may play a major role in arsenic-induced 
death (21-23). However, with regard to solid tumors, it remains 
controversial whether apoptosis is involved in the cell death 
induced by As2O3 (11,24-26).

Although the process of apoptosis is mediated primarily 
by proteolytic activities, there is compelling evidence that 
signal transduction pathways involving specific protein kinases 
modulate the apoptotic response (27). The serine/threonine 
protein kinase (Akt, a member of the PI3K pathway) is involved 
in widely divergent cellular processes including apoptosis 
and cell proliferation (28). The aberrant activation of phos-
phoinositide 3-kinase (PI3K)/Akt has been documented as a 
frequent occurrence in human types of cancer (29,30), and inhi-
bition of this pathway should provide a therapeutic approach 
for cancer (31). Several studies indicate that As2O3‑induced 
apoptosis is correlated with inactivation of PI3K/Akt in 
leukemia cells (32,33). Furthermore, abnormal activation of the 
PI3K/Akt pathway was found to render these cells resistance 
to As2O3 (34,35), and pharmacologic inhibitors of PI3K/Akt 
enhanced the apoptotic action of As2O3 (36). Therefore, inhibi-
tion of PI3K/Akt signaling may be critical for As2O3 action.

In the present study, we present data showing that 
As2O3‑induced apoptosis was partly mediated via the activa-
tion of mitochondrial-mediated intrinsic apoptotic signaling, 
and As2O3 inactivated Akt kinase via dephosphorylation of 
Akt. In addition, we showed that LY294002 (a PI3 kinase 
inhibitor) enhanced the apoptosis induced by As2O3.

Materials and methods

Materials. As2O3 was purchased from Sigma Chemical 
Co. (St.  Louis, MO, USA) and dissolved in 1  mmol/l 
NaOH as a 100-mM stock solution. Antibodies against 
total Akt, phospho‑Akt (Ser473), phospho-Akt (Thr308), 
phospho‑GSK‑3β  (Ser9), poly(ADP-ribose) polymerase 
(PARP), cleaved PARP, pro-caspase-3, cleaved caspase-3, 
pro-caspase-9, cleaved caspase-9, β-actin and LY294002 (a 
PI3 kinase inhibitor) were purchased from Cell Signaling 
Technology, Inc. (Beverly, MA, USA). Antibodies against 
β-actin, Bcl-2 and Bax were purchased from Santa  Cruz 
Biotechnology, Inc. (Santa Cruz, CA, USA). Alkaline phospha-
tase-linked secondary antibodies were purchased from Promega 
Corporation (Madison, WI, USA). Annexin V-fluorescein 
isothiocyanate (FITC)-labeled apoptosis detection kit was 
obtained from Baosai Biological Technology Co., Ltd. 
(Beijing, China). Hoechst 33342 and propidium iodide (PI) 
were purchased from Sigma Chemical Co.

Cell culture. The human gastric cancer SGC-7901 cell line 
(Heilongjiang Cancer Institute, China) was maintained in 
RPMI-1640 medium containing 10% fetal bovine serum at 
37˚C in a 5% CO2 atmosphere. All cell samples used were in 
the logarithmic growth phase.

Cell viability assay. The effect of As2O3 on the proliferation 
of SGC-7901 cells was assessed using the 3-(4,5-dimethylthi-
azol‑2-yl)-2,5-diphenyltetrazolium bromide (MTT) conversion 
assay. Briefly, SGC-7901 cells were plated at 4x103 cells/well 
in 96-well plates for 16 to 20 h. Then, the cells were exposed 

to varying concentrations of As2O3 at 37˚C for 24, 48 and 72 h, 
respectively. Thereafter, 10 µl of MTT (5 mg/ml) was directly 
added to each well, and the cells were incubated at 37˚C for 
an additional 4 h. After removal of the culture medium, the 
cells were lysed in 100 µl of dimethyl sulfoxide (DMSO). The 
optical density (OD) at 490 nm was measured by a microplate 
reader (Bio-Rad, Hercules, CA, USA). The following formula 
was used: Relative percentage of cell viability = (OD of the 
experimental sample/OD of the control group) x 100%.

Assessment of mitochondrial membrane potential. 
Mitochondrial membrane potential (Δψm) was quantified 
using Rhodamine 123, whose accumulation in the mitochon-
dria of living cells depends on Δψm. SGC-7901 cells (1x106) 
were collected after various treatments. Cells were washed 
and resuspended in 500 µl of phosphate-buffered saline (PBS) 
buffer containing 5 µg/ml of Rhodamine 123 (Molecular 
Probes, Eugene, OR, USA), and were then incubated at 37˚C 
for 30 min in the dark, washed and resuspended in PBS buffer. 
Finally, the intensity of the Rhodamine 123 staining was 
measured by flow cytometry with an excitation and emission 
setting of 488 and 530 nm, respectively.

Apoptotic cell staining. Morphological evidence of apoptosis 
or necrosis was determined by Hoechst 33342 and PI nuclear 
staining. After the various treatments, the SGC-7901 cells 
were incubated with 5 µg/ml of Hoechst 33342 and 5 µg/ml 
PI for 15 min and then observed using fluorescence micros-
copy (Nikon TE2000-U, Japan) at a magnification of x200. 
Apoptotic cells were identified by characteristic unequivocal 
nuclear chromatin condensation and/or fragmentation (37). 
Digital images were captured from 5  random fields for 
each sample, and apoptotic cell counts were expressed as a 
percentage of the total number of nuclei counted.

Analysis of apoptosis by Annexin V-FITC staining. Early apop-
tosis was determined by staining cells with Annexin V‑FITC. 
Briefly, after the various treatments, both floating and trypsin-
ized adherent SGC-7901 cells were collected. Then the cell 
pellets were incubated with 5 µl PI and 10 µl Annexin V-FITC. 
The samples were then analyzed by flow cytometry.

Western blot analysis. After the various treatments, the 
SGC-7901 cells were collected and lysed in lysis buffer. 
The supernatants were then collected by centrifugation at 
12,000 x g for 5 min and analyzed for total protein content by 
the Bradford method. Equal amounts of lysate were loaded on 
a 10% SDS-polyacrylamide gel. After electrophoresis, proteins 
were transferred to a nitrocellulose membrane, and the blots 
were probed by corresponding primary antibodies, followed 
by incubation with alkaline phosphatase (AP)-conjugated 
secondary antibodies (Promega Corporation). The posi-
tive bands representing protein were developed using the 
Western Blue Stabilized Substrate for Alkaline Phosphatase 
(Promega Corporation).

Statistical analyses. Data are expressed as means ± SD of 
three repeated experiments. The one-way analysis of vari-
ance (ANOVA) was used for statistical analyses. p<0.05 was 
considered to indicate a statistically significant result. All 
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experiments were performed at least three times indepen-
dently.

Results

As2O3 reduces the proliferation of SGC-7901 cells. To inves-
tigate the inhibitory effect of As2O3 on the proliferation of 
gastric cancer cells, SGC-7901 cells were treated with various 
concentrations of As2O3 (0 to 16 µmol/l) for 24, 48 and 72 h. 
The results of the MTT assay (Fig. 1A) demonstrated that 
As2O3 significantly inhibited cell viability in a dose- and 
time‑dependent manner. The 50% inhibitory concentration 
(IC50) of As2O3 was 3.32 µmol/l at 72 h.

As2O3 induces the apoptosis of SGC-7901 cells through 
the mitochondrial pathway. To determined whether As2O3 
inhibits the growth of SGC-7901 cells via induction of apop-
tosis, SGC-7901 cells were treated with As2O3 (0 to 16 µmol/l) 
for 24 h, and apoptosis was determined using Hoechst 33342 

staining. Characteristic apoptotic changes such as condensed, 
fragmented, and intensely fluorescent nuclei were observed 
in the SGC-7901 cells following treatment with As2O3 for 
24 h (Fig. 1B). The extent of apoptosis was next quantified 
using flow cytometry with Annexin V and PI staining. As2O3 
treatment for 24 h resulted in dose-dependent induction of 
apoptosis in the SGC-7901 cells (Fig. 1C).

To determine whether the mitochondrial pathway is 
involved in the induction of apoptosis induced by As2O3 treat-
ment, changes in Δψm were measured by Rhodamine 123 
staining and subsequent flow cytometry. With the increasing 
concentrations of As2O3, the numbers of SGC-7901 cells 
increased in the hypofluorescent portion, which indicated that 
As2O3 decreased the  Δψm in SGC-7901 cells (Fig. 2A).

Since pro-apoptotic Bax and anti-apoptotic Bcl-2 play 
crucial roles in apoptosis, changes in the protein levels in the 
SGC-7901 cells treated with As2O3 were determined using 
western blotting. As2O3 did not significantly modify the 
protein level of Bcl-2, but increased the protein level of Bax 

Figure 1. Effect of As2O3 treatment on cell growth and apoptosis. (A) Cell viability analysis. SGC-7901 cells were treated with As2O3 (0-16 µmol/l) for 24, 48 
and 72 h, and the cell growth was determined by MTT assay. Data shown are the mean ± SD of 3 separate experiments for which each treatment was repeated 
in 96-well plates. (B and C) SGC-7901 cells were treated with As2O3 (0-16 µmol/l) for 24 h, and apoptosis was determined by fluorescence microscopy and 
flow cytometry as detailed in Materials and methods. (B) Morphological evidence of apoptosis or necrosis was determined by Hoechst 33342 and PI nuclear 
staining. Cells that stained blue with condensed chromatin and/or fragmentation were recorded as apoptotic cells. (C) Quantification of apoptosis by flow 
cytometry. The cells were labeled with Annexin-FITC and PI. Annexin V-positive cells were considered to be apoptotic cells, and their percentage is indicated. 
Data from 3 independent experiments are shown. *p<0.01 vs. control. As2O3, arsenic trioxide; PI, propidium iodide.
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in a dose‑dependent fashion (Fig. 2B), which resulted in an 
increase in the ratio of Bax to Bcl-2, therefore favoring apop-
tosis.

To determine whether the activation of caspase-3 and -9 
is involved in the apoptosis induced by As2O3, the proteolytic 
maturation of pro-caspase-3 and -9 was detected using western 
blotting. As2O3 treatment resulted in a decrease in the protein 
levels of pro-caspase-3 and -9 and concomitant increase in 
the corresponding active cleavage products in the SGC-7901 
cells  (Fig.  2B), which indicated that As2O3 may increase 
the cleavage maturation of caspase-3 and -9. Meanwhile the 
cleavage of PARP, an executioner caspase substrate, was also 
detected using western blotting. Likewise, As2O3 treatment 
resulted in cleavage of PARP from 116 to 89 kDa (Fig. 2B). 
Therefore, these results suggested that As2O3-induced apop-
tosis was partly mediated through the mitochondrial pathway.

As2O3 inhibits the phosphorylation of Akt in SGC-7901 cells. 
Akt has been reported to be involved in the signaling pathway 
mediated by As2O3, and its activation was found to be correx-
lated with phosphorylation at Thr308 and Ser473 residues. 
Therefore, the effects of As2O3 (0 to 16 µmol/l) treatment for 
24 h on the amount and phosphorylation of Akt were evalu-

ated using western blotting. As2O3 did not significantly change 
the protein level of Akt, but decreased the levels of p-Akt 
(Ser473) and p-Akt (Thr308) (Fig. 3), which indicated that 
inactivation of Akt kinase following As2O3 treatment was due 
to dephosphorylation of Akt, rather than reduction in total Akt 
protein. It was found that activated Akt phosphorylates and 
inactivates glycogen synthase kinase 3 (GSK-3), which plays 
an important role in the apoptotic pathway. Thus, changes 
in the phosphorylation of serine 9 of GSK3β were detected 
using an antibody that specifically recognizes phosphoserine-
9-GSK3β. Likewise, a reduction in GSK3β phosphorylation 
was found in the SGC-7901 cells treated with As2O3 (Fig. 3), 
suggesting that As2O3 treatment decreases the activity of Akt.

PI3K/Akt inhibitor enhances the apoptosis induced by As2O3. 
To investigate whether the inhibition of PI3K/Akt signaling 
alters the extent of apoptosis induced by As2O3, LY294002 (a 
specific inhibitor of PI3K) was selected to inhibit PI3K/Akt 
signaling. Pretreatment with 25 µmol/l LY294002 for 1 h before 
exposure to 16 µmol/l As2O3 for 24 h completely blocked Akt 
activation (Fig. 4A). LY294002 significantly decreased the 
viability of the SGC-7901 cells from 60.0±1.0 to 24.9±1.7% 
following treatment with As2O3 (Fig. 4B). LY294002 alone 
induced typical morphological changes and increased the 
percentages of the apoptotic population, which were greatly 
potentiated in the presence of As2O3  (Fig. 4C). Moreover, 
LY294002 significantly decreased Δψm, which was further 
decreased in the presence of As2O3 (Fig. 4D). When As2O3 
was used in combination with LY294002, the protein level 
of Bcl-2 was decreased, the protein level of Bax was signifi-
cantly increased, the proteolytic activation of pro-caspase-3 
and -9 was greatly potentiated, and the cleavage of PARP 
was enhanced. Therefore, LY294002 enhanced the extent of 
apoptosis induced by As2O3.

Discussion

As2O3 has attracted much attention due to its beneficial effects 
in the treatment of patients with acute promyelocytic leukemia 
(APL) without severe side-effects (38). Moreover, its antitumor 
activity has been confirmed in non-APL leukemia (9) and solid 
tumor cell lines (16,25,39). As2O3 induces apoptosis and inhibits 
the growth of various types of tumor cells in vitro, but relatively 
higher concentrations are required for solid tumor cells than 
for hematologic cancer cells (40,41). In the present study, we 

Figure 3. Effects of As2O3 on the activation and expression of Akt proteins. 
Exponentially growing cells were treated with As2O3 (0-16 µmol/l) for 24 h, 
and the Akt, phospho-Akts and phosphoserine-9-GSK3β levels were evalu-
ated using western blotting. As2O3, arsenic trioxide.

Figure 2. As2O3 induces the apoptosis of SGC-7901 cells through the mito-
chondrial pathway. (A) Assessment of mitochondrial membrane potential 
(Δψm). SGC-7901 cells were treated with As2O3 (0-16 µmol/l) for 24 h, and 
Rhodamine 123 fluorescence was analyzed by flow cytometry. Data repre-
sent the percentage of cells with decreased fluorescence, which reflects the 
number of cells with low Δψm. *p<0.01 vs. control. (B) Analysis of the pro-
tein expression of Bax and Bcl-2, activation of caspase-3 and -9, and cleavage 
of PARP protein. SGC-7901 cells were incubated with As2O3 (0-16 µmol/l) 
for 24 h, and the levels of the proteins were analyzed by western blotting 
with antibodies against Bcl-2, Bax, pro-caspase-3, cleaved caspase-3, pro-
caspase-9, cleaved caspase-9, PARP and cleaved PARP. As2O3, arsenic 
trioxide; PARP, poly(ADP-ribose) polymerase.



ONCOLOGY REPORTS  31:  1645-1652,  2014 1649

demonstrated that As2O3 inhibited proliferation and viability 
of SGC-7901 cells in a dose- and time-dependent manner, 
which supports the results of previous studies (11,42,43). The 
IC50 of As2O3 in SGC-7901 cells was 3.32 µmol/l at 72 h, and 

was greater than the optimum plasma level (2 µmol/l) used 
for the treatment of hematological malignancies (44,45), indi-
cating that SGC-7901 cells are less susceptible to As2O3 than 
hematological cancer cell lines. However, pharmacokinetic 

Figure 4. Effects of LY294002 on the action of As2O3 in SGC-7901 cells. Exponentially growing cells were pretreated with 25 µmol/l LY294002 for 1 h, and 
were then exposured to 16 µmol/l As2O3 for 24 h. (A) The levels of Akt or phospho‑Akts were evaluated using western blotting. (B) Cell viability was analyzed 
by MTT assay. (C) Morphological evidence of apoptosis was determined by Hoechst 33342 and PI nuclear staining and quantified using flow cytometry with 
Annexin-FITC and PI staining. (D) Mitochondrial membrane potential (Δψm) was assessed by Rhodamine 123 staining. (E) The protein expression of Bax 
and Bcl-2, activation of caspase-3 and -9, cleavage of PARP protein were analyzed by western blotting. *p<0.01 vs. control; ∆p<0.01 vs. LY294002. As2O3, 
arsenic trioxide; PARP, poly(ADP-ribose) polymerase. 
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studies, which were performed in 8 APL patients successfully 
treated with As2O3, revealed that peak plasma concentra-
tions rangeg from 5.54 to 7.30 µmol/l (38). Therefore, these 
results suggest that As2O3 may be clinically useful in patients 
with gastric cancer as an adjuvant chemotherapeutic agent. 
It has been indicated that the effective dose range of As2O3 
being used to treat solid tumors in mice is from 2 to 6.5 mg/
kg (40,46). These dosages are ~12- to 40-fold higher than the 
standard dosage of 0.16 mg/kg used to treat APL patients. 
Such high dosages carry the risk of severe side-effects due 
to toxicity (40,47). Therefore, it is essential to determine the 
mechanisms of action of As2O3 and to develop strategies to 
enhance its efficacy.

The mechanisms responsible for the antitumor action of 
As2O3 have been extensively investigated. Apoptosis appears 
to be one of the main mechanisms by which As2O3 induces 
cell death and inhibits cell growth (19,20,48). However, several 
studies indicate that As2O3 primarily induces arrest at the 
G1 or G2/M phases in solid cancer cells (24,26,49). In support 
of these findings, our previous research found that As2O3 
effectively inhibited the growth of hepatocellular carcinoma 
cells and induced G2/M phase arrest (50). In the present study, 
apoptotic morphological changes were observed in the nuclei of 
the SGC-7901 cells following treatment with As2O3, and FACS 
analysis showed that As2O3 caused dose-dependent apoptotic 
cell death. This result is similar to previous reports (11,51). 
Consistent with a previous report (52), As2O3 increased active 
cleaved caspase-3 (17 kDa) and cleaved fragment of PARP 
(89 kDa). These results revealed that As2O3 has the capability 
to induce apoptosis in SGC-7901 cells.

Mitochondria play a key role in apoptotic signal transduc-
tion in mammalian cells (53). It has been suggested that As2O3 
induces apoptosis in tumor cells by affecting the mitochon-
dria, due to the loss of ∆Ψm (54-58) and cytochrome c release 
from mitochondria (59,60). In the present study, the loss of 
∆Ψm was demonstrated by an increase in the proportions of 
cells with reduced Rhodamine 123 staining. Bcl-2 and Bax 
are members of the Bcl-2 family that regulate apoptosis by 
controlling mitochondrial integrity. Although they have highly 
similar amino acid sequences, their functions are opposed; 
Bcl-2 acts to inhibit apoptosis, whereas Bax counteracts this 
effect by heterodimerization with Bcl-2. The ratio of Bcl/Bax 
dictates the sensitivity of cells to apoptosis through destabili-
zation of the mitochondrial membrane and activation of the 
caspase cascade (61). Zheng et al found that As2O3 triggered 
apoptosis through induction of Bcl-2 conformational change, 
Bax activation and upregulation of total Bax expression 
in human gastric cancer SGC7901 cells (11). In the present 
study, As2O3 had no effect on the protein level of Bcl-2, but 
increased the protein level of Bax in a dose‑dependent fashion, 
thus increasing the ratio of Bax to Bcl-2. In mitochondrial-
dependent apoptosis, the disruption of the mitochondrion leads 
to the release of cytochrome c into the cytosol. Apoptosomes 
containing cytochrome c, Apaf-1 and pro-caspase-9 are then 
assembled, resulting in proteolytic processing and activation 
of pro-caspase-9. Active caspase-9 in turn activates pro-
caspase-3 initiating a caspase signaling cascade to induce 
apoptosis  (62). In the present study, we also demonstrated 
that As2O3 induced apoptosis in parallel with the activation 
of caspase 9. Therefore, As2O3 has the ability to induce the 

mitochondrial-intrinsic apoptosis signaling pathway in gastric 
cancer.

Akt, a key mediator of the PI3K signaling pathway, 
promotes cell survival partially by phosphorylation and inacti-
vation of several pro-apoptotic proteins, including GSK-3 (63), 
BAD (64) and caspase-9 (65). The role of Akt in As2O3-induced 
death has been investigated, yet the results are conflicting 
and confusing (18,66,67). It has been found that the activity 
of the PI3K/Akt signaling pathway determines the sensitivity 
of leukemia cells to As2O3-induced apoptosis  (32,34,35). 
Moreover, pharmacologic inhibitors of PI3K/Akt were found 
to enhance the apoptotic action of As2O3 (36), while another 
report showed that pretreatment with inhibitors of PI3K had 
no effect on As2O3‑induced apoptosis in the leukemic cell line 
NB4 (34). Our results showed that As2O3 decreased not only 
phosphorylated Akt protein levels but also Akt activity, which 
is coincident with a previous report (68). Meanwhile, we found 
that pretreatment with the PI3K/Akt inhibitor LY294002 
strongly increased As2O3-induced apoptosis in SGC-7901 
cells. Moreover, when As2O3 was used in combination with 
LY294002, Δψm was further decreased, the protein level of 
Bcl-2 was decreased, the protein level of Bax was signifi-
cantly increased, the proteolytic activation of pro-caspase-3 
and -9 was greatly potentiated, and the cleavage of PARP was 
enhanced, indicating that LY294002 enhanced the apoptosis 
induced by As2O3 via the mitochondrial-intrinsic apoptosis 
signaling pathway.

Taken together, our results suggest that As2O3 inactivated 
Akt kinase via dephosphorylation, which then induced 
apoptosis via activation of mitochondrial-mediated intrinsic 
apoptotic signaling. In addition, the PI3K inhibitor LY294002 
enhanced the apoptosis induced by As2O3. Therefore, the PI3K/
Akt pathway plays a role in As2O3-induced death of SGC-7901 
cells and the addition of PI3K inhibitors may be valuable for 
improving the efficacy of As2O3 treatment for human gastric 
cancer.
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